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Robustness of Majorana bound states in the short-junction limit
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We study the effects of strong coupling between a superconductor and a semiconductor nanowire on the creation
of the Majorana bound states, when the quasiparticle dwell time in the normal part of the nanowire is much
shorter than the inverse superconducting gap. This “short-junction” limit is relevant for the recent experiments
using the epitaxially grown aluminum characterized by a transparent interface with the semiconductor and a
small superconducting gap. We find that the small superconducting gap does not have a strong detrimental effect
on the Majorana properties. Specifically, both the critical magnetic field required for creating a topological phase
and the size of the Majorana bound states are independent of the superconducting gap. The critical magnetic
field scales with the wire cross section, while the relative importance of the orbital and Zeeman effects of
the magnetic field is controlled by the material parameters only: g factor, effective electron mass, and the
semiconductor-superconductor interface transparency.
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I. INTRODUCTION

The theory of normal conductor-superconductor (NS)
hybrid systems distinguishes two limiting cases: long and
short junctions. In long junctions, the dwell time τdw of a
quasiparticle inside the normal region is much larger than the
time h̄/� it spends inside the superconductor (with �

the superconducting gap). In this limit the induced gap inside
the semiconductor is equal to h̄/τdw, and therefore it varies for
different bound states. In the short-junction or strong-coupling
limit, the quasiparticles spend most of their time inside the
superconductor, while the normal region effectively acts as a
delta function scatterer. Then in the presence of time-reversal
symmetry, the induced gap is close to � for every single
Andreev bound state. In the short-junction limit Andreev
bound states have the most weight in the superconductor,
and therefore the conventional approach of integrating out the
superconductor and obtaining an effective Hamiltonian of the
normal system becomes inefficient due to the strong energy
dependence of the effective Hamiltonian.

Systematically studying the short-junction limit is relevant
for the creation of Majorana bound states (MBS) [1–5] in
semiconductor nanowires [6,7] partially coated with epi-
taxially grown aluminum that have high interface quality.
These systems were observed to have a well-developed hard
induced gap comparable to the gap in the bare Al [8], and
subsequently showed zero bias peaks [9] and suppressed
splitting of low energy states characteristic to MBS [10]. The
theoretical description of the response of strongly coupled
zero-dimensional NS junctions to magnetic field was analyzed
in Ref. [11], where the authors report a strong suppression of
the effective g factor, potentially leading to the impossibility
of inducing a topological phase at magnetic fields below the
Clogston limit [12].

Here we extend the analysis of Ref. [11] using the scattering
formalism that allows us to capture the nonlinear features of
the spectrum, and by considering higher-dimensional systems
with translational invariance. The scattering formalism has
been routinely applied to short junctions in mesoscopic
physics [13]. Relevant works to the present study are on
two-dimensional electronic gases with spin-orbit interactions

[14,15]. However, in Majorana literature the use of the
scattering formalism has been limited [16]. The equivalent
of the scattering formalism using the effective Hamiltonian
approach amounts to introducing an effective self-energy �(E)
which has a proper dependence on energy E [17–19] and then
neglecting the energy term in the nonlinear eigenvalue problem
[H − �(E)]ψ = Eψ , as done in, e.g., Ref. [20].

Our overall findings are favorable for the creation of MBS
in Al-based NS systems. Specifically, we find that:

(1) The critical magnetic field B∗ required to induce a
topological phase is independent of the superconducting gap.
This is valid also beyond the short-junction limit, as long
as penetration of magnetic field into the superconductor is
negligible.

(2) Since B∗ is inversely proportional to the wire cross
section, the device design can be used to adjust B∗ within a
broad range.

(3) The localization length ξM of the MBS does not depend
on the superconducting gap, and in optimal conditions it is
proportional to the spin-orbit length lSO.

(4) Finally, if the interface between the semiconductor and
the superconductor has high transparency T , then B∗ becomes
only a slowly varying function of the chemical potential μ, as
opposed to its usual oscillatory behavior on the scale of the
mode spacing in the nanowire [21,22].

Our analytical calculations fully coincide with the results
obtained using a numerical scattering approach to short junc-
tions and exact diagonalization of a discretized tight-binding
Hamiltonian. While these conclusions are favorable for the
prospect of using weak superconductors for MBS creation,
we note that the effects of disorder in the superconductor are
not systematically treated here. Disorder has been recently
predicted to have a strong detrimental effect on the creation of
MBS in systems that are in the short-junction limit [23].

The paper is organized as follows. Section II contains a
pedagogical review of scattering formalism for the calculation
of Andreev spectrum. The following Sec. III presents scaling
arguments supporting our conclusions. In Sec. IV we compute
the dispersion relation of a planar NS junction and discuss the
typical device parameters. Section V investigates the Majorana
phase diagram and the behavior of the MBS decay length. In
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Sec. VI we compare the predictions of Sec. V with numerical
diagonalization of finite junctions. Section VII estimates the
orbital effect of the magnetic field by computing the Andreev
spectrum in a cylindrical geometry in a thin shell limit.
In Sec. VIII we confirm our findings using a numerically
computed Majorana phase diagram of a three-dimensional
model. Lastly, Sec. IX sums up our conclusions.

II. SCATTERING MATRIX FORMALISM AND THE
SHORT-JUNCTION LIMIT

This section reviews the scattering approach to calculating
the Andreev bound state spectrum and may be skipped by
expert readers. We start by considering a general NS junction
with n superconducting terminals [24]. We use the case n = 1
in Secs. IV, V, VIII, and n = 2 in Sec. VII.

The levels with |E| < � are Andreev bound states, i.e.,
coherent superpositions of electron and hole excitations which
occur due to Andreev reflections [25] at the interface between
the normal region and the superconducting terminals. The
wave function quantization condition on the wave function
requires that the total sequence of scattering events results in a
phase shift of 2πn. For the vector of modes ψ incoming from
the superconductor to the normal region this condition reads:

SASNψ = ψ. (1)

Here SN is the scattering matrix of the normal region and SA

the scattering matrix of Andreev reflection processes in the
superconducting terminals. The mode vector has electron and
hole components ψ = (ψe,ψh).

The Andreev reflection matrix assumes a universal form
when the superconductor has s-wave pairing without any
sources of time-reversal symmetry breaking and additionally
when the Andreev approximation holds (when the Fermi
energy in the superconductor is much larger than �). In the
literature, the Andreev spectrum is often calculated in systems
where the superconductor Hamiltonian has full spin-rotation
invariance (an appropriate approximation for aluminum),
making the spin basis a natural choice of basis of ψ . Yet the
universal structure of the Andreev reflection matrix does not
change in the presence of spin-orbit coupling in the supercon-
ductor. However, in that case it is impossible to choose a spin
basis due to lack of spin conservation and it is more appropriate
to use a basis where the outgoing modes are time reversed of
the incoming modes [26]. Throughout the paper we work in the
latter basis but explain the relation to the more commonly used
spin basis for reference at the end of this section. Importantly,
we neglect the time-reversal symmetry breaking perturbations
in the superconductor, restricting ourselves to magnetic fields
much lower than critical.

The scattering matrix of the normal region is block diagonal
in the Nambu space:

SN (E,k) =
(

Se(E,k) 0
0 Sh(E,k)

)
, (2)

where Se and Sh are the scattering matrices of electrons and
holes. We consider NS junctions with a translational symmetry,
and therefore the scattering matrices may depend on the wave
vector k along the translationally invariant directions. We
choose the hole modes ψe as particle-hole partners of the

electron modes ψe. In this basis the particle-hole symmetry of
the scattering matrix reads:

τxS
∗
N (E,k)τx = SN (−E, − k). (3)

Using the block-diagonal structure of SN it follows that
the normal scattering matrix of holes is the conjugate of
the scattering matrix for electrons, at opposite energy and
momentum [27]:

Sh(E,k) = S∗
e (−E, − k). (4)

In the same basis, the Andreev reflection matrix reads:

SA = α(E)R, R =
(

0 r

−r∗ 0

)
, r = ⊕j e

iφj , (5)

where the index j runs over the terminals, φj is the supercon-
ducting phase in lead j , and α(E) = exp(−i arccos(E/�))
[28].

Following Ref. [28], eliminating ψ from Eq. (1), and using
an expression for a block matrix determinant one immediately
arrives to a determinantal equation for the bound state energies:

det[1 + α2(E)r∗Se(E,k)rS∗
e (−E, − k)] = 0. (6)

The short-junction limit allows us to further simplify the
calculation of the Andreev bound state energies when Thouless
energy ETh ≡ h̄/τdw � �. Thouless energy is the typical
energy scale for the matrix elements to change appreciably,
therefore in the short-junction limit SN (E,k) ≈ SN (0,k) for
any E � �. After replacing Se(E) with Se(0), the only energy-
dependent term remaining in Eq. (1) is the coefficient α(E).
Since the scattering matrices are invertible, Eq. (1) reads:

RSNψ = α−1(E)ψ, or S−1
N R−1ψ = α(E)ψ. (7)

Adding the two equations yields the following energy eigen-
problem:

1

2

[
RSN + S−1

N R−1]ψ = E

�
ψ. (8)

Further squaring this equation and using the unitarity of the
scattering matrices SA and SN we arrive to the eigenproblem
expression for the Andreev spectrum:{

1

2
− 1

4

[
S†

e (k)rST
e (−k)r∗ + H.c.

]}
ψe = E2

�2
ψe, (9)

where the energy argument is suppressed, since Se is evaluated
at E = 0. If there is only a single superconducting terminal, the
Andreev reflection matrix r reduces to a phase factor, which
fully drops out from Eq. (9), as required by gauge invariance.

If the spin is conserved, the above derivation is nearly
identical in the spin basis. The scattering matrices in the spin
basis S̃e and r̃ are related to the basis of time-reversed modes
by a transformation

S̃e = −iσySe, r̃ = −iσy ⊕j eiφj , (10)

with the Pauli matrices σ spin operators and σ0 an identity
matrix. The symmetry condition (4), equation (6) for the
Andreev spectrum, and eigenproblem for the spectrum in the
short-junction approximation (9) are identical in both bases
upon replacing Se and r with S̃e and r̃ .
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III. SCALING ARGUMENTS FOR THE MBS PROPERTIES
IN THE SHORT-JUNCTION LIMIT

The superconducting gap enters only as an overall pref-
actor of the Andreev state energies in Eq. (9), while the
specific spectrum depends only on the normal state scattering
matrix Se. This simplification allows us to draw most of
our conclusions about MBS properties solely using universal
arguments and not by solving a specific model. For instance,
since the Majorana phase transition occurs when Eq. (9) has
a zero-energy solution, the critical field B∗ does not depend
on �. This conclusion also extends beyond the short-junction
limit, since the zero energy solutions of Eq. (9) always coincide
with the zero energy solutions of Eq. (1) and therefore with
the full solutions of the Bogoliubov-de-Gennes equation.

Turning to the spatial extent of MBS in the normal region
ξM , we observe that it is limited from below by the coherence
length ξS in the superconductor. However ξS is often short:
For example in aluminum films ξS ∼ 100 nm due to disorder
effects. If ξM is predominantly set by the properties of induced
superconductivity in the normal region, ξM must also be
independent of �, since it is a property of the eigenvectors
of Eq. (9) at E = 0.

If the semiconductor has a cross section W , effective
electron mass mn, and it is coupled to the superconductor
by an interface with transparency T , then the Thouless energy
equals

ETh = T Nδ, δ ≡ h̄2π2

2mn(2W )2
, (11)

where N is the number of transverse bands occupied in the
semiconductor, and δ is the typical interband spacing. The
denominator of the expression for δ contains 2W since it
is the total distance traveled by a quasiparticle normal to
the interface between two consecutive Andreev reflections.
We focus on the experimentally relevant low-density regime
when N ∼ 1. In realistic nanowires mn ∼ 10−2me, and W ≈
100 nm, resulting in δ ≈ 1 meV, much larger than the super-
conducting gap in aluminum �Al ≈ 0.2 meV, which justifies
the short-junction approximation for sufficiently transparent
contacts T � 0.1.

In order for the spectral gap to close in the normal
region—or, in other words, for a topological phase transition to
appear—the scattering matrix Se must change byO(1) since, in
the presence of time-reversal symmetry, all the Andreev bound
states have the same energy E = �. For the Zeeman field to
cause such a perturbation, the electron spin must precess by a
large angle during the propagation inside the scattering region.
This results in a condition EZτdw/h̄ ∼ 1, or equivalently

B∗ ∼ ETh/gμB, (12)

with g the effective gyromagnetic factor and μB the Bohr
magneton.

The orbital effect of the magnetic field causes an additional
time-reversal symmetry breaking perturbation to the normal
scattering region. It becomes significant [causes an O(1)
change of Se] when the flux penetrating the scattering region
becomes comparable to the flux quantum �0 = h/e. This
defines another scale of the magnetic field, characterizing the
importance of its orbital effect Borb ∼ h/eW 2. Comparing Borb

with B∗ we get

Borb

B∗
∼ gμBmn

eh̄T N
. (13)

If transparency is high and the number of modes is low, then
the relative strength of the orbital and Zeeman effects of the
magnetic field is a material parameter dependent on the g

factor and the effective mass. For realistic materials this factor
is O(1), which is in line with our results in Secs. VII and VIII.

Turning to the spatial extent of the MBS ξM , we observe
that it must diverge in the topological regime in the absence
of spin-orbit coupling. The spectral gap at a finite momentum
appears already in the first order perturbation in spin-orbit
strength α, and hence ξM ∼ α−1. Finally, in the optimally tuned
situation N ∼ 1, and B ∼ B∗, so that SN only depends on two
energy scales: δ and the spin-orbit energy ESO = mnα

2/2h̄2.
This means that there is only a single length scale inversely
proportional to α, the spin-orbit length lSO = h̄/mnα, and
hence ξM ∼ lSO.

The scattering approach highlights another important prop-
erty of the Majorana phase diagram, the relation between T

and the oscillatory behavior of B∗. If T ∼ 1, there is little
scattering at the NS interface, and τdw becomes a smooth
function of the chemical potential μ. Combining this with
Eq. (12) we conclude that B∗ must also depend on μ in a
smooth fashion. In the opposite limit T � 1, ETh reduces on
resonance, when μ matches the bottom of a subband in the
semiconducting region. Away from the resonance, when there
are no available states at the selected energy, ETh becomes
very large. This behavior of Thouless energy results in the
appearance of a sharp minimum in B∗ whenever μ matches the
bottom of a new band in the semiconductor region. In Sec. IV
we confirm the relation between the interface transparency and
the oscillatory nature of the Majorana phase boundary.

These findings are different from the predictions of a purely
1D phenomenological model [6,7] with the Hamiltonian

H1D =
(

p2

2mn

− μ + α

h̄
σyp

)
τz + �′τx + EZσz, (14)

where the induced superconductivity enters as a phenomeno-
logical pairing term �′, and the momentum p is limited to a
direction along the nanowire. The induced gap follows from
a perturbation theory in the weak coupling limit between
the semiconductor and the superconductor. Therefore the
phenomenological model is not directly applicable to the
strong coupling regime for highly transparent junctions. The
Hamiltonian H1D undergoes a topological phase transition
when E2

Z = �′2 + μ2, and therefore B∗ explicitly depends
on �′. This difference, however, is due to the shortcomings of
the effective model, and in reality our conclusions also hold
in the weak-coupling/long junction limit. In the long junction
limit �′ ≈ ETh, immediately leading us to the conclusion that
B∗ and ξM are independent of the intrinsic superconducting
gap �. If a long junction is transparent T ∼ 1, then the Fermi
momentum drops out of the level quantization condition, hence
resulting in the lack of oscillations of B∗ as a function of μ.
Finally, the rest of our conclusions follow in a similar fashion
for the long junctions from the dimensional analysis of Eq. (14)
after the identification �′ ∼ ETh.
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(a)

(b)

FIG. 1. (a) Nanowire with width W oriented along the x direction
and coupled to a bulk superconductor. The magnetic field is parallel to
the wire, while the Rashba electric field points along the z direction.
(b) Semiclassical bound state trajectory in the two-dimensional
nanowire. Electrons (solid blue) and holes (dashed red) specularly
reflect at the boundary with vacuum and undergo Andreev reflection
at the interface with the superconductor. Two types of bound states
are shown: at finite longitudinal momentum kx (left) and vanishing
momentum kx = 0 (right). The induced gap may only close at kx = 0.

IV. MODEL

A. General solution
To verify our general arguments, we consider a specific

model, a semiconductor nanowire in contact with a large
superconductor. We consider the effective superconductor
thickness to be infinite, unlike the typical experimental
situation where the superconductor thickness is around
10 nm. This limit is nevertheless a reasonable approximation
due to the large Fermi surface size mismatch between
the superconductor and the semiconductor. A much larger
Fermi surface in the superconductor means that most
electron trajectories approaching the nanowire from the
superconductor side must be reflected back. Full internal
reflection in combination with diffuse scattering allows the
superconductor to accommodate quasiparticle trajectories
much longer than the superconducting coherence length
ξS = h̄vs,F /�, making the superconductor effectively infinite.

We first consider the device geometry shown in Fig. 1.
The nanowire is oriented along the x axis, NS interface is
at y = 0, and the outer boundary of the wire is at y = W .
The superconductor occupies the half-space y < 0. Neglecting
the orbital effect of the magnetic field makes the motion in
z direction separable and reduces the problem to a purely
two-dimensional geometry, shown in Fig. 1(b).

The normal state Hamiltonian of the system is that of a
Rashba two-dimensional electron gas coupled to a material
with negligible spin-orbit interaction and Zeeman coupling
[29]:

H =
[

p
1

2m(y)
p − μ(y)

]
σ0 + 1

2h̄
{α(y),σ × p} · ẑ

+EZ(y)σx. (15)

Here σ are the spin Pauli matrices and p the momentum
operator. The chemical potential μ and effective mass m are

μ(y) =
{
μn, y ∈ (0,W )
μs, y < 0 , m(y) =

{
mn, y ∈ (0,W )
ms, y < 0 .

(16)

Additionally, we neglect the spin-orbit coupling and the
magnetic field effect in the superconductor, therefore restrict-
ing the model to B � Bc, with Bc the critical field of the
superconductor:

α(y) = α(y)(W − y), EZ = gμBB

2
(y)(W − y),

(17)

with  the Heaviside step function and α, the Rashba spin-orbit
coupling strength. The spin-orbit term in Eq. (15) is sym-
metrized using anticommutators to ensure current probability
conservation at the interface. The Zeeman energy EZ is due
to a magnetic field of magnitude B oriented along the wire
direction. The effective electric field generating the Rashba
spin-orbit coupling is ER = 2mnα/h̄gμBẑ. To compare the
short-junction approximation with exact diagonalization re-
sults, we use the Bogoliubov-de Gennes (BdG) Hamiltonian:

HBdG =
(

H (B) �(y)
�(y) −H (−B)

)
, (18)

with �(y) = �(−y). The choice of a step-function pairing
potential is justified due to a density of states mismatch
between the superconductor and semiconductor by more
than 106, which renders the self-consistency condition on �

unimportant.
To make further analytical progress, we neglect the spin-

orbit coupling in the y direction ασxpy . This is a valid
simplification since in semiconductor nanowires the spin-orbit
length lSO is usually larger than the nanowire width W . We
later verify the validity of this approximation by computing
the exact expression for the topological phase boundary and
by including the transverse spin-orbit coupling in all the
tight-binding simulations.

The wave function ψn(kx,y) in the nanowire satisfies the
boundary condition ψn(kx,W ) = 0 and has the general form

ψn = u+c+ sin[k+(W − y)] + u−c− sin[k−(W − y)], (19)

with

u+ = 1√
2

(
1

eiϕ

)
, u− = 1√

2

(
e−iϕ

−1

)
, (20)

eiϕ = EZ − iαkx√
E2

Z + α2k2
x

,

and c± unknown amplitudes. The wave function in the
superconducting lead has the form

ψs =
(

ain,↑eiqy + aout,↑e−iqy

ain,↓eiqy − aout,↓e−iqy

)
, (21)

with ain the amplitudes of the incoming modes, aout the
amplitudes of the outgoing modes, and the relative signs
chosen to ensure that the incoming and outgoing modes are
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time reversed of each other. Finally, the momenta q and k±
normal to the NS interface are fixed by the dispersion relation
at energy E:

q =
[

2ms

h̄2 (E + μs) − k2
x

]1/2

,

(22)

k± =
[

2mn

h̄2 (E + μn ∓
√

E2
Z + α2k2

x) − k2
x

]1/2

.

We use the wave function continuity at y = 0 as well as the
current conservation condition on the wave function derivative
normal to the interface, in the y direction:

m−1
n ψ ′

n(kx,0) = m−1
s ψ ′

s(kx,0). (23)

Solving for c± and aout for given ain we obtain the scattering
matrix:

Se = 1

2

(
(r+ − r−)eiϕ r+ + r−
−r+ − r− (r− − r+)e−iϕ

)
, (24)

with the reflection phases of different spin projections given
by

r± = vs − iv± cot(k±W )

vs + iv± cot(k±W )
. (25)

Here we introduced the transverse velocities vs = h̄q/ms in
the superconductor lead and v± = h̄k±/mn in the nanowire.

The scattering matrix holds generally at energies below
the superconducting gap |E/�| < 1. In the short-junction
approximation, Se is evaluated at Fermi energy E = 0. Then
the Andreev bound spectrum follows immediately upon
solving the eigenvalue problem (9):

E = ±�

√
1 − 1

4
|r+(kx) − r−(kx)|2 cos2(ϕ). (26)

This dispersion relation admits no zero energy solutions for
kx �= 0 and α �= 0. The parameters values yielding E(kx =
0) = 0 are the topological phase transitions, and they occur
when

(r+ + r−)|kx=0 = 0. (27)

In the derivation of the Andreev spectrum (26) we neglected
the effect of spin-orbit interactions in the y direction since
W � lSO. For completeness, we analyze the impact of this
spin-orbit coupling on the condition for gap closing at kx = 0.
In the presence of transverse spin-orbit coupling, one needs to
take into account the Hamiltonian (15) including the ασxpy

term. Then the boundary condition at the NS interface needs
to be modified in order to ensure the current conservation.
Integrating the Schrödinger equation near the interface y = 0
yields:

1

m(y)
pyσ0ψ(y)

∣∣∣∣
0+

0−
+ α

h̄
σxψ(0) = 0. (28)

Since at kx = 0, the Hamiltonian (15) commutes with σx ,
the scattering states in the semiconductor region are also
eigenstates of σx . Matching the wave functions at the NS
interface and solving the scattering problem results in a
condition for closing the excitation gap identical to Eq. (27)

but with the modified scattering phases r± (25):

k± =
[

2mn

h̄2 (E + μn + ESO ∓ EZ)

]1/2

, ESO = mnα
2

2h̄2 .

(29)

For our parameter choice ESO ≈ 40 μeV and is more than
two orders of magnitude smaller than δ. This confirms that
spin-orbit dynamics in y direction is negligible.

B. Typical physical parameters of the heterostructure

To consider a specific example of the system parameters we
take InSb nanowires [30] with effective mass mn = 0.015me

(here me is the free electron mass) and with spin-orbit length
lSO = h̄2/mnα ≈ 250 nm. The superconductor in the hetero-
junction is aluminum, with ms ≈ me and chemical potential
μs = 11.7 eV. A thin Al film has the bulk superconducting gap
� = 0.25 meV and the critical magnetic field Bc that varies
from around 1.5 T to 2 T.

While most of our results scale trivially with W , we
choose W = 100 nm whenever it is necessary to compare the
magnetic field or chemical potential scales to the experimental
parameters. This results in δ ≈ 0.6 meV � �, well within the
requirements of the short-junction approximation.

C. Modeling the NS interface

The final crucial parameter of the hybrid system is the
transparency of the NS interface. In the model Hamiltonian
(15) the interface properties are set by the velocity ratio v±/vs ,
the only way the superconductor Hamiltonian parameters enter
the scattering matrix (25). We use the vs as a free parameter
allowing us to study the effect of the interface properties on
the topological phase diagram.

While the Fermi energy difference between aluminum and
the semiconductor may span several orders of magnitude, the
Fermi velocities do not differ so much because of a smaller
effective mass in narrow band semiconductors. Specifically,
the Fermi velocity in aluminum is vs ∼ 2 × 106 m/s, while
v± ∼ 2 × 105 m/s at a relatively low μn = 3 meV, resulting in
T � 0.4. In real systems, the microscopic interface properties
such as coupling strength and charge accumulation further
influence the interface transparency. In the absence of a Schot-
tky barrier, extra charge density at the interface smoothens the
sharp change in velocity between the semiconductor and the
superconductor and further enhances the transparency.

Transparency of the NS interface is hard to measure
experimentally due to the complicated geometry of the normal
metal-nanowire-superconductor samples. The experiments
using high � superconductors such as NbTiN are in a long
junction regime allowing us to estimate T because the induced
superconducting gap is ≈ T δ. On the other hand, tunneling
spectroscopy only provides a lower bound on the transparency:
T � �/δ in the short-junction regime.

To explore the impact of interface transparency on the MBS
properties we adopt two choices of vs : the highly transparent
interface corresponding to vs ≈ v± and an interface with
a finite transparency where we fix the value of μs to a
constant. For convenience we choose an anisotropic mass
in the superconductor ms,y = mn, ms,x = m‖ � mn, so that
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μs = μn results in a perfect transmission at a kx = 0 and
B = 0. The condition m‖ � mn ensures that vs only weakly
depends on kx , as it should due to the Fermi surface in the
superconductor being much larger than in the semiconductor.
In most calculations we use m‖ = 10 mn, however our con-
clusions are not sensitive to this choice (see Appendix A for
details). Adapting the calculations of Sec. IV A to the case of
anisotropic mass and transparent limit yields the same result
for the excitation spectrum (26), up to replacing the transverse
momentum q in the superconductor with

q =
[

2mn

h̄2 μs − mn

m‖
k2
x

]1/2

. (30)

D. Comparison with tight-binding dispersion simulations

To verify the correctness of the spectrum in the short-
junction limit, Eq. (26), we compare the analytical expressions
with dispersion relations calculated using a Hamiltonian (15)
discretized on a square lattice with lattice constant a = 0.5 nm
and simulated using Kwant package [31]. We first numerically
obtain the scattering matrix Se(kx) of the normal region and
use it as an input to Eq. (9) to obtain the dispersion relation of
the hybrid system.

A further comparison is provided by modeling the hybrid
system using the full BdG Hamiltonian (18) and calculating
several eigenstates closest to the Fermi level. In this case,
the junction remains infinite along the wire, but instead of a
superconducting lead, we attach a large superconductor with
width WSC ≈ 9 μm � ξS.

A comparison between analytics and the two numerical
methods at a fixed chemical potential is shown in Fig. 2 and
shows nearly perfect agreement between different methods.
Slight deviations of exact diagonalization results occur near
the bulk gap, caused by corrections to the short-junction
approximation.
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ED kx = 0.

SJN kx = 0.25
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FIG. 2. Comparison of the Andreev spectra of a transparent
NS junction between analytical short-junction predictions (SJT),
numerical short-junction results including the spin-orbit interaction
in the y direction (SJN), and exact diagonalization of the BdG
Hamiltonian (18) (ED). The system parameters are chosen as in
Sec. IV B and IV C. The longitudinal momentum is either kx = 0
(red), or finite such that the spectrum stays always gapped (blue).
Momentum kx is in units k0

F =
√

2mnμn/h̄
2, and μs = μn = 3 meV.
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FIG. 3. The Andreev spectrum and the topological index Q (31)
as a function of magnetic field. Trivial phase hasQ = +1, topological
phase Q = −1. The junction is in the transparent regime with μs =
μn = 3 meV.

V. ANALYSIS OF THE TOPOLOGICAL PHASE DIAGRAM

A. Phases boundaries and the spectral gap

Equation (27) yields the closing of the spectral gap and the
topological transitions in the model. This allows us to define
the topological invariant of the Hamiltonian as

Q = sign[Im(
√−r∗−r+)]|kx=0, (31)

where the sign of the square root is fixed by the analytic
continuation and chosen such that Q = 1 in the trivial state. A
typical spectrum at kx = 0 as well as Q for a fixed μ is shown
in Fig. 3.

In addition to identifying the topological phase boundaries
for each set of parameters (B,μn) we calculate the spectral gap

�spec = min
kx

|E(kx)|, (32)

with E(kx) given by Eq. (26). The minimization is carried over
all kx present in the superconductor. In general, the dispersion
relation has several local minima, as shown in Fig. 4, with the
total number of minima approximately equal to the number of
transverse modes in the normal region.

The resulting topological phase diagram of a transparent
junction (with μs = μn) is shown in Fig. 5. For typical junction
parameters (as described in Sec. IV B) gμBBc ≈ 9δ, and the
phase diagram for higher field values does not apply to such
junctions. The minimal value of the critical field in this phase
diagram corresponds to B∗ ≈ 0.7 T. Near the topological
phase transitions �spec = �0, the spectral gap at kx = 0 (see
Fig. 4), and it varies linearly with the distance ε from the phase
transition either along the μ or EZ axis:

�spec = �0 ∼ �
ε

δ
. (33)

Deep in the topological phase, �spec is limited by the gap �1 at
kx ≈ kn,F (see Fig. 4), similar to the phenomenological model
of Eq. (14). Since �spec must vanish linearly with α in this
regime, we get

�spec = �1 ∼ �

√
ESO

δ
. (34)
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−kF 0 kF

kx

0

Δ1

Δ0

Δ

E

FIG. 4. A schematic of the dispersion relation of the junction for
typical parameters. The dispersion relation near local minima �0 and
�1 of the Andreev state energy is well approximated with a gapped
Dirac dispersion relation, with Dirac cones marked with dashed lines.
When the number of available modes in the semiconductor increases,
the number of minima at finite momenta grows, but the outermost
minimum stays located approximately at kx = kn,F .

In both estimates we assumed μ ∼ EZ ∼ δ and T ∼ 1.
Comparing Eqs. (33) and (34) we find the energy scale for
the transition between the two behaviors ε∗ ∼ √

ESOδ.
The most unusual feature of the topological phase diagram

in Fig. 5 is the smooth behavior of the topological phase
boundary, different from the hyperbolically-shaped boundary
E2

Z > �′2 + μ2 of the phenomenological models [6,7,22].
This difference appears not due to the short-junction limit—
since the magnitude of the gap does not impact the topological
phase boundary—but rather because of the high interface
transparency. The inset in Fig. 5 shows the shape of the
topological phase boundary where we have reduced the
transparency by fixing μs at a high value. We find that in

FIG. 5. The spectral gap times the topological index Q�spec/� ∈
(−1,1) as a function of chemical potential μ and magnetic field B.
Here we consider a transparent NS interface μ = μs = μn and an
anisotropic mass in the superconductor m‖ = 10 mn, m⊥ = mn. The
phase boundaries Eq. (27) are given by continuous red lines. The
central region of the phase diagram is the topological phase Q = −1.
The inset shows the phase boundaries in a similar parameter range
for a junction with μs = 11.7 eV, ms = 0.015 mn resulting in a low
interface transparency.

this case the phase boundary has a hyperbolic shape predicted
by the phenomenological model.

B. Decay length of MBS

Exact evaluation of the MBS decay length starting from
Eq. (26) is not possible because the spectrum in the short-
junction approximation does not correspond to a local Hamil-
tonian (the same fact manifests in the complex nonlinear
dispersion of the Andreev states). Nevertheless, the decay
length is approximated well by assessing the contributions of
different local minima of the dispersion relation, as shown in
Fig. 4. A gapped Dirac cone with velocity v and gap � results
in a wave function decay length ξ = h̄v/� at E = 0. The size
of the MBS ξM is set by the slowest decaying component of
the wave function or the largest ξ .

Once again, it is instructive to estimate ξ using scaling
arguments in two regimes: near a topological transition and
deep in the topological phase. At the phase transition point
the slope of the Dirac cone at kx = 0, v0 ∝ α since without
spin-orbit coupling the band touching at kx = 0 must have a
parabolic shape. Since the bulk superconductor gap � must
enter the spectrum only as an overall prefactor, we get

h̄v0 ∼ �W 2

lSO
, ξ0 = h̄v0

�0
∼ W 2δ

lSOε
. (35)

The velocity at the outermost Dirac point must not depend on
α, resulting in

h̄v1 ∼ �W, ξ1 = h̄v1

�1
∼ lSO. (36)

The two length scales ξ0 and ξ1 become equal at ε ∼ ESO �√
ESOδ = ε∗.
We obtain the behavior of ξ in the tight-binding simulations

using Kwant [31] for the same parameters as in Fig. 5. In order
for the self-energy to become local in the x coordinate we
neglect the transverse dispersion in the superconductor and set
m‖ = ∞. We then integrate out the superconductor and add a
self-energy to the semiconductor. Finally, similar to Ref. [32]
we perform an eigendecomposition of the translation operator
in the x direction at zero energy to obtain the evanescent waves
ψ ∝ e−κx , with κ the eigenvalue of the translation operator.
The largest decay length is:

ξ = max Re[κ]−1, (37)

where the maximum is taken over all the eigenvalues. Then
in the topological phase ξM = ξ . The results are presented
in Fig. 6. The divergence in decay lengths seen in Fig. 6
corresponds to topological transitions identical to the ones
found in Fig. 5. Figure 6 also confirms that ξM saturates at
a distance ε ∼ ESO away from that phase transition (here
ESO ≈ 40 μeV).

We now refine the scaling arguments of Eqs. (35) and (36)
by using Eq. (26). In particular, near the topological transition,
the decay length is determined by the spectral gap �0 and the
velocity h̄v0 = |∂E/∂kx |�0=0,kx=0:

�0 = �

2
|r+ + r−|kx=0, (38)
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FIG. 6. The largest decay length of subgap modes in units of wire
width W , as a function of chemical potential μ and magnetic field B.
At the topological transitions the decay length rapidly diverges. The
junction is in a fully transparent regime with μn = μs and m‖ = ∞
in the superconductor.

with Fermi velocity

h̄v0 = α�

EZ

. (39)

Therefore the MBS decay length ξM is inversely proportional
to the magnetic field and spin-orbit length near the Majorana
phase transitions.

Deep in the topological phase it is more difficult to obtain
a closed form approximation for the decay length. Instead, we
find the Fermi momentum and the spectral gap by performing
numerical minimization of the energy dispersion (26). The
Fermi velocity near kF �= 0 follows immediately:

h̄v1 = �

2

∂

∂kx

|r+ + r−|α=0,kx=kF
. (40)

Taking the ratio (36), it follows that the MBS decay length
does indeed grow linearly with magnetic field and spin-orbit
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FIG. 7. Scaling behavior of the MBS decay length ξM deep in
the topological phase. Comparison between symbolic calculation of
the decay length from the linearization of the energy dispersion
(26) (blue lines) and the numerical calculation of the slowest
decaying mode Eq. (37) (red markers). (a) The decay length has
a linear dependence with magnetic field B deep in the topological
region, μ = 3 meV. (b) Linear dependence with spin-orbit length
lSO = h̄2/mα. The magnetic field is B = 1.5 T and chemical potential
μ = 3 meV.

length deep in the topological phase [see Fig. 7], in qualitative
agreement with the numerical calculation using Eq. (37).

Our results for the scaling of ξM with B and lSO agree with
the predictions of the phenomenological 1D model both near
the topological transition or deep in the topological phase (see,
e.g., Ref. [33]), but we find no dependence of ξM on �.

VI. SPECTRUM OF FINITE LENGTH JUNCTIONS

To directly verify the existence of a MBS and the
applicability of the short-junction limit to our system, we
solve the discretized BdG Hamiltonian of a large rectangular
system with a finite superconductor. The system is divided
into semiconductor and superconductor regions, both modeled
by the BdG Hamiltonian (18). The length of the system
is L = 3 μm, sufficiently long to ensure that the overlap
between MBS is small. Further, we choose the width of
the superconductor sufficiently large WSC = 1.4μm ≈ 2 ξS.
The lattice constant in the tight-binding simulation is 10 nm.
Finally, the remaining model parameters are chosen according
to Sec. IV B and Sec. IV C. We determine numerically several
lowest energy states and compare them with �spec calculated
in Sec. V, as shown in Fig. 8.

We observe that the energy of most subgap states is bounded
from below by an energy slightly lower than �spec, as expected
close to the short-junction regime. At B > B∗ ≈ 1 T the
system enters a topological regime and states with E � �spec

formed by two coupled MBS appear. The coupling of these
states decays exponentially with the size of the nanowire L.
Finally after the system undergoes the second gap closing
and enters the trivial phase at B ≈ 3 T additional low energy
states appear due to the presence of chiral symmetry of
the Hamiltonian (15) [34–36]. We therefore conclude that
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FIG. 8. Comparison between the predictions of the analytical
short-junction approximation and a numerical spectrum of a finite
NS junction. Solid line: �spec calculated using Eqs. (26) and (32) as a
function of magnetic field. Dotted lines: 10 lowest energy states in a
finite size NS junction using the same parameters. The magnetic field
is in units of 2δ/gμB , with level spacing δ defined in Eq. (11). The
junction is in a transparent regime, the superconductor has anisotropic
mass m‖ = 10mn, and the rest of parameters are as specified in
Sec. IV B. At a single end of the nanowire, there is only one MBS
in the topological phase (1 T � B � 3 T, for semiconductor width
W = 100 nm) and two in the trivial phase at high field, due to the
chiral symmetry.
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(a) (b)

FIG. 9. (a) A cross section of a NS hybrid junction. The magnetic
field is parallel to the wire axis, while the Andreev bound state
trajectories are confined to the nanowire surface. (b) The equivalent
two-dimensional system defined on the plane (x,θ ). Since we neglect
the possibility for electrons to tunnel through the superconductor, we
consider the superconducting leads at θ < 0 and θ > θ0 infinite.

our calculations fully apply to finite nanowires in the short-
junction regime.

Furthermore, we verify in Appendix B using exact diag-
onalization that the critical field B∗ is indeed independent
on the superconducting gap �. With increasing � above
ETh ≈ 1 meV the system exits the short-junction regime.
Nevertheless, the critical magnetic field stays constant, in
agreement with the proof of Sec. III.

VII. ORBITAL FIELD EFFECT IN THIN SHELL
APPROXIMATION

We now turn to evaluate the consequences of the orbital
effect of the magnetic field, known to strongly influence MBS
properties [32,37–39], in the short-junction limit. This effect
does not manifest in the model of Sec. IV when magnetic field
points in the x direction. To include the orbital effect we use
a thin shell approximation, when the electron wave function
in the semiconductor is confined to its surface, similar to the
system studied in Ref. [38]. However unlike Ref. [38] we
do not assume a constant induced gap and consider instead
the nanowire contacted by a bulk superconductor, as shown
in Fig. 9. We model the coupling to the superconductor as
two infinite planar superconductors on each side of the 2D
uncovered wire section. By doing so we neglect the possibility
for electrons to tunnel through the superconductor to the other
side of the uncovered section, which is justified by the density
mismatch between the superconductor and the semiconductor.
The thin shell limit is oversimplified and it overestimates
the orbital effect of a magnetic field, however it provides an
upper bound on the impact of the orbital effect and remains
analytically tractable.

The superconductor covers the wire over an angle 2π − θ0,
while both the wire and the superconductor are translationally
invariant in the x direction. In cylindrical coordinates (x,θ ) the
electron Hamiltonian on the nanowire surface reads:

H =
[
p2

θ + p2
x

2m
− μ

]
σ0 − α

h̄
pxσy + EZσx, (41)

with pθ = −ih̄R−1∂/∂θ and R the radius of the nanowire.
We assume that the magnetic field is fully screened from
the superconductor and choose a gauge where the vector
potential A = 0 in the uncovered part of the surface, while
the two superconducting leads have a phase difference φ =
(2e/h̄)πBR2. Compared to the previous sections where the

treatment was more general, we assume from the start the
transparent junction limit, when Fermi velocities at kx = 0 are
identical in the superconductor and the semiconductor and we
also neglect the spin-orbit coupling in the transverse direction,
as appropriate for lSO � Rθ0.

We solve the scattering problem in the basis of conserved
spin projections set by Eq. (20) corresponding to the basis of
incoming and outgoing modes:

aT = (a+
L ,a−

L ,a+
R ,a−

R ), bT = (b+
L ,b−

L ,b+
R ,b−

R ), (42)

with a and b the amplitudes of incoming and outgoing modes,
R denoting the modes at θ � 0, L the modes at θ � θ0, and ±
superscript corresponding to the two conserved spin directions
(20). For each spin projection the scattering matrix is given by
the classic result for transmission through a potential barrier:

S± =
(

r± t±
t± r±

)
, (43)

with

r± = (q2 − k2
±) sin(k±L)

(q2 + k2±) sin(k±L) + 2iqk± cos(k±L)
,

(44)

t± = 2iqk±
(q2 + k2±) sin(k±L) + 2iqk± cos(k±L)

,

with momenta k± and q defined by Eq. (30). We then transform
the scattering matrix to the basis of time-reversed modes (21)
and calculate the Andreev spectrum using Eq. (9) with the
phases of superconducting leads equal to φR = 0 and φL = φ.
We verify again that the dispersion relation obtained this way
agrees well with two numerical tight-binding simulations at
fixed chemical potential and that the difference also stays small
if we include spin-orbit coupling in the transverse direction
[see Fig. 10(b)]. As before, the spectrum is generically gapped
except at kx = 0, where topological phase transitions occur.

The resulting Majorana phase diagram is shown in
Fig. 10(a), and it consists of several narrow topological regions
centered around φk = (2k + 1)π with k integer. At these values
of magnetic field, the two superconducting leads have a phase
difference of π , thus fully suppressing the induced gap in the
transparent limit. The Zeeman field then opens a topological
gap resulting in a finite extension of the topological phases
around φk . We conclude that in the thin shell limit, the orbital
effect of the magnetic field reduces B∗ by a factor ∼10 for
typical junction parameters (we once again note that the thin
shell limit overestimates the orbital effect of the magnetic
field). Despite that, it is the Zeeman field responsible for
opening the topological gap.

VIII. NUMERICAL STUDY OF A THREE-DIMENSIONAL
NANOWIRE

To confirm our findings in a model with a more realistic
geometry, we numerically calculate the phase diagram of a
three-dimensional nanowire in the short-junction limit. The
system consists of a semiconductor nanowire infinite in the x

direction and with a square cross section contacted by a bulk
superconductor occupying y < 0 half space [see Fig. 1(a)].

Due to the large Fermi surface mismatch between the
superconductor and the semiconductor we neglect the electron
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FIG. 10. (a) Majorana phase diagram Q�spec of a transparent
NS junction with μs = μn = μ, ms,x = m‖, ms,y = m, mn = m, and
m‖ = 10m, as a function of chemical potential and magnetic field.
The covering angle is θ0 = 2 rad, so that the width of the uncovered
section Rθ0 is equal to the wire diameter. (b) An example of Andreev
spectrum at kx = 0, μn = μs = 3 meV, and other parameters the
same as in (a) in the presence and absence of the orbital effect.
Panel (b) additionally presents a comparison between short-junction
theoretical (SJT), numerical (SJN), and exact diagonalization (ED).
The theoretical spectrum without orbital effect (NO) is in gray. The
magnetic field is in units of 2δ/gμB with δ = h̄2π 2/2mR2θ 2

0 .

dispersion in the x and z directions in the superconductor.
Therefore, following Sec. IV B we set ms,y = mn = 0.015me

and ms,x = ms,z = ∞. Since the semiconductor modes with
different values of kz have different interface transparencies,
we cannot ensure a transparent interface for all the modes and
instead fix μs = 8 meV while varying μn ≡ μ. The remaining
system parameters are specified in Sec. IV B.

The model Hamiltonian is a three-dimensional generaliza-
tion of Eq. (15) discretized on a cubic lattice. We include the
orbital effect of the magnetic field using Peierls substitution
in the gauge A = (0,0,By(y))T . This ensures that the vector
potential is constant in the x direction and that it vanishes at
the interface with the superconductor.

We calculate the excitation spectrum using Eq. (9) to find
�spec by minimization over kx . The resulting phase diagram
of �spec is shown in Fig. 11. Comparing the top panels of
Fig. 11 with Fig. 5 we observe the two sharp minima of B∗(μ).
These correspond to the appearance of the additional bands
with a different value of kz and a minimum in the interface
transparency [40].

0

5

10

15

μ
[m

eV
] (a)

no orb, W = 100 nm

(b)
no orb, W = 120 nm

0.0 0.2 0.4 0.6 0.8 1.0

B [T]

5

10

15

μ
[m

eV
] (c)

orb, W = 100 nm

0.0 0.2 0.4 0.6 0.8 1.0

B [T]

(d)
orb, W = 120 nm

0.0

0.2

0.4

0.6

0.8

1.0

Δ
sp

e
c
/Δ

FIG. 11. Spectral gap �spec/� dependence on chemical potential
μ in the nanowire and magnetic field B of a square nanowire without
(top panels) and with (bottom panels) orbital effect of the magnetic
field. Panels (a), (c) show results for wire section 100 nm × 100 nm,
while (b), (d), for 120 nm × 120 nm. The white box in the right panels
shows the same parameter range rescaled by a factor (100/120)2 to
highlight the W 2 scaling of the phase diagram.

Similar to our observations from Sec. VII, the orbital effect
of the magnetic field has a strong effect on the shape of
the topological phase boundaries and reduces both �spec and
B∗ similar to the thin shell simulations. Increasing the cross
section of the wire [Figs. 11(a), 11(c), against 11(b), 11(d)]
confirms that in 3D the critical fields preserve the scaling with
B∗ ∼ 1/W 2 independent of the presence or absence of orbital
effects.

IX. CONCLUSIONS AND OUTLOOK

We have studied the impact of a small superconducting gap
on the properties of MBS in semiconductor-superconductor
junctions. The short-junction formalism, appropriate for this
limit, allows us to draw universal conclusions about the MBS
properties. Contrary to the intuitive expectations, we show
that the reduction of the superconducting gap does not alter
the Majorana phase diagram and does not change the size of
the MBS. We therefore conclude that in most practical systems
the superconducting gap should not be used as an important
parameter in optimizing MBS properties.

On the other hand, we find that the transparency of the
semiconductor-superconductor boundary has an important and
previously overlooked effect on the Majorana phase diagram.
An interface with T ≈ 1 produces a phase boundary between
trivial and topological phases which depends weakly on the
chemical potential. This is in contrast to T � 1, used in most
prior research, that results in the critical magnetic field having
an oscillatory dependence on chemical potential with minima
corresponding to the opening of a new band.

Orbital effect of magnetic field plays a dual role: It reduces
the critical magnetic field as well as the spectral gap in
the topological regime. Contrary to the predictions of a
phenomenological model that assumes a constant induced gap,
we show that relative importance of magnetic field cannot be
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controlled by the superconducting gap or the diameter of the
nanowire.

Our findings suggest that creation of MBS in proximi-
tized two-dimensional electron gases laterally contacted by
a superconductor is a promising direction of further research.
In these systems the relative strength of the orbital and the
Zeeman effect of magnetic field is controlled by an extra tuning
parameter: the ratio between the semiconductor thickness and
its width. Additionally, the critical magnetic field in such
devices could be tuned using a side gate, effectively changing
the semiconductor width without altering the superconductor-
semiconductor interface transparency.

Another important further direction of research is the
interplay between junction transparency and disorder. Since
a transparent interface results in a weaker dependence of
the critical magnetic field on the chemical potential, it is
reasonable to conjecture that the sensitivity of MBS properties
to disorder is also reduced in the transparent regime.
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APPENDIX A: INTERFACE TRANSPARENCY
IN A TWO-DIMENSIONAL JUNCTION

The validity of the short-junction approximation depends
on NS interface transparency T . In this section, we review
the transparency of a sharp interface between two materials
with a parabolic dispersion. We provide quantitative arguments
for the choice of anisotropic mass in the superconductor in
modeling a transparent interface.

We consider a planar NS interface with the boundary
located at y = 0, and both materials occupying a half-plane,
and solve the scattering problem as outlined in Sec. IV A. Also
following Sec. IV A, we neglect the spin-orbit scattering at the
interface, and use the boundary condition (23). At a given
energy E there are generally two modes in the semiconductor
and two spin-degenerate modes in the superconductor with
momenta in the y direction: k± and q, respectively:

k± =
[

2mn

h̄2 (E + μn ∓
√

E2
Z + α2k2

x) − k2
x

]1/2

,

(A1)

q =
[

2m⊥
h̄2 (E + μs) − m⊥

m‖
k2
x

]1/2

,

where we use the same notation as in Sec. IV A; the
superconductor has anisotropic mass (m⊥,m‖).

The transmission probabilities of two spin orientations (±)
follow immediately:

T± = 4

(√
v±
vs

+
√

vs

v±

)−2

, (A2)
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FIG. 12. Transmission probability of one of the spin polarizations
T− of an infinite NS junction. (a), (c), and (d) T− as a function of
magnetic field B in units of 2δ

gμB
, with δ defined in Eq. (11) and

parallel momentum kx (in units of k0
F =

√
2mnμn/h̄

2). The momenta
kx run over the Fermi surface of the semiconductor, which is marked
by the red line. (a) Using bare material parameters μn = 3 meV,
μs = 11.7 eV, ms = me, mn = 0.015me. (b) T− versus B and μn

at kx = 0 and the same parameters as in (a). (c) T− when the
chemical potential and mass are equal in the superconductor and
the semiconductor. (d) T− for anisotropic mass in the superconductor
(m‖,m), mn ≡ m = 0.015me, with m‖ = 10 m, μn = μs = 3 meV.
Only evanescent solutions exist in the white regions; transmission T−
becomes imaginary.

with vs = h̄q/m⊥ and v± = h̄k±/mn the velocities normal to
the interface in two materials. Both T+ and T− exhibit similar
behavior, except for T+ vanishing inside the helical gap. In
contrast, T− is always well defined at kx = 0 for μn > 0.
For concreteness, we illustrate the dependence of T− on the
Hamiltonian parameters.

Let us first start with realistic parameters both in the
superconductor and the semiconductor. The chemical potential
in the nanowire μn is gate tunable. We choose to fix it at 3 meV,
comparable to the level spacing in a nanowire. The rest of the
parameters are specified in Sec. IV B. The results are plotted in
Fig. 12(a), for all momenta in the semiconductor Fermi surface
and an experimentally relevant range of magnetic fields. The
transparency is mostly around 40% but rapidly vanishes near
the Fermi momentum. Modifying the chemical potential in
the wire does not appreciably increase the transparency [see
Fig. 12(b)]. The low transparency is artificial and due to the
choice of a sharp change in mass and chemical potential across
the interface.

Choosing m⊥ = m‖ = mn and μs = μn results in a
nearly perfect transmission at all angles, as shown in
Fig. 12(c). However, this parameter choice is also unphys-
ical since the semiconductor Fermi surface becomes larger
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than the superconductor one at any finite magnetic field.
Then the interface becomes opaque for higher momenta
kx . Finally, choosing μs = μn and an anisotropic mass in
the superconductor (ms,x,ms,y) = (m‖,mn) with m‖ � mn

results in an interface that stays transparent for all kx

[see Fig. 12(d)].

APPENDIX B: INDEPENDENCE OF CRITICAL
MAGNETIC FIELD ON THE SUPERCONDUCTING GAP

Here we verify the validity of our conclusions about the
scaling of the eigenenergies and the independence of B∗ on �

using exact diagonalization of a finite BdG Hamiltonian for
the semiconductor-superconductor heterostructure at different
values of the superconducting gap. We use the same setup of
a finite heterojunction modeled with the BdG Hamiltonian
(18) as in Sec. VI. We check the behavior of the critical
field and the bulk band gap by tracking the energy of the
second excited state while varying B for values of � ranging
from 40 μeV to 3 meV (almost two orders of magnitude).
Our results for a heterojunction of size 3000 nm × 6000 nm
with a normal region occupying 3000 nm × 100 nm are shown
in Fig. 13.

When � � ETh ≈ 1 meV the system transitions to the
long junction regime, so that the ratio �spec/� continues to
decrease, while �spec becomes almost independent on �. In the
opposite limit � � ETh, we observe that �spec/� tends to a
constant, in agreement with the short-junction limit prediction.
The field values B∗ where �spec vanishes stay almost constant,
with the residual variation due to the effect of a finite system
size and lattice constant.
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FIG. 13. The energy of the second excited state of a finite
nanowire junction calculated using exact diagonalization. Up to the
second topological phase transition it is a good approximation of the
induced gap. The eigenenergies are normalized to � in panel (a) and
unnormalized in panel (b). In the long junction regime the induced
gap tends to a constant, while in the short-junction regime the ratio
E/� tends to the analytical result derived for the short-junction limit.
The legend applies to both panels. The superconducting gaps � are
in meV.
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