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Multihole edge states in Su-Schrieffer-Heeger chains with interactions
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We address the effect of nearest-neighbor (NN) interactions on the topological properties of the Su-Schrieffer-
Heeger (SSH) chain, with alternating hopping amplitudes t1 and t2. Both numerically and analytically, we show
that the presence of interactions induces phase transitions between topologically different regimes. In the particular
case of one-hole excitations in a half-filled SSH chain, the V/t2 versus t1/t2 phase diagram has topological phases
at diagonal regions of the phase plane. The interaction acts in this case as a passivation potential. For general
filling of the SSH chain, different eigensubspaces of the SSH Hamiltonian may be classified as topologically
trivial and nontrivial. The two-hole case is studied in detail in the large interaction limit, and we show that a
mapping can be constructed of the two-hole SSH eigensubspaces into one-particle states of a noninteracting
one-dimensional (1D) tight-binding model, with interfaces between regions with different hopping constants
and local potentials. The presence of edge states of topological origin in the equivalent chain can be readily
identified, as well as their correspondence to the original two-hole states. Of these states only some, identified by
us, are protected and, therefore, truly topological. Furthermore, we found that the presence of the NN interaction
generates a state where two holes occupy two consecutive edge states. Such many-body states should also occur
for arbitrary filling leading to the possibility of a macroscopic hole gathering at the surface (at consecutive edge
states).
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I. INTRODUCTION

The SSH model of polyacetilene chains [1] is an extensively
studied 1D tight-binding model with alternate hopping con-
stants, which can support topologically protected edge states
[2]. When interactions are introduced in the SSH model, the
independent electron picture no longer holds and one cannot
determine a band structure from which the Berry phase could
be calculated. However, as we show below, in a half-filled SSH
chain (one electron per site) with NN interactions, one-hole
excitations can be treated as independent effective particles,
and one recovers the Berry phase. The effect of onsite inter-
actions on the topological excitations of a half-filled 1D chain
was already characterized numerically by Guo and Shen [3].

The possibility of topological phases in real materials taking
into account the presence of many-body interactions has been
first addressed by Niu and Thouless [4]. By interpreting a
1D chain as a cell of a larger supercell of equivalent chains,
one can employ the method of twisted boundary conditions
on the many-body wave function to find, after averaging over
all possible boundary conditions, a quantized Berry phase [5].
The method works as long as the system remains an insulator
as interactions are introduced. This approach was recently
followed in the case of interacting 1D chains with fractional
fillings where, due to the degeneracy of the ground state, a
topological phase characterized by a fractional Berry phase
was found [6,7].

In the context of SSH chains, different kinds of interactions
have been introduced and their effects characterized: Hubbard
interaction [8], impurity atoms at specific sites [9–11], spin-
orbit coupling [12], superconducting pairing terms [13], and
electron-electron (e-e) interactions between nearest neighbors
in periodic chains [14]. Hubbard and e-e interactions have
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also been studied in the context of polaron transport dynamics
[15–17]. Topologically protected edge states in similar 1D
optical lattices with onsite interactions [18], or with Zeeman
[19] and synthetic gauge fields [20], have also been studied.
The problem of two-body physics in 1D chains [21–25] has
attracted the attention of the community as of late and, in the
particular context of the SSH model, which is the focus of
this paper, there are some very recent papers that address the
problem of two-boson states (doublons) in the presence of
Hubbard interactions [26–28].

In this paper, we consider interactions in a fermionic
half-filled SSH chain and show how, for one-hole excitations,
the NN interactions are converted into local potentials at the
edge sites which, at critical strengths, reverse the topological
nature of the chain [11,26,27]. We further study two-hole
excitations and find that, in the limit of strong interactions,
the two-hole states available in a given eigensubspace can
be translated as one-particle states in an equivalent chain
with different sections, whose construction rules we detail,
where the interaction vanishes. Because of this, in all different
sections of this equivalent chain the usual topological charac-
terization, given by the Berry phase, can again be made, and
thus the possible presence of topological states can be readily
identified.

II. THE MODEL

We consider a spinless SSH model of an open chain with
interactions, depicted in Fig. 1(i),

H = − t1

N/2∑
j=1

(c†2j−1c2j + H.c.)

− t2

N/2−1∑
j=1

(c†2j c2j+1 + H.c.) + V

N−1∑
j=1

njnj+1, (1)
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FIG. 1. (i) Open SSH chain with alternating t1 and t2 hoppings,
represented by solid and dashed lines, respectively. (ii) Added onsite
potentials at the edges. (iii) When V → ∞ the system can be split
into two independent parts: the two edge sites and the rest of the chain.
The edge hoppings of this smaller chain switch from t1 to t2, so that
its topological nature, for fixed (t1,t2), is the inverse of (i). (iv) V/t2
vs. t1/t2 phase diagram of a one-hole state in an infinite open chain. In
region T, there are midgap topological edge states. In regions NT, there
are no edge states. In regions E, there are nontopological edge states
pinned around the impurities with energies above the conduction
bands (for V > t2) or below the valence bands (for V < −t2). In
regions T+E, there are both topological and nontopological edge
states. Points labeled (a)–(e) show the position on the phase diagram
of the corresponding cases in Fig. 2.

where j is the site number, nj = c
†
j cj is the electronic

occupation number, N is the number of sites, t1 and t2 are
the staggered hopping parameters of the chain, and V is the
NN Coulomb interaction.

A. One-hole states

Let us consider one-hole excitations in an half-filled chain
(one electron per site). Using the particle-hole transformation
c
†
j (cj ) → hj (h†

j ), together with the fermionic anticommuta-
tion rules, the Hamiltonian in Eq. (1) becomes [apart from
a constant term given by V (N − 1 − 2), where N − 1 is the
number of links and 2 is the number of missing links for a hole
placed at a bulk site],

H = t1

N/2∑
j=1

(h†
2j−1h2j + H.c.) + t2

N/2−1∑
j=1

(h†
2jh2j+1 + H.c.)

+V
(
nh

1 + nh
N

)
, (2)

where nh
j = h

†
jhj is the hole occupation number. The last

term shows how the NN interaction translates into an onsite
potential at the end sites, that is, in the one-hole Hamiltonian
the interaction becomes equivalent to an impurity (passiva-
tion) potential located at both ends, reflecting the different
coordination number of the end sites, as shown in Fig. 1(ii).

This edge potential V will change the relative position of
the energy of the topological edge states and, with increasing
V (more precisely for |V | > t2), new nontopological localized
states appear, pinned at the edge impurities [11,26,27], and
the topological nature of the chain is reversed, i.e., it goes
from topologically nontrivial to trivial, or viceversa. The phase
diagram of Fig. 1(iv) illustrates this behavior. The V = 0 line
gives the usual SSH topological characterization.

There is a simple qualitative picture to show why a strong
|V | changes the topological nature of the chain. In the absence
of impurity potentials at the edges, topological edge states are
present if the edge t1 hoppings are the long bonds (t1 < t2), and
absent otherwise. If we consider the |V | → ∞ limit, the chain
can be divided in two independent parts [9]: the edge sites
separate from the rest of the chain, as shown in Fig. 1(iii). The
edge hoppings of the new smaller chain switch from t1 to t2, so
the topologically nontrivial phase requires the t2 hoppings to be
now the long bonds—the dimerization of the chain is reversed
[11,29]. Numerically it is found that an effective dimerization
reversal occurs at |V | = t2, which is also the |V | value above
which localized impurity states appear (a similar description
can be found in section 2 of the appendix in Ref. [27]).

A concrete example of a chain with N = 100 sites was
studied. The phase diagram of Fig. 1(iv) was seen to hold for
this chain, apart from small finite-size effects. For different
combinations of parameters, in different regions of the phase
diagram, the energy levels are plotted in Figs. 2(a)–2(e). We
considered only negative values for V . The energy levels for
the symmetric positive V ’s are given by a reflection about the
zero energy level. A finite detachment of an energy level from
either of the bands was the criterion used for defining the edge
states.

The usual energy spectrum for an SSH chain in the
topological phase is recovered when V = 0, as in Fig. 2(a),
with its zero energy states (doubly degenerate green level).
By turning on a small V , the only effect will be to lower the
topological edge states close to the top of the lower band [see
Fig. 2(b)]. A further increase in V and the aforementioned
topological transition takes place: the topological edge state
disappears as it merges with the lower band and, at the same
time, impurity edge states appear below the lower band, as
becomes clear by contrasting Figs. 2(b) and 2(c), respectively,
a little before and after the topological transition. Continuing to
increase V only lowers the energy of the impurity edge states,
as in Fig. 2(d). If, one the other hand, the set of parameters falls
in one of the yellow regions in the phase diagram [see point (e)
in Fig. 1(iv)], as is the case of Fig. 2(e), both topological and
impurity edge states are present. These two kinds of edge states
appear simultaneously at the transition from a nontopological
blue region to a yellow region in Fig. 1(iv).

Examples of the spatial distribution of the wave function
of some of the edge states in the chain are shown in
Fig. 2(f). The bottom case is of an impurity edge state,
which is also the ground state. Both the top and middle cases

115443-2



MULTIHOLE EDGE STATES IN Su-SCHRIEFFER-HEEGER . . . PHYSICAL REVIEW B 95, 115443 (2017)

FIG. 2. Energy spectrum for one-hole states of a chain with N =
100 sites for t1 = 0.4 and (a) V = 0, (b) V = −0.8, (c) V = −1.2,
(d) V = −1.6, and (e) t1 = 2.0 and V = −2.2, in units of t2 [see
corresponding labeled points in Fig. 1(iv)]. Green levels correspond
to topological edge states and red levels to the impurity edge states.
(f) Normalized probability amplitude distribution on the sites of the
chain of the edge states indicated by the arrows (edge states are doubly
degenerate, only one is shown here for each case).

concern topological edge states. The most important difference
between them is that the maximum in the probability amplitude
occurs at an edge site in the top case, and at the first inner sites
at both edges (i = 2,N − 1) in the middle case. This comes
as a consequence of the dimerization reversal, which occurs in
the middle case of Fig. 2(f), where |V | > t2. In the |V | → ∞
limit illustrated in Fig. 1(c), the wave function of the bottom
case of Fig. 2(f) would be completely localized at the edge
site and, in the middle case, the probability amplitude at the
edge sites would be zero, since the edge sites would become
independent of the chain.

The results derived here for one-hole states can be used to
describe other kinds of one-particle states. Consider the in-
troduction of an electron into an half-filled extended-Hubbard
chain [30–36] of spinfull electrons for U � V � t1,t2. This
condition ensures that the background is composed of one
electron per site. The introduction of another electron into
the chain creates a doubly occupancy. The effect of the e-e
interaction is again dependent on the position of the double
occupancy, that is, on the number of nearest neighbors: if it
is located at a bulk site, the energy is raised by 2V and if,
on the other hand, it is located at an edge site the energy
is raised by V (the effect is symmetric to the one-hole states
considered before). Note that both the spin configuration of the
background and of the introduced electron become irrelevant.
Then, after the constant U term, given the energy of the double
occupancy, is taken out, the problem can be treated, as before,
as the creation of a one-hole state in a background of spinless
electrons, with the introduction of an onsite potential −V at
the edges [the same as Fig. 1(ii), but with V → −V ].

Another example is the quantum Heisenberg XXZ model
[37] with staggered in-plane Heisenberg couplings. If we
define a particle creation as a spin-flip on a ferromagnetic
background, we can map this model, following standard tech-
niques [38], into a model of hard-core bosons in an SSH chain
with the Hamiltonian of Eq. (1), by substituting −Ji/2 → ti
and Jz → V , where J1, J2, and Jz are, respectively, the two
staggered in-plane couplings and the z component coupling.

B. Two-hole states

We have seen that for |V | � t1,t2, the chain gets effectively
shortened for one-hole states [see Fig. 1(iii)]. For two-hole
states, we define a new zero of potential, dropping the V (N −
1 − 4) energy constant of the states with two holes localized at
nonadjacent bulk sites (with four missing NN interactions in
comparison with the half-filled case). Relative to the new zero
of potential, there will be a subspace of states with potential en-
ergy V (with three missing NN interactions). In turn, there are
two different kinds of states in this subspace. One kind has one
hole localized at one of the edge sites and the other restricted to
the smaller inner SSH chain [orange dashed box in Fig. 3(a)].
These states have the form d

†
L(R),i → h

†
i+2h

†
1(N), i = 1,2...M

with M = N − 3, where d
†
L(R),i has one hole at h

†
1(N), the left

(right) edge. The other kind of states consist of two holes
localized at adjacent bulk sites, of the form f

†
i → h

†
i+2h

†
i+1,

i = 1,2...M . Two different examples are shown in Fig. 3(b).
In the |V | � ti limit considered, t1 and t2 can be regarded

as perturbations that lift degeneracies in the subspace of states
with energy V . By collecting all terms up to second-order, one
can construct an equivalent chain, as in Fig. 3(c), where each
two-particle state is regarded a site of this chain: d

†
L,i and f

†
i

states in Figs. 3(a) and 3(b) become, respectively, sites of the
dL and f chains in the equivalent chain. In what follows, we
will only consider the dL and f chains, which is sufficient
to establish the correspondence. Apart from small energy
corrections at the edge sites, the effect of the introduction
of the dR chain would be to make each energy state doubly
degenerate. Some onsite potential and hopping terms of our
second-order expansion are depicted in Figs. 3(d)–3(g). The
Hamiltonian of the equivalent chain writes as

H = HdL
+ Hf + HdL↔f + HV , (3)

HdL
= −t1

M−1
2∑

j=1

(d†
L,2j−1dL,2j + H.c.)

− t2

M−1
2∑

j=1

(d†
L,2j dL,2j+1 + H.c.) + t2

1

V

M−1∑
j=2

n
dL

j − t2
1

V
n

dL

1 ,

(4)

Hf = t1t2

V

M−1∑
j=1

(f †
j fj+1 + H.c.) + 2t2

1

V

M+1
2∑

j=2

n
f

2j−1

+ 2t2
2

V

M+1
2∑

j=1

n
f

2j + t2
1

V

(
n

f

1 + n
f

M

)
, (5)
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FIG. 3. (a, b) Two-hole states with potential energy V . In (a), one hole is localized at the left edge and the other at any of the sites within
the orange dashed box. In (b), two examples, with different inner hoppings, of two-hole states with the holes localized at adjacent bulk sites.
(c) The two-hole states in (a) and (b) are translated as sites in an equivalent chain, using second-order perturbation theory for V � t1,t2, and
can be divided in a (green) dL-chain, a (red and blue) f -chain, and a (brown) dR chain. (d) Hopping constant between dL,1 and f1 sites.
(e) Onsite potential at dL,2. (f) Hopping constant between nearest-neighboring f sites. (g) Onsite potential at f2. In (d) and (f), occupied sites
are not colored due to superposition.

HdL↔f = −t1d
†
L,1f1 + t2

1

V
d
†
L,2f1 + t1t2

V
d
†
L,2f2 + H.c. (6)

HV = V

M∑
j=1

(
n

dL

j + n
f

j

)
, (7)

where HdL
, Hf , HdL↔f , and HV are, respectively, the

Hamiltonians of the dL chain, of the f chain, of their
interface, and the constant onsite potential attributed at each
site, explicitly introduced to keep the correspondence exact.
The potentials at sites dL,1 and dL,M are different from the
other sites. For dL,1, the intermediate virtual state in the
second-order corrections is h

†
2h

†
1, with energy 2V , so the

energy difference in the denominator is given by �E =
V − 2V = −V , hence the minus sign in the last term in
Eq. (4). For dL,M , two second-order processes are present, one
mediated by h

†
Nh

†
1 with energy 2V , and the other by h

†
N−1h

†
2

with energy 0 (meaning �E = V ), therefore canceling one
another. The complete Hamiltonian of the equivalent chain,
with the inclusion of the dR chain, would have two extra
terms written as HdL

→ HdR
and HdL↔f → HdR↔f , with the

dL,i(fi) → dR,M+1−i(fM+1−i) substitutions. n
dL

1 and n
f

1 are
the occupation numbers of the dL and f chains, respectively.
Because this is the Hamiltonian for one-particle states, and
not one-hole states, the hopping terms have reversed signs.
The interface connects two chains with distinct topological
natures, since the f chain is trivial and the dL chain nontrivial
(the usual SSH chain with onsite potentials and mixed
edges).

We studied a concrete example of two-hole states in an
SSH chain with N = 20 sites and compared them to the
states present in the equivalent chain with 34 sites (both
the dL chain and the f chain have M = N − 3 = 17 sites).
The states of the SSH and equivalent chain are written,

respectively, as

|ψSSH〉 =
N−1∑
i=1

N∑
j=i+1

αijh
†
jh

†
i |∅ssh〉,

N−1∑
i=1

N∑
j=i+1

|αij |2 = 1,

(8)

|ψchain〉 =
M∑

j=1

(βjd
†
L,j + γjf

†
j )|∅chain〉,

(9)
M∑

j=1

(|βj |2 + |γj |2) = 1.

After finding the coefficients numerically, the mean occupation
for each site is given by 〈nj 〉 = 〈ψ |h†

jhj |ψ〉. In the case of the

equivalent chain, we use the correspondences d
†
L,i |∅chain〉 →

h
†
i+2h

†
1|∅ssh〉 and f

†
i |∅chain〉 → h

†
i+2h

†
i+1|∅ssh〉. Note that 〈n〉 =∑N

j=1〈nj 〉 = 2.
For (V,t1,t2) → t(−14,1,0.2), where t is an arbitrary

energy constant, the energy spectrum for the SSH chain with
N = 20 sites, in the subspace of states with potential energy
V is shown in Fig. 4(a). Bands around E/t = −13 and E/t =
−15 correspond to itinerant bulk states of the hole confined to
the chain delimited by the orange dashed box in Fig. 3(a), that
is, bulk states in the corresponding d chains, while very narrow
bands around E/t = −14 and E/t ≈ −14.14 correspond to
itinerant bulk states for the bound states of Fig. 3(b), that
is, bulk states in the corresponding f chain. The appearance

of a gap between these narrow bands, �E ≈ 0.14t ≈ 2t2
1

V
,

is explained by the alternating onsite potentials in the f

chain [see Eq. (5)]. Two impurity-like states (red levels with
E/t 
 −15.49 and E/t 
 −12.65), whose origin will be
discussed below, and two states of topological origin are found
(dashed green levels at E/t = −14, superposed with other
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FIG. 4. (a) Energy spectrum for two-hole states in a chain with N = 20 sites, in the subspace of states with potential energy V . Parameters are
(V,t1,t2) → t(−14, 1, 0.2). Each energy level is doubly degenerate. Red, dashed green, and orange levels represent, respectively, impuritylike,
topologically originated, and itinerant bulk states. There are two (doubly degenerate) topological states localized around E/t = −14, superposed
with a very narrow band of bulk states, shown in the zoomed region. (b) Probability amplitude squared at sites i of the equivalent chain for
the impuritylike (top) and one of the topological (bottom) states indicated by the arrows. The insets show how these states of the equivalent
chain translate in terms of mean occupation in the original SSH chain. Their corresponding degenerate states are given by a reflection about
the center of the chain. (c) For t2 � t1 � V , the diagonalization of the Hamiltonian written in the {|f1〉 , |dL,1〉 , |dL,2〉} basis of the equivalent
chain in Fig. 3(c) yields three different states at the interface, |0〉 = 1√

2
(−1,0,1) and |±〉 ≈ 1√

2+2t2
1

(1, ± √
2t1,1), with energies E0 = 0 and

E± ≈ t2
1

2V
± √

2t1 (the onsite potentials at these new interface “sites”), considering t1 ≈ 1. The hoppings form these new “sites” to the f and
dL chains become renormalized. (d) Same as in (b), with (V,t1,t2) → t(−14,1,0.2), for the state of topological origin with a large weight on
|0〉, with zero energy [or at E/t = −14 in Fig. 4(a) when the constant potential V is considered]. (e) Same as in (a) but for the subspace of
zero potential energy. All states in the green bands have one of the holes localized at the first inner site, as in (h). (f)–(h) Mean occupation of
the two-hole states of topological origin indicated by the arrows. (f) One hole localized at the first inner site of each end. (g) One hole localized
at the first and another at the third inner site. (f) and (g) are not topologically protected, as they are buried in a continuum of other itinerant
states. (h) One hole localized at the first inner site, topologically protected, and another in an itinerant bulk state. States (g) and (h) are given
by a linear combination of two degenerate eigenstates. In all localized holes a decaying tail to the bulk is implied.

non-topological orange levels consisting of bulk states in the
f chain). In what follows, we need to differentiate states with
topological origin, but not topologically protected, from true
topological states that are robust against disorder, i.e., that
cannot couple and scatter into bulk states. Regardless of this
distinction, the topological origin of all these states stems from
the underlying SSH geometry present in the equivalent chain.

The set of parameters considered is enough to ensure that
one is, for all intended purposes, in the V � t1,t2 limit.
Therefore, one can construct the equivalent chain, using the
Hamiltonian in Eq. (3), and verify the correspondence between
its one-particle states and the two-hole states in the original
SSH chain. The energy spectrum of one-particle states in the
equivalent chain was found to match, apart from negligible
energy corrections, that of Fig. 4(a). The profiles of the top
impuritylike state (red level with E/t 
 −12.65) and of one
of the edge states with a topological origin (dashed green
level with E/t = −14), in the equivalent chain, are shown
in Fig. 4(b). The insets show how they translate in terms of
mean occupancy at the sites of the original SSH chain. The
state shown in the bottom inset has one hole localized at the
left edge and the other in a topological state with a decaying
tail from the right edge of the smaller inner chain [see orange
dashed box in Fig. 3(a)], which ends with a t2 hopping. But

is this state topologically protected, given that its energy, at
E/t = −14 [see Fig. 4(a)], is inside the narrow band of bulk
states of the f chain (superposed orange levels)? Even though
there is no gap separating it from the f bulk states, one can still
argue that it can be regarded as a topologically protected state.
This can be better understood by looking at the equivalent
chain in Fig. 3(c). The topological state is localized at the right
edge of the dL chain, while the others are bulk states of the f

chain. To perturbatively couple dL,M with any of the f sites
would require long-range hoppings which, for a dL chain larger
than only a few sites, becomes physically unrealistic. The same
reasoning applies to the introduction of local disorder, against
which this state is also protected. The profiles of each inset
reveal an almost exact agreement with the states of the original
chain, which confirms that the problem of one-particle states
in the equivalent chain captures the essential features of the
two-hole problem in the SSH chain, in the limit considered.

We mentioned the existence of two states of topologi-
cal origin for (V,t1,t2) → t(−14,1,0.2). Their energies are
quasidegenerate and so they are both represented by the green
level in Fig. 4(a) at E/t = −14. One of them, shown at the
bottom inset of Fig. 4(b), has a hole located at the right edge of
the orange dashed box in Fig. 3(a), which ends in a t2 hopping,
as expected. Since the left edge ends with a t1 hopping, how
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can a second state of topological origin be present at this edge,
given that t2 < t1? Suppose t2 � t1 � V . In this limit, terms
with t2 can be treated as a perturbation in the equivalent chain
in Fig. 3(c). Let us focus on the three sites at the interface,
which form the basis {|f1〉 , |dL,1〉 , |dL,2〉}, connected to the
rest of the chain by terms containing t2 [see dashed box in
Fig. 3(c)], and diagonalize them first. The Hamiltonian in this
basis is given by

H =

⎛
⎜⎝

t2
1 /V t1 t2

1 /V

t1 −t2
1 /V t1

t2
1 /V t1 t2

1 /V

⎞
⎟⎠, (10)

where a constant onsite potential term, V Î , with Î the
identity matrix, was taken out. Diagonalization yields the

following eigenvalues and eigenvectors: E± ≈ t2
1

2V
±√

2t1 and
E0 = 0, with |±〉 ≈ 1√

2+2t2
1

(1, ± √
2t1,1), considering t1 ≈ 1,

and |0〉 = 1√
2
(−1,0,1). When t2 is turned on, these are the

three hopping possibilities available at the interface, as shown
in Fig. 4(c). Notice that |0〉 has no component in |dL,1〉, so
that for this case the dL chain effectively starts at the dL,2 site,
that is, the hopping at the left edge of this shorter dL chain,
now between |0〉 and |dL,3〉, is given by t2√

2
, which allows for

the presence of a second state of topological origin, with the
profile of Fig. 4(d), which is not protected since it couples
to the f chain via |f2〉 when perturbations are introduced.
Furthermore, “sites” |±〉 can be readily identified as the origin
of the impuritylike states lying at the interface [red levels in
Fig. 4(a) with energies E/t 
 −12.65 and E/t 
 −15.49,
when the constant V is added]. Onsite potentials E± > |t2| at
|±〉 throw these two new left ends of the dL chain into the
nontopological sector in the phase diagram of Fig. 1(iv). Even
though (V,t1,t2) → t(−14,1,0.2) is still somewhat far from
the t2 � t1 � V limit, the above considerations are enough to
account, nonetheless, for the results obtained.

The states available in the zero potential subspace, which
yield the energy spectrum of Fig. 4(e), are composed of two
nonconsecutive bulk holes. Thus, as in Fig. 1(iii), the two
holes are confined to the inner chain with t2 hoppings at its
ends. Under these conditions, three additional kinds of states of
topological origin can be found in this subspace: one with one
hole localized at each end of the inner chain [see Fig. 4(f)],
another with the two holes localized at the edge and at the
first nonconsecutive site of the inner chain [see Fig. 4(g)], and
finally one with one hole localized at an edge of the inner chain
and one hole in an itinerant state at the bulk [see Fig. 4(h)].
Only this last one can be considered topologically protected, in
the following sense: while the states in Figs. 4(f) and 4(g) are
buried in a continuum of itinerant states around zero energy, the
states of the type of Fig. 4(h) form two bands (the itinerant hole
at the bulk gives the usual SSH energy spectrum, since the hole
at the edge has zero energy) energetically separated from the
others, as shown in Fig. 4(e). When disorder is introduced in a
state within one of these two bands, its effect will be to scatter
the bulk hole, while the edge hole remains unaffected, since it
is a common feature of all the states in that band. Therefore, the
edge hole of Fig. 4(h) is topologically protected. However, note
that we may think of other definitions of topological protection

of many-body states. In particular, a more severe definition
would be to require that the complete many-body state is
protected against disorder [18]. In this paper, we adopt the less
severe definition explained above. Note that throughout this pa-
per we consider as topologically originated all multihole states
where at least one hole is in a state with topological origin.

When the values of the hoppings are switched, (V, t1, t2) →
t(−14, 0.2, 1), one finds two different states of topological ori-
gin, both unprotected, and no impuritylike states. These states
have one of the holes localized at the left edge of the orange
dashed box in Fig. 3(a), since t1 < t2. Starting with t1 = 0, the
dL,1 and f1 sites are isolated, and both states of the equivalent
chain with one particle located in one of these sites have energy
V . Using the same reasoning as before, one takes now the
t1 � t2 � V limit, where t1 is a perturbation. As t1 is turned
on, the degeneracy of these states is lifted first, yielding new
states that are a symmetric and antisymmetric combination
of {|dL,1〉 , |f1〉}. Both these new states have a component in
|dL,1〉, which is linked to |dL,2〉 by t1√

2
> t2, that is, one effec-

tively has two left edges that support two states of topological
origin, although unprotected due to the |f1〉 component.

Our results show that, for high enough V , two-hole states
of topological origin are present in the SSH chain in both the
t1
t2

≶ 1 regimes. This comes as a consequence of the mixed
edges of the smaller chain [see orange dashed box in Fig. 3(a)]
to which one of the holes is restricted.

III. CONCLUSIONS

The natural extension of our results would be the
characterization of topologically originated n-hole states,
with n > 2. As more holes are introduced into the chain, more
energy subspaces are available and one expects the appearance
of a cascade of topologically originated states distributed in
these subspaces, until n = N/2. From this point onwards, the
introduction of more holes decreases the energy subspaces
available and, therefore, the number of topologically
originated states present. Note that, for n = N − 1 holes
in the chain, one should recover the classical one-particle
energy spectrum of the SSH chain. For V � t1 > t2 and n �
N/2 − 1, there should be a particular topologically originated
state at the zero-energy subspace with n holes localized at
every other site starting from the first inner site, as shown in
Fig. 4(g) for n = 2. A similar state should also be present for
V � t2 > t1 and n � N/2 in the V energy subspace, where
one of the nonconsecutive holes is at an edge site. One also
expects the correspondence between n-hole topological states
and one-particle states in equivalent chains to hold, whose
construction rules are specific to each case, following the
results drawn here for two-hole states [see Fig. 3(c)].

ACKNOWLEDGMENTS

This work is funded by FEDER funds through the COM-
PETE 2020 Programme and National Funds through FCT—
Portuguese Foundation for Science and Technology under the
Project No. UID/CTM/50025/2013. A.M.M. acknowledges
the financial support from the FCT through the Grant No.
SFRH/PD/BD/108663/2015. R.G.D. appreciates the support
by the Beijing CSRC.

115443-6



MULTIHOLE EDGE STATES IN Su-SCHRIEFFER-HEEGER . . . PHYSICAL REVIEW B 95, 115443 (2017)

[1] W. P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev. Lett. 42,
1698 (1979).

[2] J. K. Asbóth, L. Oroszlány, and A. Pályi, A Short Course
on Topological Insulators, Lecture Notes in Physics, Vol. 919
(Springer International Publishing, Switzerland, 2016), 1st ed.

[3] H. Guo and S.-Q. Shen, Phys. Rev. B 84, 195107 (2011).
[4] Q. Niu and D. J. Thouless, J. Phys. A: Math. Gen. 17, 2453

(1984).
[5] D. Xiao, M.-C. Chang, and Q. Niu, Rev. Mod. Phys. 82, 1959

(2010).
[6] H. Guo, S.-Q. Shen, and S. Feng, Phys. Rev. B 86, 085124

(2012).
[7] J. C. Budich and E. Ardonne, Phys. Rev. B 88, 035139

(2013).
[8] S. Kivelson and D. E. Heim, Phys. Rev. B 26, 4278 (1982).
[9] A. J. Glick and G. W. Bryant, Phys. Rev. B 34, 943 (1986).

[10] A. J. Glick, R. J. Cohen, and G. W. Bryant, Phys. Rev. B 37,
2653 (1988).

[11] G. Rossi, Synt. Met. 49, 221 (1992).
[12] Z. Yan and S. Wan, Europhys. Lett. 107, 47007 (2014).
[13] D. Sticlet, L. Seabra, F. Pollmann, and J. Cayssol, Phys. Rev. B

89, 115430 (2014).
[14] M. Weber, F. F. Assaad, and M. Hohenadler, Phys. Rev. B 91,

245147 (2015).
[15] H. Ma and U. Schollwöck, J. Phys. Chem. A 113, 1360

(2009).
[16] W. F. da Cunha, L. A. Ribeiro Junior, R. Gargano, and G. M. e

Silva, Phys. Chem. Chem. Phys. 16, 17072 (2014).
[17] Y. Zhang, X. Liu, and Z. An, Org. Electron. 28, 6 (2016).
[18] F. Grusdt, M. Höning, and M. Fleischhauer, Phys. Rev. Lett.

110, 260405 (2013).
[19] X.-J. Liu, Z.-X. Liu, and M. Cheng, Phys. Rev. Lett. 110, 076401

(2013).

[20] L. Li and S. Chen, Europhys. Lett. 109, 40006 (2015).
[21] M. Valiente and D. Petrosyan, J. Phys. B 41, 161002 (2008).
[22] J. Javanainen, O. Odong, and J. C. Sanders, Phys. Rev. A 81,

043609 (2010).
[23] Y.-M. Wang and J.-Q. Liang, Phys. Rev. A 81, 045601 (2010).
[24] J.-P. Nguenang, S. Flach, and R. Khomeriki, Phys. Lett. A 376,

472 (2012).
[25] X. Qin, Y. Ke, X. Guan, Z. Li, N. Andrei, and C. Lee, Phys. Rev.

A 90, 062301 (2014).
[26] M. Bello, C. E. Creffield, and G. Platero, Sci. Rep. 6, 22562

(2016).
[27] M. Di Liberto, A. Recati, I. Carusotto, and C. Menotti, Phys.

Rev. A 94, 062704 (2016).
[28] M. A. Gorlach and A. N. Poddubny, arXiv:1608.02093 (2016).
[29] Y. Wada, Doping and disorder in conducting polymers, in

New horizons in low-dimensional electron systems: A festschrift
in honor of Professor H. Kamimura (Springer, Netherlands,
Dordrecht, 1992), pp. 415–432.

[30] J. E. Hirsch, R. L. Sugar, D. J. Scalapino, and R. Blankenbecler,
Phys. Rev. B 26, 5033 (1982).

[31] J. W. Cannon, R. T. Scalettar, and E. Fradkin, Phys. Rev. B 44,
5995 (1991).

[32] J. Voit, Phys. Rev. B 45, 4027 (1992).
[33] F. Mila and X. Zotos, Europhys. Lett. 24, 133 (1993).
[34] P. G. J. van Dongen, Phys. Rev. B 49, 7904 (1994).
[35] K. Penc and F. Mila, Phys. Rev. B 49, 9670 (1994).
[36] S. Ejima, F. H. L. Essler, F. Lange, and H. Fehske, Phys. Rev. B

93, 235118 (2016).
[37] R. Orbach, Phys. Rev. 112, 309 (1958).
[38] C. Lacroix, P. Mendels, and F. Mila, Introduction to Frustrated

Magnetism: Materials, Experiments, Theory, Springer Series
in Solid-State Sciences, Vol. 164 (Springer-Verlag, Berlin,
Heidelberg, 2011).

115443-7

https://doi.org/10.1103/PhysRevLett.42.1698
https://doi.org/10.1103/PhysRevLett.42.1698
https://doi.org/10.1103/PhysRevLett.42.1698
https://doi.org/10.1103/PhysRevLett.42.1698
https://doi.org/10.1103/PhysRevB.84.195107
https://doi.org/10.1103/PhysRevB.84.195107
https://doi.org/10.1103/PhysRevB.84.195107
https://doi.org/10.1103/PhysRevB.84.195107
https://doi.org/10.1088/0305-4470/17/12/016
https://doi.org/10.1088/0305-4470/17/12/016
https://doi.org/10.1088/0305-4470/17/12/016
https://doi.org/10.1088/0305-4470/17/12/016
https://doi.org/10.1103/RevModPhys.82.1959
https://doi.org/10.1103/RevModPhys.82.1959
https://doi.org/10.1103/RevModPhys.82.1959
https://doi.org/10.1103/RevModPhys.82.1959
https://doi.org/10.1103/PhysRevB.86.085124
https://doi.org/10.1103/PhysRevB.86.085124
https://doi.org/10.1103/PhysRevB.86.085124
https://doi.org/10.1103/PhysRevB.86.085124
https://doi.org/10.1103/PhysRevB.88.035139
https://doi.org/10.1103/PhysRevB.88.035139
https://doi.org/10.1103/PhysRevB.88.035139
https://doi.org/10.1103/PhysRevB.88.035139
https://doi.org/10.1103/PhysRevB.26.4278
https://doi.org/10.1103/PhysRevB.26.4278
https://doi.org/10.1103/PhysRevB.26.4278
https://doi.org/10.1103/PhysRevB.26.4278
https://doi.org/10.1103/PhysRevB.34.943
https://doi.org/10.1103/PhysRevB.34.943
https://doi.org/10.1103/PhysRevB.34.943
https://doi.org/10.1103/PhysRevB.34.943
https://doi.org/10.1103/PhysRevB.37.2653
https://doi.org/10.1103/PhysRevB.37.2653
https://doi.org/10.1103/PhysRevB.37.2653
https://doi.org/10.1103/PhysRevB.37.2653
https://doi.org/10.1016/0379-6779(92)90093-X
https://doi.org/10.1016/0379-6779(92)90093-X
https://doi.org/10.1016/0379-6779(92)90093-X
https://doi.org/10.1016/0379-6779(92)90093-X
https://doi.org/10.1209/0295-5075/107/47007
https://doi.org/10.1209/0295-5075/107/47007
https://doi.org/10.1209/0295-5075/107/47007
https://doi.org/10.1209/0295-5075/107/47007
https://doi.org/10.1103/PhysRevB.89.115430
https://doi.org/10.1103/PhysRevB.89.115430
https://doi.org/10.1103/PhysRevB.89.115430
https://doi.org/10.1103/PhysRevB.89.115430
https://doi.org/10.1103/PhysRevB.91.245147
https://doi.org/10.1103/PhysRevB.91.245147
https://doi.org/10.1103/PhysRevB.91.245147
https://doi.org/10.1103/PhysRevB.91.245147
https://doi.org/10.1021/jp809045r
https://doi.org/10.1021/jp809045r
https://doi.org/10.1021/jp809045r
https://doi.org/10.1021/jp809045r
https://doi.org/10.1039/C4CP02184C
https://doi.org/10.1039/C4CP02184C
https://doi.org/10.1039/C4CP02184C
https://doi.org/10.1039/C4CP02184C
https://doi.org/10.1016/j.orgel.2015.10.010
https://doi.org/10.1016/j.orgel.2015.10.010
https://doi.org/10.1016/j.orgel.2015.10.010
https://doi.org/10.1016/j.orgel.2015.10.010
https://doi.org/10.1103/PhysRevLett.110.260405
https://doi.org/10.1103/PhysRevLett.110.260405
https://doi.org/10.1103/PhysRevLett.110.260405
https://doi.org/10.1103/PhysRevLett.110.260405
https://doi.org/10.1103/PhysRevLett.110.076401
https://doi.org/10.1103/PhysRevLett.110.076401
https://doi.org/10.1103/PhysRevLett.110.076401
https://doi.org/10.1103/PhysRevLett.110.076401
https://doi.org/10.1209/0295-5075/109/40006
https://doi.org/10.1209/0295-5075/109/40006
https://doi.org/10.1209/0295-5075/109/40006
https://doi.org/10.1209/0295-5075/109/40006
https://doi.org/10.1088/0953-4075/41/16/161002
https://doi.org/10.1088/0953-4075/41/16/161002
https://doi.org/10.1088/0953-4075/41/16/161002
https://doi.org/10.1088/0953-4075/41/16/161002
https://doi.org/10.1103/PhysRevA.81.043609
https://doi.org/10.1103/PhysRevA.81.043609
https://doi.org/10.1103/PhysRevA.81.043609
https://doi.org/10.1103/PhysRevA.81.043609
https://doi.org/10.1103/PhysRevA.81.045601
https://doi.org/10.1103/PhysRevA.81.045601
https://doi.org/10.1103/PhysRevA.81.045601
https://doi.org/10.1103/PhysRevA.81.045601
https://doi.org/10.1016/j.physleta.2011.11.048
https://doi.org/10.1016/j.physleta.2011.11.048
https://doi.org/10.1016/j.physleta.2011.11.048
https://doi.org/10.1016/j.physleta.2011.11.048
https://doi.org/10.1103/PhysRevA.90.062301
https://doi.org/10.1103/PhysRevA.90.062301
https://doi.org/10.1103/PhysRevA.90.062301
https://doi.org/10.1103/PhysRevA.90.062301
https://doi.org/10.1038/srep22562
https://doi.org/10.1038/srep22562
https://doi.org/10.1038/srep22562
https://doi.org/10.1038/srep22562
https://doi.org/10.1103/PhysRevA.94.062704
https://doi.org/10.1103/PhysRevA.94.062704
https://doi.org/10.1103/PhysRevA.94.062704
https://doi.org/10.1103/PhysRevA.94.062704
http://arxiv.org/abs/arXiv:1608.02093
https://doi.org/10.1103/PhysRevB.26.5033
https://doi.org/10.1103/PhysRevB.26.5033
https://doi.org/10.1103/PhysRevB.26.5033
https://doi.org/10.1103/PhysRevB.26.5033
https://doi.org/10.1103/PhysRevB.44.5995
https://doi.org/10.1103/PhysRevB.44.5995
https://doi.org/10.1103/PhysRevB.44.5995
https://doi.org/10.1103/PhysRevB.44.5995
https://doi.org/10.1103/PhysRevB.45.4027
https://doi.org/10.1103/PhysRevB.45.4027
https://doi.org/10.1103/PhysRevB.45.4027
https://doi.org/10.1103/PhysRevB.45.4027
https://doi.org/10.1209/0295-5075/24/2/010
https://doi.org/10.1209/0295-5075/24/2/010
https://doi.org/10.1209/0295-5075/24/2/010
https://doi.org/10.1209/0295-5075/24/2/010
https://doi.org/10.1103/PhysRevB.49.7904
https://doi.org/10.1103/PhysRevB.49.7904
https://doi.org/10.1103/PhysRevB.49.7904
https://doi.org/10.1103/PhysRevB.49.7904
https://doi.org/10.1103/PhysRevB.49.9670
https://doi.org/10.1103/PhysRevB.49.9670
https://doi.org/10.1103/PhysRevB.49.9670
https://doi.org/10.1103/PhysRevB.49.9670
https://doi.org/10.1103/PhysRevB.93.235118
https://doi.org/10.1103/PhysRevB.93.235118
https://doi.org/10.1103/PhysRevB.93.235118
https://doi.org/10.1103/PhysRevB.93.235118
https://doi.org/10.1103/PhysRev.112.309
https://doi.org/10.1103/PhysRev.112.309
https://doi.org/10.1103/PhysRev.112.309
https://doi.org/10.1103/PhysRev.112.309



