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Wigner crystal phases in confined carbon nanotubes

L. Sárkány,1 E. Szirmai,1 C. P. Moca,1,2 L. Glazman,3 and G. Zaránd1

1BME-MTA Exotic Quantum Phases Research Group, Institute of Physics, Budapest University of Technology and Economics,
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We present a detailed theoretical analysis of the Wigner crystal states in confined semiconducting carbon
nanotubes. We show by detailed semimicroscopic calculations that the effective exchange interaction has an
SU(4) symmetry, and can reach values as large as J ∼ 100 K in weakly screened, small diameter nanotubes,
close to the Wigner crystal—electron liquid crossover. This large value of the exchange coupling in the crossover
region also follows from robust scaling arguments. Modeling the nanotube carefully and analyzing the magnetic
structure of the inhomogeneous electron crystal, we recover the experimentally observed “phase boundaries” of
Deshpande and Bockrath [V. V. Deshpande and M. Bockrath, Nat. Phys. 4, 314 (2008)]. Spin-orbit coupling
only slightly modifies these boundaries, but breaks the spin symmetry down to SU(2) × SU(2), and in Wigner
molecules it gives rise to interesting excitation spectra, reflecting the underlying SU(4) as well as the residual
SU(2) × SU(2) symmetries.
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I. INTRODUCTION

Electrons interacting through simple Coulomb interaction
represent a most fundamental, nevertheless challenging inter-
acting quantum system. Apart from dimensionality (D), the
behavior of a Coulomb gas depends on just two parameters:
the temperature T , and the strength of the Coulomb interaction
relative to the electrons’ kinetic energy, characterized by the
dimensionless ratio [1]

rs = e2m∗

ε h̄2n
1/D
e

, (1)

with ne denoting the electron density, m∗ the electrons’
effective mass, and ε the dielectric constant of the environment
through which electrons interact.

While at very high temperatures electrons form a (almost)
classical plasma, the behavior of the gas at low temperatures
depends on the specific value of rs . At large densities
corresponding to rs � 1, the Coulomb interaction plays a
minor role in D = 3 dimensions, and Landau’s Fermi liquid
state emerges as the temperature is lowered. At small densities
(rs � 1), however, interactions become strong and relevant. In
this limit, translational symmetry is broken, electrons localize
at low temperatures, and form a Wigner crystal, characterized
by magnetic ordering [2–4].

While the three-dimensional picture of the previous para-
graph applies also to two dimensions [5–11], it fails in one
dimension, where quantum fluctuations destroy the long-
ranged charge order, remove the phase transition(s)1 between
the crystalline and the liquid phases, and replace it by a smooth
crossover at some value rs ≈ r∗

1D [12,13]. Though there is no
phase transition in one dimension, the physical picture is quite

1Several intruding magnetic phases have been proposed, preempting
a direct transition between the Wigner crystal and the Fermi liquid
state.

different in the dilute, rs � r∗
1D , and dense regimes, rs � r∗

1D .
In the Wigner crystal regime, rs � r∗

1D , the density-density
correlation function reveals charges localized relative to each
other, reflected in deep and long-ranged periodic oscillations
[13–21]. In contrast, in the weakly interacting limit, rs � r∗

1D ,
these oscillations become weak perturbations on a nonoscillat-
ing background.2 These differences are even more pronounced
in a finite system, where charges are typically pinned by
some walls or confining potentials, and a true Wigner crystal
structure emerges at small densities [17,22–24].

In a recent experiment, Deshpande and Bockrath reported
the (indirect) observation of a Wigner crystal state in a
suspended carbon nanotube with a presumably confinement
induced gap [25,26]. In a finite magnetic field, they have
observed oscillations in the addition energy of holes in a p-type
nanotube, and argued that only a Wigner crystal picture is able
to account for these oscillations systematically (see Fig. 1
for their “phase diagram”). More recently, an isolated two-
electron Wigner molecule has been observed in an ultraclean
carbon nanotube [27]. In the latter experiments, the observed
level structure has been supported by detailed “ab initio”
calculations, evidencing an exchange splitting much below the
single particle level spacing, a clear indication of the Wigner
crystal regime. In addition to these experiments, circumstantial
evidence to support the formation of a Wigner crystal in
one-dimensional wires has also been reported recently by
other experimental groups [28–30]. It has been suggested in
Ref. [28], e.g., that Wigner crystallization accounts for the
negative Coulomb drag effect observed in coupled parallel
quantum wires.

2In case of screening, both regimes can be described as a Luttinger
liquid. However, while the charge- and spin velocities are about the
same for rs � r∗, the spin velocity cs gets exponentially suppressed
compared to the charge velocity cc in the Wigner crystal regime,
rs � r∗.
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FIG. 1. (a) “Phase diagram” for an unscreened nanotube with
ε = 2 and of a radius R = 1.6 nm, as a function of particle number
N , and external magnetic field B. Red and black curves denote
the phase boundaries based upon our theoretical calculations with
spin-orbit coupling, �SO = 0.186 meV (�SO ≈ 2.1 K). The fully
polarized, orbitally polarized, and unpolarized states are displayed in
different colors. Green and red symbols indicate the boundaries for the
experimental phase diagram of Ref. [25]. (b) Overall magnetization
change at charge transitions as a function of N for B = 4 T. The
vertical dashed lines indicate the jumps corresponding to the phase
boundaries. For N > 26 the Wigner crystal starts to “melt”. The
melted region is indicated by the red shaded areas.

Although for the experiments of Ref. [25] the Wigner
crystal picture seemed to provide a coherent explanation,
a sufficiently “microscopic” theoretical description of the
nanotube’s Wigner crystal state was missing. Furthermore,
in several other experiments [31,32] a single-particle or mean-
field scenario, or eventually a Luttinger liquid picture appears
to be sufficient [33–35]. The goal of the present work is to
provide a detailed and quantitative theoretical description of an
inhomogeneous Wigner crystal in a gapped carbon nanotube,
to investigate its intriguing spin and pseudospin (chirality)
physics, and to make a comparison with the experimental
findings of Ref. [25]. For this purpose, we use a bottom-up
approach. We start out from a detailed microscopic modeling
of the nanotube, similar to Ref. [17], and extract the effective
exchange interaction of two neighboring electrons in the
Hartree field of all other electrons from their two-electron
spectrum. Exchange processes involve both the spin (σ ) and
chiral spin (τ ) of the crystallized electrons, and an almost
perfectly SU(4)-symmetric exchange interaction is recovered
[36,37]. We then determine the positions of the crystallized
electrons self-consistently at the classical level and, having
the separation dependence of the exchange coupling J in hand,
arrive at an effective exchange Hamiltonian,

HX = 1

2

∑
i

Ji X
σ
i,i+1X

τ
i,i+1, (2)

with the operators Xσ
i,i+1 and Xτ

i,i+1 exchanging the spin and
the chiral spin of neighboring electrons in the crystal and

Ji = J (di,i+1).3 This exchange Hamiltonian is appropriate
in the Wigner crystal regime, and its structure is dictated
by (approximate) symmetries. In general, beyond nearest
neighbor interactions as well as multispin interactions may
also appear, but these terms are suppressed in the Wigner
crystal regime, and therefore we neglect them here. Although
the exchange Hamiltonian HX possesses SU(4) symmetry,
this symmetry is broken to SU(4) → SU(2) × SU(2) by the
spin-orbit (SO) coupling [38–42]. The spin-orbit coupling
between the motion of the particles around the tube and their
spin can be taken into account by the term

HSO = −1

2

N∑
i=1

�SO σiτi, (3)

with τi and σi denoting the chirality and spin of the ith localized
electron, respectively, and �SO the spin-orbit splitting. We
use the effective Hamiltonians (2) and (3) first to construct
and classify the low-energy excitations of Wigner molecules,
and then to construct the phase diagram of a parabolically
confined Wigner crystal in a magnetic field by means of an
inhomogeneous valence bond approach [34].

The final phase diagram, constructed from the magnetiza-
tion jumps between different charging states of the nanotube
is summarized in Fig. 1 (and discussed in Sec. IV). Our
theoretical phase diagram compares astonishingly well with
the experimentally determined phase boundaries in Ref. [25].
Our calculations rely on just a few parameters, estimated from
the experimental data: the radius R = 1.6 nm of the nanotube,
yielding the experimentally reported curvature induced gap
Eg ∼ 220 meV [43], the dielectric constant ε, the strength of
a parabolic confinement potential α, defined in Eq. (13) and
determined from the addition energy spectra (see Ref. [44] and
Appendix D for details), and the measured orbital magnetic
moment (g factor). We thus have one unknown parameter,
the dielectric constant ε. The value of ε incorporates various
screening effects including that of plasmonic excitations and,
depending on the specific arrangements and the chirality of the
nanotube, can take very different values [45]. Throughout this
paper we use the value observed in suspended nanotubes [46]
and suspended low density graphene [47], ε ≈ 2, incorporating
short distance screening effects. The choice ε = 1 would
also appear to be natural [48], however, as we discuss later,
this value seems to be inconsistent with the experimental
observations of Ref. [25].

We also find that for these parameters, supported by the
experimental data of Ref. [25], the Wigner crystal picture
can be appropriate up to around N ∼ 26 electrons, where the
Wigner crystal starts to “melt”. The crossover from the Wigner
crystal to the electron liquid regime occurs at a crossover value
rs ≈ r∗

1D , which we estimate based upon exact diagonalization
calculations similar to those in Ref. [17] to be r∗

1D ≈ 3.3 (see
also Sec. V). At this crossover value of rs ≈ r∗

1D (the boundary
of the Wigner crystal regime) the one-dimensional density
n∗

e of the electrons (holes) and their exchange coupling J ∗

3An effective Heisenberg with inhomogeneous interaction has been
used for trapped, strongly interacting one dimensional gases, see
Refs. [64,65].
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scale as

J ∗ ∼ m∗/ε2, n∗
e ∼ m∗/ε . (4)

The effective mass of a semiconducting nanotube depends
sensitively on the radius R of the nanotube, m∗ ∼ 1/R.
Therefore the precise density range of Wigner crystal behavior
as well as the energy scale of the exchange interaction in the
Wigner crystal regime are very sensitive to the radius R of
the tube as well as the precise value of ε. For a nanotube
of radius R = 3 nm and ε = 4.5, detailed estimates yielded
a relatively small exchange coupling J ∗ ≈ 10 K and a large
crossover separation d∗ = 1/n∗

e = 50 nm [27]. On the other
hand, for a nanotube of radius R = 1.6 nm (yielding a band
gap close to the one reported in Ref. [25]), and of moderate
screening, ε ≈ 2, Eq. (4) immediately yields a surprisingly
large “crossover” exchange coupling along with a small carrier
separation,

J ∗ ∼ 95 K, d∗ ∼ 11.8 nm. (5)

We thus conclude that the first transition line in Fig. 1
occurs well within the Wigner crystal regime, supporting
the interpretation of the authors of Ref. [25], while the
second transition line reaches into the melted region for
high magnetic fields. We emphasize, however, that stronger
screening by the environment, ε � 4 quickly reduces J ∗ to
the few Kelvin range, a value close to the one observed in
metallic nanotubes [49–51], and increases simultaneously the
characteristic separation of particles to d∗ ∼ 80–100 nm.

The rest of the paper is structured as follows. In Sec. II,
we determine the effective exchange interaction between
two neighboring electrons in the Wigner crystal state and
construct the effective spin Hamiltonian of a one dimensional
electron crystal in the nanotube. In Sec. III, we analyze the
magnetic excitations of small Wigner molecules and show how
spin-orbit interaction breaks the SU(4) symmetrical spectrum
to SU(2) × SU(2) multiplets. In Sec. IV, we investigate
the spin structure of confined inhomogeneous nanotubes in
an external magnetic field using a fermionic valence-bond
calculation. Finally, before concluding, in Sec. V, we discuss
the limitations and consistency of the Wigner crystal approach
and present the simple scaling arguments, leading to the
relations Eq. (4). Four appendices explain some useful details
of these calculations.

II. CONSTRUCTION OF THE EFFECTIVE HAMILTONIAN

A. Derivation of the exchange coupling

To determine the exchange coupling in the Wigner crystal
regime, we use a bottom-up approach. First, we model the
interaction of two neighboring electrons in detail by semi-
microscopic calculations [17], and extract their exchange
interaction from the two-particle excitation spectrum. We
find that the exchange interaction is quite accurately given
by a semiclassical expression, similar to the ones used in
Refs. [52,53].

In small diameter semiconducting nanotubes discussed
here, and at scales larger than the atomic scale, the motion of
the interacting N electrons (holes) is well described in terms
of the lowest conduction (or highest valence) bands and the

corresponding effective Hamiltonian

H = − h̄2

2m∗

N∑
i=1

∂2

∂z2
i

+
∑
i<j

U (zij ,ϕij ), (6)

with zi and ϕi denoting the particles’ cylindrical coordinates
(see also Appendix B).4 The effective mass m∗ here is simply
related to the gap of the nanotube as Eg = 2m∗c2 with
c ≈ 8 × 105 m/s the Fermi velocity of graphene. For the sake
of simplicity and concreteness, here we discuss electron-doped
small radius semiconducting nanotubes, where the gap is
mostly due to radial confinement and Eg ≈ 2h̄c/3R [43],
but our discussion carries over with trivial modifications to
hole doping and nanotubes with strain or curvature induced
gaps, too. In these latter cases, however, particles are typically
lighter and it is harder to reach the Wigner crystal regime
experimentally.

The Coulomb interaction

U (z,ϕ) = e2

ε

1√
z2 + 2R2(1 − cos ϕ)

, (7)

depends just on the distance between particles and thus
z → zi − zj and ϕ → ϕi − ϕj .5 The dielectric constant ε

depends crucially on the way the nanotube is prepared and
contacted; for a nanotube laid over a typical semiconductor
ε ∼ 5–7 seems to be a reasonable estimate [54], while in
suspended nanotubes it may get close to the vacuum value,
and ε ≈ 2–3 or possibly even smaller values seems to be a
realistic choice [48,54].

Consider now two neighboring particles in the Wigner
crystal regime, moving in the Hartree field of the other
particles, and interacting with each other as described by the
effective Hamiltonian

H (2) =− h̄2

2m∗

(
∂2

∂z2
1

+ ∂2

∂z2
2

)
+ V (z1) + V (z2) + U (z12,ϕ12).

(8)

The Hartree potential V (z), displayed in Fig. 2, is well
approximated in the Wigner crystal regime as

V (z) ≈
∑
j �=1,2

U0
(
z − z

(0)
j

)
,

with the z
(0)
j denoting the classically obtained locations of

the other particles, and U0(z) the angular averaged Coulomb
interaction,

U0(z) ≡
∫ 2π

0

dϕ

2π
U (z,ϕ). (9)

The angular dependence of the wave function is deter-
mined by the isospin (chirality) τ = ± of the electrons,

4Notice that after projection to the lowest conduction band, the
kinetic energy contains only the coordinates zi , but the wave functions
still have an angular dependence, as dictated by the chirality quantum
number. The ϕ dependence therefore still appears in the interaction
part of Eq. (6).

5A microscopic cutoff is usually also introduced to regularize it on
the atomic scale (see Appendix B).
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FIG. 2. Sketch of the effective potential, V (z) (blue), and the
single-particle density (red), as obtained from the solution of the
two-body problem, Eq. (8). d is the distance between two neighboring
electrons.

which also enters the two-particle wave function as ψ =
�σ1,σ2

τ1,τ2
(z1,z2) eiQ(τ1ϕ1+τ2ϕ2), with the angular momentum Q

determined by the chirality of the tube6 (details of the
derivation are provided in Appendix A). The interaction term
in Eq. (8) preserves the total isospin of the two interacting
particles: τ1 + τ2 = τ ′

1 + τ ′
2, but the matrix elements of H (2)

do depend on the relative values of τ1 and τ ′
1. Nevertheless,

while for τ1 = τ ′
1 integration over the angles yields the

effective interaction, Uτ1τ2
τ1τ2

(z12) = U0(z12), the off-diagonal
matrix elements of the potential, Uτ2τ1

τ1τ2
are found to be several

orders of magnitude smaller than U0 for τ1 �= τ2 due to rapid
oscillations of the wave functions [17]. Therefore, to a very
good accuracy, the two-body Hamiltonian is diagonal in the
spin and isospin quantum numbers, and the corresponding
Schrödinger equation reads

E �σ1,σ2
τ1,τ2

≈
[
− h̄2

2m∗

(
∂2

∂z2
1

+ ∂2

∂z2
2

)
+ Utot(z1,z2)

]
�σ1,σ2

τ1,τ2

(10)

with Utot = V (z1) + V (z2) + U0(z12) the total two-body po-
tential.

The chiral and spin quantum numbers are tied together
with the orbital part of the wave function by Pauli’s principle.
Spatially, even solutions of (10) imply antisymmetry under
exchanges (σ1,τ1) ↔ (σ2,τ2), while odd solutions must be
symmetric under them. Therefore the spectrum of the lowest 16
eigenstates of (10) is reproduced by the effective spin exchange
Hamiltonian

HJ = J

2
Xσ

12X
τ
12, (11)

6For a gapped zigzag nanotube of chirality (3k + ν,0), considered
here, Q = 2k + ν (ν = ±1).

Z
/d

z12/d

Utot(z12, Z) − Utot(d, 0)/(e2/ d)

FIG. 3. Contour plot of the background potential Utot in Eq. (10)
in terms of relative and center of mass coordinates. Tunneling between
the two minima (z12 = ±d,Z = 0) gives rise to the exchange splitting
J . The black arrow indicates the semiclassical tunneling path used
here.

with J denoting the splitting of the sixfold degenerate
ground state and the tenfold degenerate first excited multiplet.
These large degeneracies are due to the (approximate) SU(4)
symmetry of the exchange interaction.

The splitting J can be extracted by diagonalizing the two-
body Hamiltonian [55] or, alternatively, in the Wigner crystal
regime one can determine it with a remarkable ∼15% accuracy
by means of a semiclassical approach (see Appendix C).
Displaying the two-body potential Utot in terms of the relative
and center of mass coordinates z12 and Z = (z1 + z2)/2, we
notice that the two particles move in a double-well potential
(see Fig. 3). Tunneling processes along the tunneling path
indicated in Fig. 3 lift the degeneracy of left and right states
associated with the minima of Utot, and give rise to the
exchange splitting J .

The couplings J are displayed in Fig. 4 as a function of ne R

for several experimentally relevant nanotube radii and ε = 2.
In these density units, the boundary of the Wigner crystal is at

0.05 0.1 0.15 0.2
0

50

100

150

200

Melted Wigner
     crystal

Wigner 
crystal 

FIG. 4. The effective SU(4) spin-isospin exchange coupling J as
a function of ne R for various nanotube radii with ε = 2. The vertical
dashed line shows the limit of the Wigner crystal regime.
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(ne R)∗ ≈ 0.135 independently of the radius of the nanotube
(see Sec. V). For small R ≈ 1 nm radius nanotubes, we find
that the exchange coupling can be as high as J ∼ 100 K before
the crystal starts to melt. This value can be even higher in case
ε is closer to 1.

B. Effective spin Hamiltonian of a carbon
nanotube Wigner crystal

Having determined the exchange coupling J (ne) in a
homogeneous gas of electrons, we are now in a position to
construct an effective Wigner crystal Hamiltonian. Assuming
that the density of the electron or hole gas changes relatively
slowly on the scale of typical particle-particle separations
and that charges are pinned by some confining potential, we
can neglect charge fluctuations and approximate the exchange
coupling of two neighboring particles as J (d), with d = n−1

e

denoting their separation. We thereby arrive at the effective
exchange Hamiltonian HX in Eq. (2).

The spin-orbit coupling, Eq. (3), does not influence the
exchange coupling substantially, and we have therefore ne-
glected it in the previous section. However, deeper in the
Wigner crystal regime (or in screened nanotubes) it can be
comparable with J or larger, and can influence the spin state
of the nanotube essentially [56]. The value of the coupling
�SO is roughly inversely proportional to the radius of the tube,
�SO R ∼ 0.3 meV nm, though sample to sample fluctuations
can be large [43]. As already mentioned in Introduction, HSO

breaks the SU(4) symmetry of the exchange Hamiltonian
(2) down to SU(2) × SU(2). However, �SO turns out to be
relatively small in the crossover regime compared to the
exchange coupling in poorly screened (ε � 2) nanotubes. For a
nanotube of radius R = 1.6 nm and ε = 2, e.g., �SO ≈ 2.1 K
[43], which is about a factor ∼40 smaller than the exchange
coupling in the crossover regime.

The symmetry of the Wigner crystal state is further reduced
in the presence of an external magnetic field. Here we focus
on the simple case of a magnetic field parallel to the axis of
the nanotube, when

HB =
∑

i

μBB

(
1

2
gsσi + gorbτi

)
(12)

with gs ≈ 2 and μB = 0.057 meV/T the Bohr magneton.
Thereby the SU(2) × SU(2) symmetry of the crystal is further
reduced to U(1) × U(1).

For an infinite nanotube the orbital g factor gorb can be
estimated as gorb ≈ 7 R [nm], however, this value can be
substantially reduced by confinement [40]. Therefore, for the
nanotube in Fig. 1, we have used the experimentally ex-
tracted g factor, gorb ≈ 5.8, corresponding to μorb = gorb μB ≈
0.33 meV/T [25], yielding indeed good agreement for the
phase boundaries in Fig. 1.

III. WIGNER MOLECULES

For small systems of N = 2 and 3 electrons (holes)
Wigner molecules form, and we can diagonalize the effective
Hamiltonians Eqs. (2) and (3) analytically to obtain their spin
excitation spectrum. For �SO = 0, the spectrum is organized
into SU(4) multiplets characterized by Young tableaux. For

FIG. 5. Energy levels of an N = 2 Wigner molecule, as obtained
from exact diagonalization of the effective Hamiltonian. On the
left-hand side, the �SO = 0 spectrum is shown, with states classified
by SU(4) representations, indicated by the Young-tableaux. For
�SO �= 0, states are classified in terms of the residual SU(2) × SU(2)
symmetry.

a two-particle molecule, e.g., the lowest 42 = 16 states are
organized into a sixfold degenerate antisymmetric ground state
multiplet and a tenfold degenerate symmetrical excited state
(see Fig. 5).

These highly degenerate multiplets are split for �SO �=
0, and can be classified by the residual SU(2) × SU(2)
symmetries, with their generators F1 and F2 inducing internal
rotations within the τi, σi = ±1 subspaces. In terms of
these latter, the sixfold degenerate ground state is split to
two (F1,F2) = (0,0) singlet states, and a fourfold degenerate
(F1,F2) = (1/2,1/2) excited multiplet. In contrast, the 10
times degenerate excited state splits into a fourfold degenerate
(F1,F2) = (1/2,1/2) multiplet, and two threefold degener-
ate multiplets, (F1,F2) = (0,1) and a (F1,F2) = (1,0) for
�SO �= 0.

Injecting a third carrier into the nanotube, an N = 3-particle
Wigner molecule forms. The Hilbert space of low-lying
spin excitations is then 64-dimensional, these 64 states are,
however, organized into just four SU(4) multiplets in the
absence of �SO: the fourfold degenerate ground state is again
completely antisymmetric in the united spin-isospin space,
while excited multiplets have mixed symmetries and are all
20-fold degenerate. Similar to the case of the N = 2 molecule,
these states can be classified in terms of (F1,F2), too, and their
spin-orbit coupling induced splitting and their energy can be
exactly determined with group theoretical methods (see Fig. 6).

Injecting yet another carrier, an N = 4 Wigner molecule
forms. In this case, even if we assume that the Wigner molecule
is symmetrical relative to its center, two distinct couplings need
to be introduced, one for the central bond (J ), and another one
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FIG. 6. Energy levels of a N = 3 Wigner molecule. Only the first
two SU(4) multiplets and their spin-orbit coupling induced splittings
are shown.

for the two side bonds (J ′). The excitation spectrum cannot
be determined analytically in this case, but the ground state is
found to be an SU(4) singlet, as expected. The approximately
SU(4) symmetrical molecular states should be visible in the
molecules’ co-tunneling spectrum, and may lead to interesting
quantum states when coupled to electrodes (see Summary and
Conclusions) [57,58]. The SU(4) spin, coupled to two (SU(4))
Luttinger liquids, e.g., could give rise to an SU(4) two-channel
Kondo state, characterized by an anomalous scaling dimension
� = 2/3 [59]. Coupling the SU(4) Wigner molecule to side
electrodes would, on the other hand, lead to an SU(4) Fermi
liquid state.7 The higher-dimensional SU(4) spins may give
rise to exotic underscreened Kondo states.

IV. WIGNER CRYSTAL STATE IN A PARABOLICALLY
CONFINED NANOTUBE

We now turn to the experimental setup of Ref. [25], where
the nanotube was attached to source, drain, and gate electrodes.
In this case, the attached gate electrodes can produce Schottky
barriers at the ends of the nanotube, and charges accumulated
there are expected to create a smooth external, approximately
parabolic confinement potential for the charge carriers:

Vconf ≈ 1
2α z2. (13)

7The exponent � refers to the case of the SU(4) × SU(2) model with
Fermi liquid leads. This exponent is, however, expected to remain
unchanged in the Luttinger liquid case, too, since correlators (i.e.,
spin excitations) in the SU(4) spin sector of the leads are expected to
remain unaffected by the Luttinger parameter K of the charge sector.
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FIG. 7. Site dependent exchange couplings for a nanotube with
ε = 2 and R = 1.6 nm when N = 26 electrons are confined inside.
The inset shows the dimensionless parameter rs as a function of the
site index. Notice that the stability condition rs � r∗

s � 3.3 is fulfilled,
and the nanotube is in the Wigner crystal regime, though for larger
values of N the Wigner crystal is expected to melt at the center of the
nanotube.

The depth of the potential, α = m∗ω2
0 can be estimated from

the measured charging energy of the nanotube (see Appendix D
for details). Throughout the present work we consider α ≈
0.015 meV/nm2, which for ε = 2 corresponds to a charging
energy of U ≈ 15 meV, in rough agreement with the value
reported in Ref. [25], U ≈ 10–12 meV. For a R = 1.6 nm
nanotube this corresponds to a confinement energy h̄ ω0 ≈
6.25 meV.

In a parabolic confinement, the gas of particles is denser
at the central region of the tube, and correspondingly, the
exchange coupling Ji is larger there, and decreases towards
the ends of the tube. In the experiments, the gate voltage is
varied, and the number of the charge carrier increases one
by one until the Wigner crystal gradually melts at the center
of the tube. For each N , we therefore need to determine the
dynamical rearrangement of the particles and, accordingly, a
new distribution of the couplings Ji . To this end, we minimized
the classical Coulomb energy of the particles in the confining
potential,

E =
N∑

i=1

m∗ω2
0

2
z2
i +

N∑
i<j

e2

ε|zi − zj | .

Figure 7 shows the spatial dependence of the inhomo-
geneous couplings and the position dependent interaction
parameter rs for N = 26 charged particles in a nanotube of
ε = 2 and R = 1.6nm. Remarkably, rs remains above the
crossover value r∗

s ≈ 3.3 even at the center of the tube, where
the exchange coupling is as large as J ∼ 65 K, and the whole
nanotube is in the Wigner crystal regime. For larger values,
N > 26, however, rs becomes smaller that r∗

s at the center of
the nanotube, and the core of the Wigner crystal melts.

To determine the spin state of the relaxed Wigner crystal,
we performed a valence bond mean field calculation. We first
grouped the spin and isospin variables as (σ,τ ) → a, and
rewrote the exchange interaction in a readily SU(4) invariant
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form as

HX =
∑

i

∑
a b

Ji

2
c
†
i aci bc

†
i+1 bci+1 a ≡

∑
i

∑
a b

Ji

2
S a b

i S b a
i+1,

(14)

with the fermionic operators c
†
i a (ci a) creating (annihilating) a

carrier on site i, and satisfying the constraint
∑

a c
†
i aci a = 1 at

each site. The operators S a b
i = c

†
i aci b obey the SU(N) commu-

tation relations [S a b
i ,S a′ b′

j ] = δi,j (δa a′S b b′
i − δa b′S a′ b

i ). The
terms HSO and HB can also be expressed in terms of the SU(4)
spin operators, S a b

i , and obviously break the SU(4) symmetry
of HX. Notice that the Hamiltonian (14) is also invariant under
local gauge transformations, cj a → cj ae

iθj , reflecting local
particle number conservation.

In the presence of the terms HSO and HB , the inhomogeneity
in the exchange coupling plays a crucial role. For longer
Wigner chains, the exchange coupling Ji is very strong at
the center of the chain, while at the wings it can be smaller by
two or more orders of magnitude. Therefore, in the presence
of an external magnetic field, the nanotube may be phase
separated, with wings polarized in isospin and spin space, and
the center of the chain remaining in an approximately SU(4)
antiferromagnetic Néel state. For smaller external magnetic
fields, all three phases can be present in the nanotube: a
spin-isospin polarized state at the wings, where the field-
induced Zeeman and orbital splitting are much larger than
the exchange coupling, an antiferrmagnetic state at the center,
where the exchange coupling dominates over the magnetic
field, and an orbitally polarized spin antiferromagnet between
them.

This competition of HSO and HB leads to the nontrivial
phase diagram shown in Fig. 1, constructed in Ref. [25]
by investigating the change in total magnetization while
adding an extra particle in a magnetic field, �M(N ) =
M(N + 1) − M(N ), a quantity which can be directly extracted
through transport measurements from the shift of the Coulomb
blockade peaks in a magnetic field. To understand this phase
diagram, we must keep in mind that the Wigner crystal is
inhomogeneous and therefore the density and the exchange
coupling are both the largest at the center of the nanotube.
Consider now adding particles to the nanotube in a fixed
external magnetic field. For small particle numbers, the
exchange coupling remains small even at the center of the
nanotube, and both the spins and the isospins of the entering
particles are found to be completely polarized (phase I). For
increasing particle numbers, however, the density and thus the
exchange coupling at the center start to become larger, and the
latter exceeds the spin splitting of the SU(4) spins, induced
by the external magnetic field, but remains still smaller than
the orbital splitting, due to the difference in the electronic and
orbital g factors. As a consequence, new particles enter with
alternating spins but polarized isospin (isospin polarized spin
antiferromagnet, phase II). Finally, for even larger particle
numbers, the exchange coupling at the center of the tube
dominates, and electrons enter with alternating spin and orbital
spins (spin-isospin antiferromagnet, phase III). Notice that
the three regions in Fig. 1 are not true phases. In region II,
e.g., the nanotube hosts two magnetic phases: an orbitally

polarized spin antiferromagnet at the center, and regions of
fully polarized spins and isospins on the wings.

To analyze the spin-isospin configurations of the confined
Wigner crystal theoretically, we made use of a self-consistent
valence bond approach, whereby we decouple the exchange
term assuming a finite Qi = 〈∑ a c

†
i+1 aci a〉 to obtain

HMF = −
∑
i a

Ji (Qi · c
†
i+1 aci a + H.c.)

+
∑
i a

μi · c
†
i aci a + HSO + HB. (15)

Here the Lagrange multipliers μi ensure that particle number
is conserved on the average at each site and, similar to
the Qi , must be determined self-consistently [60]. Notice
that, by the local gauge invariance of (14), the Qi are not
uniquely defined, and the energies of the ground states of HMF

remain invariant under the transformation Qi → Qiei(θi−θi+1).
This simple mean-field approach captures surprisingly well
the properties of SU(4) and SU(2) antiferromagnets and,
according to our findings, can also account for the phase
diagram of the carbon nanotube Wigner crystal.

The phase diagram represented in Fig. 1 has been de-
termined by performing self-consistent calculations for each
magnetic field and for up to N = 35 particles. As already stated
in Introduction, apart from ε, which we have set to ε = 2 to
agree with the values reported so far in suspended graphene
and nanotubes [47,54], all parameters have been estimated
from the experiments: The parameter α can be estimated from
the charging energy U ∼ 10–12 meV, and is found to be in the
range α ≈ 0.005–0.015 meV/nm2 (see Appendix D). Here we
shall use the value α = 0.015 meV/nm2 yielding the closest
resemblance to the experimental data of Ref. [25]. The radius
R = 1.6 nm is determined from the curvature-induced gap
Eg ≈ 220 meV reported in Ref. [25] (and is directly related
tho the effective mass, Eg ≈ 2m∗c2), and yields a spin-orbit
splitting �SO ≈ 2.1 K (see Ref. [43]). Finally, we have used
the experimentally measured value, gorb ≈ 5.8 [25].

Results of these simulations have been summarized in
Fig. 1. Though the magnetization pattern may be not as
systematic as the ones reported in Ref. [25]—possibly due
to our approximate valence bond method—the similarity and
the correct location of the phase boundaries are, nevertheless,
striking. The overall good agreement is, however, shaded by
the fact that for these parameters the density of the electron
crystal starts to exceed the crossover value n∗

e for N � 26 at
the center (see Appendix D). A somewhat weaker confinement,
α ≈ 0.01 meV/nm2 increases this characteristic value of N ,
and yields also a charging energy in better agreement with the
experimentally observed value, but the agreement of the phase
diagram in Fig. 1 gets worse.

V. RANGE OF VALIDITY OF THE WIGNER CRYSTAL
DESCRIPTION AND SCALING RELATIONS

Throughout our previous analysis, we assumed that elec-
trons are reasonably localized by their strong Coulomb
interaction. While this assumption is certainly not correct for
an infinite chain, where charge fluctuations are unlimited and
no long-ranged charge order exists even at T = 0 temperature,
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it can certainly be applied in a finite system, where charge
fluctuations are pinned. Then our approach is valid under the
condition that typical quantum fluctuations of the localized
charges be less than their separation, �z � d.

The ratio �z/d is directly related to the parameter rs .
Computing the width of a Gaussian wave function self-
consistently within the Coulomb potential of an infinite chain
of particles yields the simple estimate (see Appendix B)

�z

d
=

(
1

4 F rs

)1/4

(16)

with the geometrical factor F depending on the densities
(wave functions) of the other localized charges. For perfectly
localized particles, we find F = ζ (3) ≈ 1.202, with ζ the Zeta
function (see Appendix B). However, the factor F increases
as one approaches the border of the Wigner crystal regime,
rs ≈ r∗

1D , which we define as the value of rs , where the charge
density is suppressed by a factor of 2 as one moves from one
lattice position to the next one, a condition yielding d/�z ≈
2.35 for Gaussian wave packets. Smearing the electron charges
then in boxes of width 2 �z yields F ≈ 1.70 at the transition,
corresponding to the rough estimate, rs ≈ r∗

1D ≈ 4.4.
A more accurate way to estimate r∗

1D is to perform
calculations for a molecule in a harmonic trap, where one
can squeeze the atoms together by increasing the confinement
frequency ω0 [17]. The crossover density and thus r∗

1D can then
be determined by just looking at the separation d of the two
charges when the charge density at the center is reduced by a
factor of 2. This more accurate procedure yields the crossover
value r∗

1D ≈ 3.3, used throughout this paper.
Now we show that at the crossover, rs = r∗

1D , the exchange
coupling J ∗ and the density n∗

e obey the scaling relations,
Eq. (4). To prove this, we first observe that, according to our
discussion in Sec. II A, the electron-electron interaction can
be replaced by the angular averaged interaction, U0(z,R) in
Eq. (9). Introducing the dimensionless coordinates, ξi ≡ nezi ,
the Hamiltonian of the interacting particles becomes

H = h̄2n2
e

m∗ H, (17)

with the dimensionless Hamiltonian H = H(rs,neR) given by

H =
∑

i

−1

2

∂2

∂ξ 2
i

+ rs

∑
i<j

u0(ξij ,R ne), (18)

where the dimensionless averaged Coulomb interaction u0

trivially depends on the dimensionless parameter neR. Thus,
in the dilute limit neR � 1, we have H ≈ H(rs,0), and the
structure of the dimensionless wave function and the energy
spectrum of the dimensionless Hamiltonian H depend only
on rs . It follows immediately that at the crossover point,
rs = r∗

1D ≈ 3.3, the density of the gas scales as

n∗
e = 1

r∗
1D

e2m∗

ε h̄2 ∼ m∗

ε
, (19)

while the exchange energy is just a universal number (A) apart
from the overall energy scale in Eq. (17),

J ∗ = A
h̄2n∗

e
2

m∗ ∼ m∗

ε2
. (20)

Equation (20) just follows from the fact that, in the spirit
of the virial theorem—at the crossover, the Coulomb, the
kinetic, and the exchange energies are all approximately equal,
while Eq. (19) states that the density of the gas is inversely
proportional to the effective Bohr radius.

These general scaling relations hold under the condition
n∗

eR � 1. Using the relation m∗ = h̄2/(3Rγ ) [43] with γ =
0.54 eV nm (yielding, e.g., m∗ � 0.0294 me for a nanotube of
radius R = 1.6 nm), this condition simplifies to

n∗
eR ≈ 0.27

ε
� 1. (21)

This inequality is well satisfied for even slightly screened
nanotubes with ε ∼ 2–3, but we find that relations (4) are
also obeyed by the exchange couplings and densities extracted
from the two-body spectrum of unscreened nanotubes with
ε = 1, for which (21) is certainly only poorly satisfied.

VI. SUMMARY AND CONCLUSIONS

In this work, we attempted to account for the magnetic
behavior of a Wigner crystal that forms in a confined
semiconducting carbon nanotube. We have carefully estimated
the exchange interaction (J ) between neighboring localized
electrons (holes) in the crystalline state, and have shown
that it is SU(4) symmetric with very good accuracy. For
poorly screened small diameter semiconducting nanotubes,
the semimicroscopically determined exchange couplings at the
melting of the crystal turn out to be surprisingly large, J ∗ ∼
100 K. These large values follow from very robust scaling
arguments, and are also in agreement with experiments [25,27]
as well as independent theoretical computations [17,27],
also reproduced here. As we argued, at the crossover the
exchange coupling J ∗ is just proportional to the effective Bohr
energy, with me replaced by m∗ and with an additional factor
1/ε2, yielding the simple estimate, J ∗ ∼ m∗/(meε

2) × 1 Ry.
Determining the numeric prefactor omitted here requires more
accurate computations, but it is not unreasonable to assume it is
in the range of 0.01–0.1. For a nanotube with R ≈ 1.6 nm and
ε = 2, this heuristic estimate gives 10 K to 100 K, consistent
with our more accurate calculations.

Spin-orbit coupling (�SO) breaks the SU(4) spin symmetry
down to SU(2) × SU(2) [61]. As we demonstrated in Sec. III,
for small, N = 2 − 4 particle Wigner molecules, the interplay
between J and �SO leads to interesting spin excitation spectra
with excited states classified as SU(2) × SU(2) multiplets.
This intriguing spin spectrum should readily be seen in the
co-tunneling spectrum of Wigner molecules, would provide
direct information on J , �SO, and would also evidence the
underlying SU(4) and the residual SU(2) × SU(2) symmetries.

The interesting spin structure of the molecule can lead
to exciting quantum states when the molecule is coupled to
electrodes [57,58]. For small �SO, the SU(4) spin, coupled to
two (SU(4)) Luttinger liquids, e.g., may give rise to a SU(4)
two-channel Kondo state, characterized by an anomalous
scaling dimension � = 2/3 [59]. Coupling the SU(4) Wigner
molecule to side electrodes would, on the other hand, lead to
an SU(4) Fermi liquid state, while higher-dimensional SU(4)
spins may give rise to exotic underscreened Kondo states. A
finite �SO will, however, induce a crossover to SU(2) × SU(2)

115433-8



WIGNER CRYSTAL PHASES IN CONFINED CARBON . . . PHYSICAL REVIEW B 95, 115433 (2017)

states, and lead to less exciting SU(2) Kondo physics at low
temperatures.

We remark that the competition between J and �SO has
even more exciting implications for homogeneous crystals
[56]. The spin-orbit coupling breaks the original SU(4) spinon
excitations of the SU(4) antiferromagnet into SU(2) spinons
propagating with 3 different spin velocities, and leads to a
quantum phase transition with one of the spinons becoming
gapped as we move deeper into the Wigner crystal regime.

To test our bottom-up approach, we have performed a
detailed modeling of the experiments of Ref. [25]. We esti-
mated the basic model parameters (m∗, gorb, and confinement
strength α) directly from the experiments. We have set the
unknown dielectric constant to ε = 2 [54]. Performing a
self-consistent valence-bond calculation for an increasing
number of electrons in an external magnetic field, we recovered
the experimentally observed magnetic phase boundaries with
reasonable accuracy. As we have discussed in Sec. IV, these
phase boundaries from the inhomogeneity of the crystal, and do
not correspond to new phases, rather they can be interpreted as
the emergence of different types of antiferromagnetic domains
at the center of the nanotube, where the density and thus the
exchange coupling are both the largest. Given the simple
multiscale calculations we performed, the good agreement
with the experiments is striking.

We should remark though that while the phase boundaries
we get are qualitatively and quantitatively very close to the
experimentally observed ones, we do not observe regular two-
fold magnetization patterns, our patterns are closer to the ones
presented in the supplemental information of Ref. [25]. This
may be a consequence of the valence-bond approach we em-
ployed or possibly the melting of the Wigner crystal for larger
particle numbers, which for our parameters occurs at N � 26.

We should also comment here on the value of the dielectric
constant ε. It would be natural to assume that ε ≈ 1 in a
nanotube suspended in vacuum [47,48,54]. However, such a
small value of ε is inconsistent with the data. For ε = 1, only a
shallow parabolic confinement with α � 0.003 meV nm−2 can
yield charging energies compatible with the experimentally
reported values, U ∼ 10 meV (see Appendix D). For such shal-
low confinement, the unscreened Coulomb repulsion pushes
the charges quickly towards the end of the nanotube, and
already for about N ∼ 10 they form a homogeneous crystal
all over the nanotube. Such a homogeneous crystal is clearly
incompatible with the experiments: in such a crystal, exchange
couplings are approximately equal, and a huge magnetization
jump should occur at a critical magnetic field, B ∼ J/μorb,
not seen experimentally. Furthermore, such a homogeneous
Wigner crystal will not melt gradually, but would develop
a sudden transition in the whole crystal once the melting
condition rs � r∗

1D is satisfied.
Thus the value ε ≈ 1 seems to be incompatible with the

experimental data. So are larger values of ε � 4. For these large
values, a very large confinement would be needed to yield U ∼
10 meV. By our scaling arguments, the exchange coupling
should then be less than J ∗ ∼ 10 K, clearly inconsistent with
the high field phase boundary observed in Ref. [25] and the
corresponding exchange coupling, J ∼ 60 K. Furthermore,
in this case the crystal would melt very quickly, once a few
particles enter the tube.

We thus conclude that only ε ≈ 2 seems to give a consistent
explanation for the data reported in Ref. [25]. For this value of
ε the first transition between the completely polarized state and
the spin-antiferromagnet (see Fig. 1) occurs well in the Wigner
crystal regime, however, for N ∼ 26, the Wigner crystal should
melt, and our approach becomes questionable. The description
of this regime of a partially melted confined Wigner crystal
and the crossover between the Wigner crystal and electron
(Luttinger) liquid regimes is a true theoretical challenge.

While spin-orbit coupling gives rise to interesting spin
excitations in small molecules, we find that for a semicon-
ducting nanotube of radius R = 1.6 nm, corresponding to the
gap measured in Ref. [25], �SO, does not have a large impact
on the magnetic states within the phase diagram. It eliminates
the orbitally polarized phase at very small fields but, apart from
that, the phase diagram remains almost identical to that of an
SU(4) symmetrical Wigner crystal with �SO → 0.

Let us finally comment on the general implications of our
results and their limitations. Although we focused on semi-
conducting (zigzag) nanotubes, most of our considerations
are very general, and also apply with trivial modifications
to metallic tubes with curvature or strain induced band gaps
and semiconducting nanotubes of other chirality. In particular,
the scaling relations (4) are very general, and imply that the
range of applicability of the Wigner crystal picture as well
as the strength of the exchange coupling depend extremely
sensitively on the parameters of the tube and details of the
experimental setup; to observe the Wigner crystal and its
magnetic structure it is essential to avoid strong screening
and to increase the effective mass of the particles as much as
possible. In practical terms, small radius or strongly strained
suspended nanotubes of ε � 2 are best to observe the detailed
structure of the crystal. Correspondingly, while the nanotube
studied in Ref. [25], is found to be in the Wigner crystal
regime for electron numbers N � 26, metallic nanotubes with
small strain-induced gap laid on or close to a substrate are
extremely unlikely to host Wigner molecules, and should
rather be described in terms of extended electron (hole) states.
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APPENDIX A: CONSTRUCTION OF LOCALIZED
SINGLE-PARTICLE STATES IN A ZIGZAG

CARBON NANOTUBE

In this appendix, we construct the wave function of the
localized electrons forming the Wigner crystal. The Brillouin
zone (BZ) of the underlying graphene sheet is represented in
Fig. 8, with the two inequivalent Dirac points denoted as K

and K ′. Rolling up the graphene into a carbon nanotube (CN)
restricts the BZ to some parallel line segments [62], with their
orientation dictated by the chirality of rolling the nanotube.
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FIG. 8. Retailored Brillouin zone (BZ) of graphene (black rectan-
gle). The red lines denote states allowed for a zigzag carbon nanotube,
K and K ′ mark the two Dirac points, a is the lattice constant. Thick
solid red lines indicate the segments L±Q.

Here, for simplicity, we consider semiconducting zigzag CN’s
with chirality (n,0) and radius R = a n/2π (n = 3k + ν;
ν = ±1). In this case, allowed states in the graphene BZ consist
of segments of length 2π/a

√
3 parallel to the kz direction

(vertical red lines in Fig. 8), and the lowest lying excitations
are on the segments closest to K = −K′ = (4π/3a,0). The
minimum-energy point of these vertical segments is at the
points Q = −Q′ = (Q,0) with Q = (2n + ν)/(3R). For low-
density CNs, it is enough to restrict ourself to these two
segments, L±Q = (±Q,qz), indexed by the isospin quantum
numbers τ = ±1. Along these lines, for small qz, excitations
are massive Dirac fermions with a dispersion

ετ (qz) ≈ ±
√

c2q2
z + (m∗)2c4, (A1)

with c ≈ 8 × 105 m/s the Fermi velocity of graphene and m∗
the effective mass

m∗ = h̄

3Rc
. (A2)

The wave functions (of the unrolled nanotube) for the
electrons (holes) can be expressed by Bloch’s theorem
as ψ±

k (r,ζ ) = eikr u±
k (r,ζ ). Here we explicitly separate the

position vector into a two dimensional vector within the
graphene sheet, r, and a coordinate ζ perpendicular to it. In
cylindrical coordinates of the nanotube r = (Rϕ,z), and the
wave functions along the line segment k ∈ LτQ read

ψ±
k = eiQτϕ eiqzz u±

k (Rϕ,z,ζ ) (A3)

with r = R + ζ . These wave functions describe particles of
chirality τ circulating around the tube.

In the Wigner crystal, we create wave packets from the
states (A3)

�±
jτ (r,ζ ) =

∫
k∈LτQ

dqz eikr · u±
k (r,ζ ) · f (qz), (A4)

with f (qz) ∝ e−iz̄qz e− 1
2 �z2q2

z a Gaussian envelope, and z̄ the
location of the wave packet along the nanotube. Assuming
that u±

k only weakly depends on k, we obtain the quasiparticle

wave function at position z̄ = z
(0)
j ,

�±
jτσ = 1√

2π
ei Qτϕ 1

(π �z)1/4 e
− (z−z

(0)
j

)2

2 �z2 χσ u±
τQ(z, ϕ, ζ ), (A5)

with the ± sign referring to electrons and holes, and χσ

representing the spin part of the wave function. The Bloch
functions u±Q(r,ζ ) in (A4) describe an almost homogenius
background charge pattern, which varies only at the atomic
scale, and can be ignored in many cases. We should emphasize
that the single band approach presented here is only be valid
for wide enough wave packets,

�z >
√

3R. (A6)

APPENDIX B: THE EFFECTIVE COULOMB POTENTIAL

The Coulomb potential in cylindrical coordinates is

U (z,ϕ) = e2

ε

1√
z2 + ᾱ2 + 2R2(1 − cos ϕ)

(B1)

with e the electron charge and ε the relative dielectric
constant. In the exact diagonalization approach of Ref. [17]
the microscopic cutoff ᾱ describes a crossover between the
Coulomb potential and a Hubbard-like short range interaction
for z → 0, and was fixed to ᾱ = e2/U0 ε, with U0 = 15 eV.
Then, the average interaction felt by two electrons at a distance
z is

U0(z) =
∫ 2π

0

dϕ

2π
U (z,ϕ).

= e2

ε

1

|z| f (z/R,ᾱ/R) (B2)

with f (z/R,ᾱ/R) a dimensionless function

f

(
z

R
,
ᾱ

R

)
= |z|√

z2 + ᾱ2 + 4R2
K

(
2R√

z2 + ᾱ2 + 4R2

)
(B3)

given in terms of the complete elliptic integral of the first kind,
K(x) [63]. The screening length ᾱ in Eq. (B3) is of the order
ᾱ ∼ 0.1 nm/ε, is much smaller than R, and regularizes the
potential in the limit z → 0, while for large distances, z � R

the usual Coulomb behavior is recovered,

U0(z � R) ≈ e2

ε

1

|z| . (B4)

The Hartree potential felt by particle i is given by V
(1)
i (z) =

V (1)(z − z
(0)
i ) with

V (1)(z) =
∑
j �=0

∫
dz′ dϕ′

2π

dϕ

2π
U (z − z′,ϕ − ϕ′)|�jτσ (z′,ϕ′,ζ )|2.

(B5)

Deep in the Wigner crystal the wave functions are well
localized, and to a good approximation

V (1)(z) ≈
∑
j �=0

U0
(
z − z

(0)
j

)
, (B6)

with U0(z) given by Eq. (B2). The resulting Hartree potential
is shown in Fig. 9. A similar procedure yields the two-particle
potential displayed in Fig. 2.
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FIG. 9. The Hartree potential V
(1)
i (z) confining the ith electron,

defined in Eq. (B6).

We now estimate the extension of the wave function
in this Hartree potential. We first approximate U0(z − z

(0)
j )

by a Coulomb potential to obtain the following parabolic
approximation by expanding (B6):

V (1)(z) ≈ V (1)(0) + 2e2

ε d3
ζ (3) z2,

with d = n−1
e the separation of electrons and ζ (3) =∑∞

k=1 1/k3 ≈ 1.202.8 Solving the harmonic oscillator prob-
lem in this harmonic potential yields then a simple estimate,
Eq. (16).

APPENDIX C: EXCHANGE INTERACTION
IN A WIGNER MOLECULE

In this appendix, we present the semiclassical approach
to determine the exchange interaction J , which we also
compare with the results of exact diagonalization [17,27]. We
consider two interacting electrons of mass m∗ in a parabolic
confining potential of frequency ω0. The Schrödinger equation
can be factorized in this case in terms of the relative (z =
z2 − z1) and center of mass [Z = (z1 + z2)/2] coordinates,
H = Hrel(z) + HCOM(Z). The center of mass motion is that
of a harmonic oscillator of frequency ω0, and is completely
decoupled from the relative motion described by the single-
particle Hamiltonian,

H = − h̄2

2μ

∂2

∂z2
+ 1

2
μω2

0z
2 + e2

ε

1

|z|f
( z

R
,
α

R

)
, (C1)

with μ = m∗/2 the reduced mass and f (z/R,ᾱ/R) the cutoff
function in Eq. (B3). With a good accuracy, we can set the
parameter ᾱ/R to zero. We can then make the Hamiltonian
dimensionless by introducing the dimensionless coordinate,
ρ = z/λ, with λ = (h̄/m∗ω0)1/2 the noninteracting oscillator

8For an infinite chain, we have V (1)(0) → ∞, a divergence com-
pensated by the background of positive charges.

length, and dividing it by the natural energy scale,h̄ω0. In these
units, the Hamiltonian becomes

H = T + V(ρ) = − ∂2

∂ρ2
+ 1

4
ρ2 + r̃s

1

|ρ|f
(

ρ
λ

R

)
, (C2)

with r̃s characterizing the strength of Coulomb interaction
compared to that of the parabolic confinement,

r̃s = e2

h̄ω0 ελ
. (C3)

Notice that r̃s in Eq. (C3) is different from the usual rs , defined
by Eq. (1).

The dimensionless potential V(ρ) in Eq. (C2) displays two
minima at ±ρ0, corresponding to the ground state positions of
the classical particles. Close to these minima, the potential can
be approximated by parabolas, and the molecule vibrates with
a frequency � = ω0(2V ′′(ρ0))1/2, where V ′′(z) is the second
derivative with respect to z. Tunneling processes between ±ρ0

give rise to a splitting of these two levels, which we can identify
as the exchange coupling. At the semiclassical level, we can
thus estimate J as the tunneling amplitude [1]

J ≈ h̄ �

π
e− ∫ A

−A
dρ

√
V(ρ)−(�/2ω0), (C4)

with A denoting the classical turning-point determined by the
equation V(A) = �/2ω0. Alternatively, we can determine the
spectrum of Eq. (C2) numerically, and extract the ground state
splitting from there.

Figure 10 displays a comparison of the results of these two
approaches as a function of r̃s for a nanotube of radius R =
2 nm in a confining potential of frequency h̄ω0 = 7.8 meV.
Both approaches yield an exponential decay of J with
increasing r̃s . The semiclassical method slightly overestimates
the exchange coupling, but it gives a surprisingly accurate
estimate for J . For a simple Coulomb interaction between

FIG. 10. The exchange interaction as function of the dimension-
less ratio r̃s for a Wigner molecule. The radius of the nanotube was
fixed to R = 2 nm and the confinement energy is h̄ ω0 = 7.8 meV.
The solid lines are obtained using the pure Coulomb interaction (B4)
while for the dashed lines the effective potential in Eq. (B2) with
ᾱ = 0 has been used.
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the two electrons, (B4), it estimates J ’s within ∼5%, but
its accuracy remains around ∼15 % for the more appropriate
nanotube interaction, Eq. (B2), too.

APPENDIX D: CHARGING ENERGY OF CARBON
NANOTUBE IN A CONFINING POTENTIAL

The Coulomb energy of a nanoscale object often depends
approximately quadratically on the number of charged parti-
cles,

ECoulomb ≈ U

2
N (N − 1) . (D1)

The charging energy U can be directly extracted from the
Coulomb diamonds. The data presented in Ref. [25], e.g., yield
a value U � 10–12 meV.

In this appendix, we determine the effective value of U as
a function of the particle number N for a CNT confined by a
harmonic potential. Starting from the ansatz (D1), the value of
U can be identified as the difference in the energy needed to
add two consecutive electrons [44],

U ≈ UN ≡ �EN+1 − �EN, (D2)

with �EN = EN+1 − EN , and EN the total energy of the CNT
with N confined charges.

In a parabolic confinement, the energy E({zi}) of a given
classical charge configuration is the sum of the harmonic
potential and the Coulomb energy,

E({zi}) =
N∑

i=1

α

2
z2
i +

∑
i<j

e2

ε|zi − zj | . (D3)

For each N , we first determine the coordinates zi of the
particles by minimizing Eq. (D3), and then compute the
total energy EN . Introducing the dimensionless coordinates
ζi = zi/ l, with l = (e2/αε)1/3, the potential energy becomes

EN = E

⎛
⎝1

2

N∑
i=1

ζ 2
i +

∑
i<j

1

|ζi − ζj |

⎞
⎠. (D4)

with the characteristic energy scale

E = (e4α/ε2)1/3.

N
0 5 10 15 20 25

U
N
/E

0.6
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1
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FIG. 11. Dimensionless charging energy as function of the
particle number N .

FIG. 12. The “length” of the Wigner crystal LN , as a function of
the number of charges N , for various potential depths α and dielectric
constants. The length of the nanotube is L = 500 nm. (Inset) LN/l for
an infinite nanotube with parabolic confinement. LN/l is a universal
function of N .

As a consequence, UN can be expressed as UN = E f (N ).
We determined the universal function f (N ) numerically, and
displayed it in Fig. 11. It has a weak dependence on N , and for
particle numbers of interest f (N ) ≈ 0.75, yielding the relation

U eff ≈ 0.75 × E .

This equation allows us to relate the screening parameter ε

and the confinement parameter α through the experimentally
determined charging energy. For ε = 2, used throughout
this work, α = 0.015 meV/nm2 yield U eff ≈ 14.7 meV,
roughly consistent with the data. For ε = 1, however, one
needs to use a much shallower confining potential with
α ≈ 0.0015 meV/nm2 in order to be consistent with the
experimentally observed charging energy.

5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

14

FIG. 13. The dimensionless parameter rs as a function of the
number of charges N in the middle of a 500 nm long nanotube for
α = 0.015 meV/nm2 and ε = 2. The Wigner crystal starts to melt at
the center for N = 26, once rs decreases below the crossover value
r∗
s ≈ 3.3.
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In a finite nanotube of size L, the “length” of the Wigner
crystal LN increases monotonously with N up to the size of
the tube. In an infinite nanotube, the growth is universal and
can be expressed as LN/l = g(N ), with g(N ) an universal
function that we determined numerically. It is represented in
the inset of Fig. 12. In the main panel of the same figure,
we represent LN as function of the number of charges N ,
for ε = 2 and α ≈ 0.015 meV/nm2 as well as for ε = 1 and
α ≈ 0.0015 meV/nm2. While in the former case we can place
about Nmax ∼ 40 electrons on the nanotube before hitting
the walls, in the ’unscreened’ case, ε = 1, this number is
only Nmax ∼ 8. Beyond this number the separation of the
particles becomes quickly equidistant, yielding an almost
uniform exchange coupling.

It is therefore evident that for large confinement potential
depth α and strong screening ε a far larger number of

charges can be squeezed inside the nanotube, as l ∝ (α ε)−1/3

decreases, but that is not a guarantee that the Wigner crystal
state survive as N increases. The only relevant quantity
that controls the melting point of the Wigner crystal is the
dimensionless parameter rs . As displayed in inset of Fig. 7,
for a given configuration with N charges in the tube, rs is
site dependent and has the smallest value in the middle of
the chain. In Fig. 13, we represent rs in the middle of a
500-nm-long nanotube as function of the number of charges
N . When only a few charges are confined to the nanotube, the
gas is diluted and, as expected, rs � r∗

1D , but as the charges
accumulate, rs decreases monotonously, and at some critical
occupation Ncrit ≈ 26 it reaches r∗

1D , and the crystal starts
to melt in the middle. Adding more charges, rs decreases
further, and the melting progresses towards the sides of the
chain.
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Stiller, M. Grifoni, A. K. Hüttel, and C. Strunk, Phys. Rev. B
91, 155435 (2015).

[62] T. Ando, J. Phys. Soc. Jpn. 74, 777 (2005).
[63] I. Gradshteyn and I. Ryzhik, Table of Integrals, Series, and

Products (Corrected and Enlarged Edition) (Academic Press,
San-Diego, CA, 1980).

[64] J. Levinsen, P. Massignan, G. M. Bruun, and M. M. Parish,
Sci. Adv. 1, e1500197 (2015).

[65] C. Yannouleas, B. B. Brandt, and U. Landman, New J. Phys. 18,
073018 (2016).

[66] A. D. Klironomos, R. R. Ramazashvili, and K. A. Matveev,
Phys. Rev. B 72, 195343 (2005).

115433-14

https://doi.org/10.1038/nphys1420
https://doi.org/10.1038/nphys1420
https://doi.org/10.1038/nphys1420
https://doi.org/10.1038/nphys1420
https://doi.org/10.1103/PhysRevLett.85.365
https://doi.org/10.1103/PhysRevLett.85.365
https://doi.org/10.1103/PhysRevLett.85.365
https://doi.org/10.1103/PhysRevLett.85.365
https://doi.org/10.1038/nphys340
https://doi.org/10.1038/nphys340
https://doi.org/10.1038/nphys340
https://doi.org/10.1038/nphys340
https://doi.org/10.1103/PhysRevB.80.035412
https://doi.org/10.1103/PhysRevB.80.035412
https://doi.org/10.1103/PhysRevB.80.035412
https://doi.org/10.1103/PhysRevB.80.035412
https://doi.org/10.1007/s002570050075
https://doi.org/10.1007/s002570050075
https://doi.org/10.1007/s002570050075
https://doi.org/10.1007/s002570050075
https://doi.org/10.1103/PhysRevB.70.245319
https://doi.org/10.1103/PhysRevB.70.245319
https://doi.org/10.1103/PhysRevB.70.245319
https://doi.org/10.1103/PhysRevB.70.245319
https://doi.org/10.1088/0034-4885/72/6/066502
https://doi.org/10.1088/0034-4885/72/6/066502
https://doi.org/10.1088/0034-4885/72/6/066502
https://doi.org/10.1088/0034-4885/72/6/066502
https://doi.org/10.1016/S0038-1098(03)00180-7
https://doi.org/10.1016/S0038-1098(03)00180-7
https://doi.org/10.1016/S0038-1098(03)00180-7
https://doi.org/10.1016/S0038-1098(03)00180-7
https://doi.org/10.1038/nature03422
https://doi.org/10.1038/nature03422
https://doi.org/10.1038/nature03422
https://doi.org/10.1038/nature03422
https://doi.org/10.1016/0550-3213(94)90365-4
https://doi.org/10.1016/0550-3213(94)90365-4
https://doi.org/10.1016/0550-3213(94)90365-4
https://doi.org/10.1016/0550-3213(94)90365-4
https://doi.org/10.1103/PhysRevB.91.155435
https://doi.org/10.1103/PhysRevB.91.155435
https://doi.org/10.1103/PhysRevB.91.155435
https://doi.org/10.1103/PhysRevB.91.155435
https://doi.org/10.1143/JPSJ.74.777
https://doi.org/10.1143/JPSJ.74.777
https://doi.org/10.1143/JPSJ.74.777
https://doi.org/10.1143/JPSJ.74.777
https://doi.org/10.1126/sciadv.1500197
https://doi.org/10.1126/sciadv.1500197
https://doi.org/10.1126/sciadv.1500197
https://doi.org/10.1126/sciadv.1500197
https://doi.org/10.1088/1367-2630/18/7/073018
https://doi.org/10.1088/1367-2630/18/7/073018
https://doi.org/10.1088/1367-2630/18/7/073018
https://doi.org/10.1088/1367-2630/18/7/073018
https://doi.org/10.1103/PhysRevB.72.195343
https://doi.org/10.1103/PhysRevB.72.195343
https://doi.org/10.1103/PhysRevB.72.195343
https://doi.org/10.1103/PhysRevB.72.195343



