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The interplay of spin-polarized electronic edge states with the dynamics of the host nuclei in quantum
Hall systems presents rich and nontrivial transport physics. Here, we develop a Landauer-Büttiker approach
to understand various experimental features observed in the integer quantum Hall setups featuring quantum
point contacts. The approach developed here entails a phenomenological description of spin-resolved interedge
scattering induced via hyperfine assisted electron-nuclear spin flip-flop processes. A self-consistent simulation
framework between the nuclear spin dynamics and edge state electronic transport is presented in order to gain
crucial insights into the dynamic nuclear polarization effects on electronic transport and in turn the electron-spin
polarization effects on the nuclear spin dynamics. In particular, we show that the hysteresis noted experimentally
in the conductance-voltage trace as well as in the resistively detected NMR line-shape results from a lack of
quasiequilibrium between electronic transport and nuclear polarization evolution. In addition, we present circuit
models to emulate such hyperfine mediated transport effects to further facilitate a clear understanding of the
electronic transport processes occurring around the quantum point contact. Finally, we extend our model to
account for the effects of quadrupolar splitting of nuclear levels and also depict the electronic transport signatures
that arise from single and multiphoton processes.
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I. INTRODUCTION

Nuclear spintronics concerns the manipulation of nuclear
spins by means of hyperfine interaction between the host
nuclei and the itinerant electrons and their read out using
electronic transport [1] or optical [2] measurements. Quantum
Hall geometries in both the integer [1,3–11] and the fractional
regime [12–16] featuring gated quantum point contacts (QPC)
offer a viable method for controlling the spin polarization
of the electronic edge channels. This in turn facilitates the
manipulation of the nuclear spins via a hyperfine mediated
interplay between the spin-polarized edge states and the
dynamics of the host nuclei. Such an interplay has revealed
rich and nontrivial transport physics in the form of hysteresis
in the observed conductance-voltage traces and nontrivial line
shapes in the resistively detected NMR (RDNMR) traces
[3–5,10,17]. Despite several advancements in the transport
experiments involving such setups, theoretical models for
hyperfine interaction mediated edge transport through the
QPC in the Hall geometry are clearly missing in the current
literature. The object of this work is hence to develop transport
models that couple the dynamics of the host nuclei with edge
channel electronic transport as an attempt to fill this gap and
theoretically interpret various experiments with specific focus
on the conductance-voltage traces [3] and the RDNMR line
shapes [11,18–25].

We develop our transport models based on a modified
Landauer-Büttiker formalism that includes a spin-flip trans-
mission coefficient, which is nuclear polarization dependent
and describes the rate of electron-nuclear spin flip-flops per
unit energy around the QPC region. Using this approach, we
show that the hysteresis noted in both the conductance and the
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RDNMR traces [3,11,18–25] results from a lack of steady
state between electronic transport and nuclear polarization
evolution and can be explained by taking into account the
finite rate of electron-nuclear spin flip-flops in a source limited
channel in addition to a finite nuclear spin-lattice relaxation
time. The self-consistent simulation framework between the
nuclear spin dynamics and the edge state electronic transport
developed here offers crucial insights into the dynamic nuclear
polarization effects on electronic transport and in turn the
electron-spin polarization effects on the nuclear spin dynam-
ics. In addition, we present circuit models to emulate such
hyperfine mediated transport effects for a clear understanding
of the phenomena occurring near the QPC. Finally, we also
address the effects of quadrupolar splitting of the nuclear levels
and depict the electronic transport signatures that arise from
single and multiphoton absorption processes [17].

This paper is organized as follows. In Sec. II, we briefly
detail the experimental setup and features that form our
current focus after which we spell out the generic formalism.
Specifically, in Sec. II B, a phenomenological model for
hyperfine mediated transport through the QPC is developed
in detail. Section III elucidates the results from the simulation
framework developed with the specific focus on explaining
the various experimental trends noted. Specifically, Sec. III A
is devoted to the understanding of the hysteritic conductance
voltage traces noted for different filling factors and Sec. III B
deals with the RDNMR line-shape features in great detail.

II. EXPERIMENTAL DETAILS AND THEORETICAL
DESCRIPTION

In the schematic of the experimental setup shown in
Fig. 1(a), an appropriately gated single QPC is utilized to
selectively filter out a single spin channel into the region
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FIG. 1. Experimental details. (a) Schematic of the spin channels propagating through the quantum Hall device with a single QPC for the
case G = e2/h. (b) Experimental traces (reproduced with permission from Ref. [3]) of the differential conductance dI/dV vs voltage V for
dI/dV > e2/h (top), dI/dV < e2/h (bottom) measured on a single QPC at T = 50 mK and B = 5.4 T. Solid curve: forward sweep, dashed
curve: backward sweep. Round-trip sweep time for each trace is 200 s. (c) Experimental traces (reproduced with permission from Ref. [11]) of
the Hall conductance change and hysteresis in the Hall conductance in a GaAs sample with RF frequency sweep measured at B = 2.9 T and
T = 30 mK.

beyond the QPC thereby creating an imbalance between the
up-spin channel and the down-spin channel. The principal
experimental signature here is the change in conductance with
voltage sweep near V = 0 [3] as shown in Fig. 1(b) as well
as the change in Hall resistance with RF frequency sweep
(also known as resistively detected NMR or RDNMR) [11] as
shown in Fig. 1(c). Along with the change in the conductance,
another feature that has attracted significant attention is the
hysteresis in the conductance plots during forward and reverse
voltage or RF frequency sweep as shown in Figs. 1(b) and
1(c), respectively. A compact theoretical model to elaborate the
physics of such a conductance modulation as well as hysteresis
occurring in the gated QPC set up forms the primary focus of
this work.

An accurate modeling of such phenomena involves taking
into account the details of wave-function correlations via the
density matrix approach [26]. Mathematical modeling of such
hyperfine mediated electron transport process self-consistently
with evolution of the nuclear polarization from the density
matrix formalism [26] is complicated and computationally
heavy. In this paper, we thus adapt a computationally effi-
cient phenomenological model to account for such hyperfine
mediated electronic transport through the QPC.

We now provide a theoretical description of the nuclear
spin dynamics coupled to the electronic transport following
which we focus on how to apply this to our specific set up.
We begin with the description of the nuclear spin dynamics
by formulating a master equation in the nuclear spin space
followed by the description of the extended Landauer-Büttiker
formalism for the edge state electronic transport.

A. Description of scattering processes

In order to describe the electron-nuclear hyperfine inter-
action, we start with the Fermi contact hyperfine interaction
Hamiltonian for the case with nonvarying electronic density
of states in space, given by [2]

ĤHF(rn) =
∑

n

Aeffψ
∗(rn)ψ(rn)a3

0

×
[

Ŝz ⊗ În
z +

{
În
+ ⊗ Ŝ− + Ŝ+ ⊗ În

−
2

}]
, (1)

where ψ(rn) represents the electron wave function at the
point rn, with ψ∗(rn)ψ(rn) representing the effective electron
density per unit volume at the point rn, Aeff is the effective
hyperfine coupling constant, Ŝz,Î

n
z are the operators repre-

senting the z component of the electronic spin and the nuclear
spin respectively, with a3

0 representing a unit cell volume.
The operator “⊗” represents the tensor product between the
electron spin and the nuclear spin spaces. The operators
Ŝ+(−) and Î n

+(−) are the corresponding spin raising (lowering)
operators for the electron and the nuclear spins, respectively.
The above equation assumes ψ↑(rn) = ψ↓(rn) = ψ(rn), where
“↑” and “↓” represents the eigenstates in the electron spin-
space. In the quantum Hall regime, however, the eigenstates
are localized in space along the transverse direction. In this
case, ψ↑(rn) �= ψ↓(rn) and thus the Hamiltonian should be
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recast in the form [27–29]

ĤHF(rn)

=Aeffa
3
0

∑
|φ,β〉〈ϕ,α|

〈φ,β|
[

Ŝz ⊗ În
z +

{
În
+ ⊗ Ŝ−+Ŝ+ ⊗ În

−
2

}]

× |ϕ,α〉 ×
∑

n

{〈ψβ |rn〉|φ,β〉〈ϕ,α|〈rn|ψα〉}, (2)

where |φ,β〉 = |φ〉 ⊗ |β〉 and |ϕ,α〉 = |ϕ〉 ⊗ |α〉 with |α〉 and
|β〉 belonging to the electron spin-space and |φ〉 and |ϕ〉
belonging to the nuclear-spin space in the presence of a
magnetic field pointing along the z direction.

When the coupling constant Aeff is small, the effect of the
two terms in (1) can be separated. The first term results in
an effective magnetic field and the second term within the
curly brackets represents the electron-nuclear spin flip-flop
processes. The first term in (1), which also corresponds to
|α〉 = |β〉 and |φ〉 = |ϕ〉 in (2) introduces an additional shift
in the electronic energy levels as well as between states of
different nuclear spins. The electronic energy difference �

between the up-spin channel electrons and the down-spin
channel electrons is given by [30]

� = gelμBBapp + Aeff〈Iz〉, (3)

where gel, μB , and Bapp are the effective Lande g-factor of
the electron in GaAs, the Bohr magneton, and the applied
magnetic field respectively. The above expression is obtained
by assuming an isotropic nuclear spin distribution. Similarly,
the energy difference ε between the adjacent nuclear spin states
differing by a magnetic quantum number of �s = ±1 is given
by

ε = gnucμ
nuc
B Bapp + A′′〈Sz〉, (4)

where gnuc is the effective Lande g factor of the nuclide in
consideration and μnuc

B is the nuclear Bohr magneton. The
effective coupling constant A′′ = Aeffa

3
0nel [2,30,31], where

nel is the electronic carrier density. The magnetic quantum
number for the GaAs nuclei varies from −3/2 to +3/2 in
steps of �s = +1. In standard literature, the second terms in
(3) and (4) represent the Overhauser shift and the Knight shift,
respectively. However, for practical purposes, gnuc 
 gel and
A′′ 
 Aeff and hence ε may be neglected with respect to �

and the nuclear spin flips may be considered elastic.
The electron-nuclear spin flip-flop processes are described

by the second term in the Hamiltonian in (1), which also
corresponds to |α〉 �= |β〉 and |φ〉 �= |ϕ〉 in (2) and the scat-
tering rates are evaluated via the Fermi’s golden rule [32,33],
typically related to the densities of the initial and the final
states. In this case, the electronic wave-function distribution
ψα(rn) and ψβ(rn) overlaps with the nuclear wave function
on each site rn differently, and this effect is accounted for via
the overlap terms ψ∗

β (rn)ψα(rn) for up to down or down to up
electronic spin transitions. The procedure for a self-consistent
description of electronic transport coupled to hyperfine spin
dynamics then entails the time-dependent simulation of the
nuclear spin dynamics, with the electronic transport processes
in steady state. This is because the nuclear spin dynamics
are typically slow due to slow relaxation rates, slow diffusion
rates as well as longer flip-flop times in comparison with the

electronic transport velocities. The nuclear spin dynamics at
each point rn are dictated via the electron-nuclear hyperfine
flip rates calculated from the Fermi’s golden rule [32] given by

	↑↓(rn) = 2π

h̄
|Aeff|2

∫
dEn↑(rn,E)p↓(rn,E)

(5)

	↓↑(rn) = 2π

h̄
|Aeff|2

∫
dEn↓(rn,E)p↑(rn,E),

where 	↓↑(rn) [	↑↓(rn)] represents the up to down (down to
up) nuclear spin transition rate at the nuclear co-ordinate rn
between magnetic quantum numbers that differ by +1 (−1) in
the nuclear spin space due to flip-flop transitions of electrons
at energy E. The quantities n↑(rn,E) and n↓(rn,E) [p↑(rn,E)
and p↓(rn,E)] denote the densities of filled (vacant) states per
unit energy per unit area at the point rn. The up to down (down
to up) electronic spin transition rate based on (5) depends
not only on the availability of electrons in the up (down) spin
density of states D↑(↓)(rn,E) and the vacancy in the down
(up) spin density of states D↓(↑)(rn,E), but also on the spatial
overlap of the corresponding density of states. The total rate
of electron-nuclear spin flip-flop now depends on the integral
of 	↓↑(rn) [	↑↓(rn)] over the spatial coordinates:

	↑↓ = 2π

h̄
|Aeff|2

∫∫
d3rndEn↑(rn,E)p↓(rn,E),

	↓↑ = 2π

h̄
|Aeff|2

∫∫
d3rndEn↓(rn,E)p↑(rn,E). (6)

The spatial dynamics of the nuclear spins can be described by
the following master equation:

d[F (rn)]

dt
= [	(rn)][F (rn)] − [F (rn) − F 0]

τI

+ Dn∇2[F (rn)],

(7)

where [F (rn)] is the probability column vector representing
the probability of occupancy of the nuclear spin levels, and τI

is a phenomenological nuclear spin relaxation time, which is
typically a very slow process. The matrix 	(rn) takes into
account the transition between the individual nuclear spin
levels. The vector [F 0] denotes the probability of occupation
of the nuclear spin levels in equilibrium. The above equation
also includes nuclear spin diffusion described by the last term,
where Dn is the phenomenological diffusion constant. In this
paper, we neglect the exact spatial distribution of nuclear spins
due to diffusion and approximate the effects of nuclear spin dif-
fusion by incorporating a larger number of nuclei. The equation
governing the dynamics of the nuclear spins is then given by

d[F ]

dt
= [	][F ] − [F − F 0]

τI

. (8)

The transition probability matrix [	] may be specifically cast
for the spin-3/2 case in the current study in terms of the
spin-flip rates defined in (6) as

[	]=

⎡
⎢⎢⎢⎣

−	↓↑ 	↑↓ 0 0

	↓↑ −(	↓↑ + 	↑↓) 	↑↓ 0

0 	↓↑ −(	↓↑ + 	↑↓) 	↑↓
0 0 	↓↑ −	↑↓

⎤
⎥⎥⎥⎦,

(9)
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where 	↑↓ and 	↓↑ are defined in (6). An additional constraint
used to solve (8) using (9) is that of the normalization of the
nuclear state probabilities, i.e.,

∑
s Fs = 1, where Fs is the oc-

cupation probability of the nuclear density of states with spin s.
The temporal evolution of the average electronic polariza-

tion 〈Sz〉 and the average nuclear polarization 〈Iz〉 at the QPC
are calculated self-consistently by solving (8) and (3) via the
relations

〈Sz〉 = 1

2

n↑ − n↓
n↑ + n↓

,

(10)
FI = 〈Iz〉 =

∑
s

sFs = [s][F ],

where Fs are obtained by solving the master equations. The
matrix [s] = [ 3

2
1
2 − 1

2 − 3
2 ] comprises the row vector of

the spin magnetic quantum numbers of the GaAs nuclei.
The procedure for transport calculations follows solving (3),
(8), and (10) sequentially in a self-consistent loop with the
electronic transport to be described now.

B. Electronic edge-state transport in the QPC region

While the dynamics of the nuclear spins simply follow the
master equation (8) described above, a description of electronic
transport involves transport currents due to the source and
drain reservoirs held at electrochemical potentials μS and
μD , respectively. From a Landauer-Büttikker perspective,
a consistent description of transport currents in our case
demands the use of both (a) direct transmission and (b) spin-
flip transmission. The need to include spin-flip transmission
follows from the interaction between the edge channels of
different spins that gives rise to nuclear polarization which in
close proximity of the QPC region determines the electronic
transport. Near the QPC, the forward propagating edge
channels and the backward propagating edge channels come in
close proximity and hence spin-flip scattering can occur to the
forward propagating as well as to the backward propagating
edge channels [3].

The Landauer direct transmission T↑(↓)(E) denotes the
tunneling probability of the up (down)-spin electrons through
the QPC. We model the spin-split edge states in the de-
vice by a continuum of density of states as in a ballistic
1 − D conductor [34–37] with the region of the QPC being
represented by a Gaussian potential barrier, as shown in
Figs. 2(a) and 2(b) along with the model used for simulation of
electronic transport shown in Fig. 2(c). The direct transmission
coefficients T↑(E) and T↓(E) are then calculated using the
nonequilibrium Green’s function (NEGF) method applied to
the barrier described above using a 1 − D atomistic tight-
binding Hamiltonian [38,39]. The pertinent details of the
approach used here have been briefly discussed in Appendix B.
In our scheme, we only consider the number of transmitted
modes and the filling factor at the QPC for the electronic
transport which is related to the geometry of the setup that is
ascertained a priori. Near the vicinity of νQPC = 1 at the QPC,
the down-spin edge channel at the QPC is almost empty in the
energy range between μS and μD , resulting in a considerable
simplification of the transport equations.

FIG. 2. Schematic of electrons tunneling through a QPC.
(a) Direct transmission without spin-flip processes. The up-spin
electrons are more likely to be transmitted than the down-spin
electrons as a result of Zeeman splitting. (b) Electrons can suffer
a spin-flip process around the QPC and transmit from the up-spin
channel originating in the source contact to the down-spin channel
terminating in the drain contact. (c) Schematic of the model used to
simulate a single QPC structure.

We begin with the case where the filling factor νQPC < 1,
i.e., G < e2

h
, where only the up-spin edge channel originating

from the source contact contributes to the total current
terminating in the drain contact. The electrons in the forward
propagating up-spin edge channel originating from the source
contact can tunnel through the QPC to the up-spin edge channel
terminating in the drain contact with a probability T↑(E) while
the forward propagating down-spin edge channel originating in
the source contact is completely disconnected from the forward
propagating down-spin edge channel terminating in the drain
contact, as depicted in Figs. 2(a) and 2(b), respectively.

A few up-spin electrons at the QPC in the forward
propagating edge channel terminating in the drain contact
can however scatter to the forward propagating down-spin
edge channel terminating in the drain contact with a spin-flip
process as shown in Fig. 3(a). This gives rise to the spin-flip
scattering current I

sf

↑↓(↓↑), where the superscript “sf ” denotes
the flow of current due to spin-flip scattering at the QPC and
the subscript ′↑↓(↓↑)′ denotes the current flow from the up
(down)-spin to down (up)-spin edge channel via electronic
spin-flips. Assuming that the direct transmission coefficients
(T↑ and T↓) depend on the nuclear polarization only via the
Overhauser field (3), for a system with four nuclear spin
levels, the spin-flip transmission coefficient at the QPC from
the forward propagating up-spin channel terminating in the
drain contact to the forward propagating down-spin channel
terminating in the drain contact is given by (details given in
Appendix A)

T
sff

↑↓ (E) = T↑(E)T f

↑↓{1 − F+ 3
2
}.

Note that T
f

↑↓ depends on the spatial overlap of the density
of states of the up-spin and down-spin edge channel at the
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FIG. 3. Scattering schematics. (a) Associated scattering phe-
nomena for dI/dV < e2

h
(νQPC < 1). Electron-nuclear spin flip-flop

scattering at the QPC occurs from a forward propagating up-spin
channel terminating in the drain contact to a forward propagating
down-spin channel terminating in the drain contact. (b) Associated
scattering phenomena for dI/dV > e2

h
νQPC > 1. Electron-nuclear

flip-flop scattering at the QPC occurs from forward propagating
up-spin channel terminating in the drain contact to the forward
propagating down-spin channel terminating in the drain contact and
also from forward propagating down-spin channel terminating in the
drain contact to the backward propagating up-spin channel originating
at the drain contact. The later spin-flip scattering process decreases
the conductance dI/dV because the scattering occurs to a backward
propagating edge channel. A darker color in (a) and (b) indicates
filled channel, while a lighter color indicates an empty channel. The
up-spin and down-spin channels in (a) and (b) are indicated by brown
and blue color, respectively.

QPC between the energy range μS and μD [details given
in Appendix A, Eqs. (A5) and (A10)]. We approximate T

f

↑↓
as a constant. Therefore the down-spin current recorded just
outside the QPC relies entirely on such spin-flip processes and
hence is simply the spin-flip current I

sf

↑↓, while the up-spin
current in the edge channel just outside the QPC is reduced
by I

sf

↑↓. Based on the above discussions, the up and down spin
channel currents are given by

I =
∫

dE
(
I↑(E) + I↓(E)

)
= q

h

∫
dE{[T↑(E) − T

sff

↑↓ (E)] + T
sff

↑↓ (E)}
× [fS(E) − fD(E)]. (11)

The subscripts “S” and “D” the source and drain contacts
respectively, with fS(D)(E) denoting the Fermi-Dirac distribu-
tion in the source (drain) contact held in quasiequilibrium at
μS(D). The parameter T

sff

↑↓ (E) takes into account the spin-flip
scattering of electrons at and around the QPC from the
forward propagating up-spin edge channel terminating in the
drain contact to the forward propagating down-spin channel
terminating in the drain contact, with the superscript “sff ”
denoting spin-flip scattering to a forward propagating channel.
It must be noted that the edge channels in the quantum Hall
arrangement are uni-directional and hence the expressions

for the current in (11) depend on the factors fS(E) and
fD(E) only and not on the factors fS(E)[1 − fD(E)] and
fD(E)[1 − fS(E)] as expected in a typical Landauer type
scattering treatment.

Turning our attention to the case when the filling fac-
tor νQPC > 1, i.e., G > e2

h
, the down-spin electrons in the

edge channel originating in the source contact are partially
transmitted through the QPC to the down-spin edge channel
terminating in the drain contact, as depicted in Fig. 3(b).
In this case, the spin-flip scattering at and around the QPC
can occur from the forward propagating up-spin channel
terminating in the drain contact to the forward propagating
down-spin channel terminating in the drain contact as well as
from the forward propagating down-spin channel terminating
in the drain contact to the backward propagating up-spin
channel originating from the drain contact. Again, assuming
that the direct transmission coefficients T↑ and T↓ depend
on the nuclear polarization only via the Overhauser field (3),
the spin-flip currents in this case are given by (details in
Appendix A)

I
sf

↑↓ ≈ q

h

∫
dET

sff

↑↓ (E)(fS(E) − fD(E)),

I
sf

↓↑ ≈ q

h

∫
dET

sf b

↓↑ (E)(fS(E) − fD(E)),

where superscript “sf b” denote spin-flip scattering to a
backward propagating edge channel while the superscript
“sff ” has the same meaning as described previously. The
spin-flip current I

sf

↑↓ flows from the forward propagating
up-spin channel terminating in the drain contact to the
forward propagating down-spin edge channel terminating in
the drain contact while the spin-flip current I

sf

↓↑ flows from the
forward propagating down-spin edge channel terminating in
the drain contact to the backward propagating up-spin channel
originating in the drain contact. Hence I

sf

↓↑ causes a change in
the total output current since the spin-flip scattering occurs to
a backward propagating edge channel. It, however, does play
a role in the nuclei polarization near the QPC. The current in
the up-spin and down-spin channel terminating in the drain
contact just outside the QPC is then given by

I↑ =
∫

q

h
[T↑(E) − T

sff

↑↓ (E)][fS(E) − fD(E)]dE

=
∫

q

h
[T↑(E) − T↑(E)T f

↑↓(1 − F 3
2
)]

× [fS(E) − fD(E)]dE, (12)

I↓ =
∫

q

h
[T↓(E) + T

sff

↑↓ (E) − T
sf b

↓↑ (E)][fS(E) − fD(E)]dE

=
∫

q

h
[T↓(E) + T↑(E)T f

↑↓(1 − F 3
2
)

− T↓(E)T b
↓↑(1 − F− 3

2
)][fS(E) − fD(E)]dE. (13)

From the above discussion, the generalized equations for the
up-spin, down-spin and spin-flip currents through the QPC are
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given by

I↑ = q

h

∫ {
T↑(E)︸ ︷︷ ︸

Direct
T ransmission

+ T
sff

↓↑ (E) − T
sff

↑↓ (E)︸ ︷︷ ︸
spin−f lip

f orward−transmission

− T
sf b

↑↓ (E)︸ ︷︷ ︸
spin−f lip

backward−transmission

}
× {fS(E) − fD(E)}dE

= q

h

∫ {
T↑(E) + T

f

↓↑T↓(E){1 − F− 3
2
} − T

f

↑↓T↑(E){1 − F 3
2
} − T b

↑↓T↑(E){1 − F 3
2
}
}

× {fS(E) − fD(E)}dE

I↓ = q

h

∫ {
T↓(E)︸ ︷︷ ︸

Direct
T ransmission

+ T
sff

↑↓ (E) − T
sff

↓↑ (E)︸ ︷︷ ︸
spin−f lip

f orward−transmission

− T
sf b

↓↑ (E)︸ ︷︷ ︸
spin−f lip

backward−transmission

}
× {fS(E) − fD(E)}dE

= q

h

∫ {
T↓(E) + T

f

↑↓T↑(E){1 − F 3
2
} − T

f

↓↑T↓(E){1 − F− 3
2
} − T b

↓↑T↓(E){1 − F− 3
2
}
}

× {fS(E) − fD(E)}dE

I sf = |I sf

↑↓| − |I sf

↓↑|

= q

h

∫
{T sff

↑↓ (E) + T
sf b

↑↓ (E) − T
sff

↓↑ (E) − T
sf b

↓↑ (E)} × {fS(E) − fD(E)}dE (14)

where T↑(E) and T↓(E) are the direct transmission coefficients
between the forward propagating edge channels originating
and terminating in the source and drain contacts respectively
through the QPC in the absence of electron-nuclear spin
flip-flop scattering. As already discussed, the terms T

sff

↓↑ (E)

and T
sff

↑↓ (E) characterize spin-flip scattering from a forward
propagating edge channel terminating in the drain contact
to a forward propagating edge channel terminating in the
drain contact at the QPC, while T

sf b

↑↓ (E) and T
sf b

↓↑ (E)
characterize spin-flip scattering at the QPC from a forward
propagating edge state terminating in the drain contact to a
backward propagating edge channel originating in the drain
contact at the QPC. The terms T

sff

↓↑ (E), T
sff

↑↓ (E), T
sf b

↑↓ (E),

and T
sf b

↓↑ (E), being the probability of electron-nuclear spin
flip-flop processes, are dependent on the nuclear polarization
(details given in Appendix A). The spin-flip currents I

sf

↑↓
and I

sf

↓↑ give rise to nuclear polarization at and around the QPC
region.

Turning our attention to the self-consistent solution of
the electronic transport and the temporal evolution of the
nuclear polarization, the electronic transport is influenced by
the nuclear polarization via the Overhauser field while the
evolution of nuclear polarization is determined by the spin-flip
current and the nuclear spin-lattice relaxation time (τI ). The
matrix [	], which determines the temporal evolution in nuclear
polarization is hence related to the spin-flip currents I

sf

↑↓ and

I
sf

↓↑. A schematic diagram on self-consistency involved in
the temporal evolution of nuclear polarization and electronic
transport phenomena is shown in Fig. 4. For a system with
quad nuclear spin levels as in GaAs, it can be shown that
	↓↑ = C2|I sf

↓↑| and 	↑↓ = C1|I sf

↑↓| with C1 = 1
qNI {1−F 3

2
} and

C2 = 1
qNI {1−F− 3

2
} (details given in Appendix C), NI being the

number of nuclei that are being influenced by spin flip-flop
processes at the QPC. We can hence rewrite the expression for
[	] as (details given in Appendix C):

[	] =

⎡
⎢⎢⎢⎢⎣

−C2|I sf

↓↑| C1|I sf

↑↓| 0 0

C2|I sf

↓↑| −(C2|I sf

↓↑| + C1|I sf

↑↓|) C1|I sf

↑↓| 0

0 C2|I sf

↓↑| −(C2|I sf

↓↑| + C1|I sf

↑↓|) C1|I sf

↑↓|
0 0 C2|I sf

↓↑| −C1|I sf

↑↓|

⎤
⎥⎥⎥⎥⎦. (15)

Let us now consider the experimental features on a case by
case basis.

III. RESULTS

A. Conductance hysteresis with voltage sweep

We first reproduce some trends noted in the conductance
plots of a recent experiment [3] where a change in the
conductance along with hysteresis in the conductance was
noted in the vicinity of V = 0 with a positive and a negative

source to drain voltage sweep. We explain the possible
phenomena giving rise to such experimental trends.

1. Case I: d I/dV < e2/ h

A schematic of the scattering processes in this regime is
shown in Fig. 3(a), while the up-spin and down-spin edge
current paths and equivalent circuit models for the phenomena
occurring around the QPC are shown in Figs. 5(a) and 5(b),
respectively. In this case, the following points are to be noted.
(1) Only the up-spin channel is transmitted through the QPC.
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FIG. 4. Schematic diagram showing the self-consistency in-
volved in solving the electron transport dynamics and the nuclear
spin dynamics in time domain.

(2) The down-spin channel originating in the source contact is
totally reflected at the QPC. (3) Some up-spin electrons in the
edge channel terminating in the drain contact can scatter at the

QPC to the down-spin edge channel terminating in the drain
contact via electron-nuclear spin flip-flop scattering. Such a
scattering decreases the current in the up-spin channel just
outside the QPC and increases the current in the down-spin
edge channel outside the QPC. However, the total current
remains proportional to T↑(E).

We believe that the reasons for an increase in dI/dV

near V = 0 are the following. (1) Near V = 0, the nuclear
polarization cannot be maintained. (2) Nuclear polarization
drops due to spin lattice relaxation. (3) A drop in nuclear
polarization results in an increase in the direct transmission
coefficient T↑ of the up-spin channel due to a decrease in
the Overhauser field as well as an increase in the spin-flip
transmission coefficient T

sff

↑↓ .
A schematic of the edge channel path in this case is

shown in Fig. 5(a), while the equivalent circuit in this case
is detailed in Fig. 5(b) to aid a visualization of the various
transport phenomena inside the device. The circuit model
can be described as follows. (1) The up-spin edge channel is
represented by a conductance G = 0.68 e2

h
. (2)The up-to-down

spin-flip scattering can be represented by an equivalent current
source from the up-spin channel. IUD = 0.01IU [1 − F 3

2
]. (3)

The change in transmissivity of the up-spin channel due to

FIG. 5. Schematic of current path and equivalent circuit models. (a) Associated up-spin and down-spin current path for dI/dV < e2

h
(νQPC <

1). (b) Equivalent lumped circuit diagram for (a). (c) Associated up-spin and down-spin current path for dI/dV > e2

h
(νQPC > 1). (d) Equivalent

lumped circuit diagram for (c). The up-spin and down-spin channels in figure (a) and (c) are indicated by brown and blue color, respectively. In
the energy range between μS and μD , the filled, partially filled, end empty edge states are denoted by solid line, dashed lines, and dotted lines,
respectively.
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the Overhauser field is represented by a by an equivalent
conductor (G = 0.02 e2

h
) in series with a voltage dependent

voltage source Vp = 2
3FI [μS − μD]. The current change due

to the Overhauser field is represented by IOv
U . (4) The nuclear

polarization is represented by the voltage across the capacitor.
(5) The resistance in parallel with the capacitor represents
nuclear spin-lattice relaxation.

2. Case II d I/dV > e2/ h

A schematic of the scattering processes in this regime is
shown in Fig. 3(b), while the up-spin and down-spin edge
current paths and equivalent circuit models for the phenomena
occurring around the QPC are shown in Figs. 5(c) and 5(d),
respectively. In this case, the following points are to be noted.
(1) The up-spin electrons in the edge channel originating in
the source contact are fully transmitted through the QPC to
the up-spin edge channel terminating in the drain contact.
(2) The down-spin electrons in the edge channel originating
in the source contact are partially transmitted through the
QPC to the down-spin edge channel terminating in the drain
contact. (3) Two kinds of electron-nuclear spin-flip scattering
dominate at the QPC in this case: (i) electrons from the forward
propagating up-spin channel terminating in the drain contact
can undergo spin-flip scattering to the forward propagating
down-spin channel terminating in the drain contact, which is
almost empty in the energy range between μS and μD . Such
scattering at and around the QPC results in a positive nuclear
polarization. (ii) Electrons in forward propagating down-spin
channel propagating through the QPC can undergo a spin-flip
scattering to the backward propagating up-spin channel (which
is totally empty in the energy range between μS and μD)
terminating in the source contact. Such scattering results in
a negative nuclear polarization in addition to decreasing the
total current through the QPC. (4) Out of these two processes,
the former process dominates at the QPC due to the presence
of more up-spin electrons compared to down-spin electrons
resulting in a net positive nuclear polarization at the QPC.

We believe that the reasons for a decrease in dI/dV

near V = 0 are the following. (1) Near V = 0, the nuclear
polarization cannot be maintained. (2) Nuclear polarization
drops due to spin-lattice relaxation. (3) A drop in polarization
results in an increase in the up-to-down spin-flip rate as
well as a decrease in down-to-up spin-flip rate in addition
to a decrease in the direct transmission coefficient T↓ of the
down-spin channel due to decrease in the Overhauser field.
(4) The decrease in transmission coefficient of the down-spin
channel decreases the conductance of the QPC in the vicinity
of V = 0.

The equivalent circuit in this case is detailed in Fig. 5(d).
The circuit model can be described as follows. (1) The
up-spin edge channel originating in the source contact is fully
transmitted through the QPC and hence is represented by
a conductance G = e2/h. (2) The down-spin edge channel
originating in the source contact is partially transmitted
through the QPC to the down-spin edge channel terminating
in the drain contact and hence is represented by a conductance
G = 0.11 e2

h
. (3) The up-to-down spin-flip current at the QPC

from the forward propagating up-spin channel terminating
in the drain contact to the forward propagating down-spin

FIG. 6. Simulated plots of conductance-voltage (G − V ) traces
during a voltage sweep. Left panel (a,b,c): for the case G < e2

h
, Right

panel (d,e,f): for the case G > e2

h
, Top panel (a,d): the case when τI =

0.1 s, Middle panel (b,e): the case when τI = 10 s, Bottom panel (c,f):
the case when τI = 1000 s. The parameters used in the simulations
are: B = 4T , NI = 109, T

f

↑↓ = 0.01, T
f

↓↑ = 0, T b
↑↓ = 0, T b

↓↑ = 0.01.
Total sweep time = 200 s.

channel terminating in the drain contact is represented by
a current dependent current source IUD = 0.01IU [1 − F 3

2
].

(4) The down-to-up spin-flip current from the forward prop-
agating down-spin channel originating in the source contact
to the backward propagating up-spin channel terminating
in the source contact is represented by a current-dependent
current source IDU = 0.01ID [1 − F− 3

2
]. (5) The change in the

transmission coefficient of the down-spin channel due to the
Overhauser field is represented by a by an equivalent conductor
(G = 0.02 e2

h
) in series with a voltage dependent voltage

source (Vp = 2
3 [ 3

2 − FI ] [μS − μD]). The current change due
to the Overhauser field is represented by IOv

D . (6) The nuclear
polarization is represented by the voltage across the capacitor.
(7) The resistance in parallel with the capacitor represents
nuclear spin-lattice relaxation by causing charge leakage from
the capacitor.

The simulated results of the change in conductance with
source to drain voltage sweeps are shown in Fig. 6. The
parameters T↑ and T↓ in the simulations are calculated directly
via a 1 − D nonequilibrium Green’s function (NEGF) method
using an atomistic tight-binding Hamiltonian [38–40] while
the parameters T

sff

↑↓ and T
sf b

↓↑ are calculated using (A10). The
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parameters in the above illustration for the circuit diagrams
in Fig. 3 are chosen to match the simulated result of the
change in conductance with source to drain voltage sweep.
The maximum change in the conductance due to a difference
in the Overhauser field between the fully polarized nuclei and
the nonpolarized nuclei is less than GOv = 0.02 e2

h
. However,

this maximum change can be enhanced due to spin flip-flop
tunneling as noted experimentally [3]. The hysteresis in the
G-V curves in Fig. 6 near V = 0 occurs only when the nuclear
spin relaxation time (τI ) is of the order of the voltage sweep
time. This results in a lag between the applied voltage and
nuclear polarization near V = 0 thereby resulting in the
hysteresis. The hysteresis in G-V plots disappear when the
τI is very large such that the change in nuclear polarization
is negligible during the time of voltage sweep. The hysteresis
in G versus V plots also disappear when τI is very small
compared to the voltage sweep time because the nuclear
polarization is always in a steady state with the applied voltage.

B. Resistively detected nuclear magnetic resonance (RDNMR)

We begin our analysis with (14), where the nuclear polar-
ization in the vicinity of the QPC is perturbed by an externally
applied alternating magnetic field in the radio-frequency
(RF) range resulting in the Zeeman split nuclear levels to
interact with each other. Near the frequency corresponding
to the difference in energy between the two spin split nuclear
energy levels (h̄ω = ξs+1 − ξs), precession of the nuclear spins
accompanied by a rapid decay in the nuclear polarization
occurs.

To model such processes, we model the spin split nuclear
energy levels by a broadened normalized density of states
[30,38,39]:

Ds(ξ ) = 1

2π

η

(ξ − εs)2 + ( η

2 )2
,

where ξ is the free variable denoting energy in the nuclear spin
space, η is related to the amount of broadening of the nuclear
spin levels and εs is the energy level of the s th nuclear spin in the
absence of broadening. Broadening might be a result of thermal
motion of the nucleus [30], hyperfine interaction mediated
electron-nuclear spin exchange [30] as well as nuclear dipole-
dipole exchange interaction [30], which is the causative agent
for nuclear spin diffusion [30]. We take broadening to be η =
10−4 μeV. We simulate the case of quad nuclear spin levels,
as in GaAs, separated in energy due to Zeeman splitting. The
rate equations in this case are given by[

dF (ξ )

dt

]
=
[
dF (ξ )

dt

]
flip-flop

+
[
dF (ξ )

dt

]
relaxation

+
[
dF (ξ )

dt

]
NMR

, (16)

FI =
∫ ∞

−∞
[s] × [DN (ξ )] × [F (ξ )]dξ, (17)

T
sff

↓↑ (E) = T
f

↓↑T↓(E)

[
1 −

∫
D− 3

2
(ξ )F− 3

2
(ξ )dξ

]
,

T
sff

↑↓ (E) = T
f

↑↓T↑(E)

[
1 −

∫
D 3

2
(ξ )F 3

2
(ξ )dξ

]
,

T
sf b

↓↑ (E) = T b
↓↑T↓(E)

[
1 −

∫
D− 3

2
(ξ )F− 3

2
(ξ )dξ

]
,

T
sf b

↑↓ (E) = T b
↑↓T↑(E)

[
1 −

∫
D 3

2
(ξ )F 3

2
(ξ )dξ

]
, (18)

I
sf

↑↓ =
∫

e

h
[T sff

↑↓ (E) + T
sf b

↑↓ (E)][fS(E) − fD(E)]dE,

I
sf

↓↑ =
∫

e

h
[T sff

↓↑ (E) + T
sf b

↓↑ (E)][fS(E) − fD(E)]dE, (19)

where [s] = [ 3
2

1
2 − 1

2 − 3
2 ] is the row vector denot-

ing four nuclear spin levels in GaAs and [F (ξ )] =
[F 3

2
(ξ ) F 1

2
(ξ ) F− 1

2
(ξ ) F− 3

2
(ξ )]†. Fs(ξ ) is the probability of

occupancy of the density of states of the s th nuclear spin level
Ds at energy ξ . The matrix DN (ξ ) is the diagonal matrix
representing the nuclear density of states at energy ξ given by

DN (ξ ) =

⎡
⎢⎢⎢⎣

D 3
2
(ξ ) 0 0 0

0 D 1
2
(ξ ) 0 0

0 0 D− 1
2
(ξ ) 0

0 0 0 D− 3
2
(ξ )

⎤
⎥⎥⎥⎦.

At low temperatures, {fS(E) − fD(E)} is a boxcar function.
Assuming that the average value of T↑ and T↓ in the energy
range between μS and μD are T

avg
↑ and T

avg
↓ , respectively,

and the spin-flip transmission coefficients, T
f (b)
↑↓ and T

f (b)
↓↑ ,

are constant in the range of energy between μS and μD , the
above equation can be simplified to

I
sf

↑↓ = e

h
T

avg
↑ [T f

↑↓ + T b
↑↓]

[
1 −

∫
D 3

2
(ξ )F 3

2
(ξ )dξ

]
�μ

= e2

h
T

avg
↑ T

avg
↑↓

[
1 −

∫
D 3

2
(ξ )F 3

2
(ξ )dξ

]
V,

I
sf

↓↑ = e

h
T

avg
↓ [T f

↓↑ + T b
↓↑]

[
1 −

∫
D− 3

2
(ξ )F− 3

2
(ξ )dξ

]
�μ

= e2

h
T

avg
↓ T

avg
↓↑

[
1 −

∫
D− 3

2
(ξ )F− 3

2
(ξ )dξ

]
V, (20)

where �μ = μS − μD . The set of equations (16)–(19) have to
be solved self-consistently to calculate the temporal evolution
of the nuclear polarization. If the coherence between the
nuclear spins is neglected, then the rate of decay of nuclear
polarization with time due to perturbation via an externally
applied RF field can be characterized phenomenologically by
a time constant τNMR. The rate of decay of nuclear polarization
with RF frequency sweep without taking into account the
correlation between nuclear spins is given by the equation

[
dF (ξ )

dt

]
NMR

= diag

(
1

τNMR

πη

2
[	NMR(ξ )][FNMR(ξ,h̄ω)]

)
.

The matrix 	NMR(ξ ) takes into account the net rate of transition
between consecutive nuclear spin levels depending on the
energy of the RF frequency photons (h̄ω) and is given by
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(details given in Appendix D)

	NMR(ξ ) =

⎡
⎢⎢⎢⎣

−D 1
2
(ξ − h̄ω) D 1

2
(ξ − h̄ω) 0 0

D 3
2
(ξ + h̄ω) −[D 3

2
(ξ + h̄ω) + D− 1

2
(ξ − h̄ω)] D− 1

2
(ξ − h̄ω) 0

0 D 1
2
(ξ + h̄ω) −[D 1

2
(ξ + h̄ω) + D− 3

2
(ξ − h̄ω)] D− 3

2
(ξ − h̄ω)

0 0 D− 1
2
(ξ + h̄ω) −D− 1

2
(ξ + h̄ω)

⎤
⎥⎥⎥⎦

FNMR(ξ,h̄ω) =

⎡
⎢⎢⎢⎣

F 3
2
(ξ ) F 3

2
(ξ + h̄ω) 0 0

F 1
2
(ξ − h̄ω) F 1

2
(ξ ) F 1

2
(ξ + h̄ω) 0

0 F− 1
2
(ξ − h̄ω) F− 1

2
(ξ ) F− 1

2
(ξ + h̄ω)

0 0 F− 3
2
(ξ − h̄ω) F− 3

2
(ξ )

⎤
⎥⎥⎥⎦ (21)

with τNMR being of the order of 100 μs [4,5]. We now
present some simulation results based on the above model.
Specifically, we present results for three different sweep times
in Fig. 7 and show how the rate of sweep of RF frequency
influence the hysteresis observed in the RH traces.

We note that the hysteresis is a result of the slow buildup
of nuclear polarization. The hysteresis disappears if the sweep

FIG. 7. Plots of resistance variation with NMR frequency sweep
(RDNMR traces) at various sweep rates. Top panel: Plots for total
sweep time = 50 s, Middle panel: Plots for total sweep time = 100 s,
Bottom panel: Plots for total sweep time = 500 s. Left panel (a, b,
c): Plots for R > h

e2 (νQPC < 1), Right panel (d, e, f): Plots for R <
h

e2 (νQPC > 1). Simulations are done for B = 4T , NI = 109, T
f

↑↓ =
0.01, T b

↑↓ = 0, T
f

↓↑ = 0, T b
↓↑ = 0.01. T↑ and T↓ are calculated using

NEGF formalism as elaborated in the text.

rate is much slower compared to the rate of buildup of nuclear
polarization. On the other hand, hysteresis is pronounced if the
sweep rate is much faster compared to the rate of buildup of
nuclear polarization. The change in conductance during NMR
frequency sweep is mainly due to the effect of the Overhauser
field on the transmission coefficient of the spin channels
at the QPC as well as the spin-flip scattering at the QPC.
For R > h

e2 (νQPC < 1), the up-spin electrons in the forward
propagating edge channel terminating in the drain contact
can scatter at the QPC to the forward propagating down-spin
edge channel terminating in the drain contact with a spin-
flip scattering. Such electron-nuclear spin flip-flop processes
create a positive nuclear polarization which opposes the effect
of the magnetic field on the up-spin channel by enhancing
it’s potential barrier at the QPC, resulting in a decrease in the
transmission coefficient of the up-spin channel. Destruction of
nuclear polarization via NMR frequency perturbation hence
results in a decrease in the up-spin channel resistivity due to
an increase in the transmission coefficient (decrease in the
Overhauser field).

For R < h
e2 (νQPC > 1), the electrons in the forward

propagating down-spin edge channel originating in the source
contact can transmit partially to the down-spin edge channel
terminating in the drain contact. The forward propagating
down-spin edge channel originating in the source contact
being partially transmitted through the QPC, two spin flip-flop
scattering mechanism may be dominant at and around the
QPC-(i) A net spin-flip scattering from the forward propagat-
ing up-spin edge channel terminating in the drain contact to
the forward propagating down-spin edge channel terminating
in the drain contact. Such spin-flip scattering creates positive
nuclear polarization. (ii) A net spin-flip scattering from for-
ward propagating down-spin edge channel terminating in the
drain contact to backward propagating up-spin edge channel
terminating in the source contact (the forward propagating
up-spin channel is full). Such spin-flip scattering creates
negative nuclear polarization and also decreases the total
current through the QPC. At R ≈ h

e2 − ε, most of the electron
spin flipping at the QPC occurs from the forward propagating
up-spin edge channel terminating in the drain contact to the
forward propagating down-spin edge channel terminating in
the drain contact (since the majority of electrons at the QPC
occupy the up-spin channel) which creates net positive nuclear
polarization. Although positive nuclear polarization influences
the transmission coefficient of both down spin and up-spin
channel, the relative feedback on the up-spin channel is much
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less compared to that on the down-spin channel. Positive
nuclear polarization enhances the transmission coefficient of
the down-spin edge channel through the QPC. Destruction of
nuclear spin polarization during NMR frequency perturbation

FIG. 8. Signatures of quadrupolar splitting on RDNMR traces.
(a) Schematic diagram showing nuclear spin levels unevenly split due
to quadrupolar splitting. (b) Schematic of broadened nuclear density
of states without any intermediate state for multiphoton absorption.
The density of states is truncated and of finite extent in nuclear energy
space. (c) Plot showing one photon peaks in the conductance with
RF frequency sweep in case of nuclear quadrupolar splitting for R >
h

e2 (νQPC < 1). (d) Schematic of broadened nuclear density of states
with small nuclear density of states between the peaks in the density
of states to aid multiphoton transitions. (e) Plot showing single photon
and multiphoton peaks in the conductance with RF frequency sweep
in case of strain induced quadrupolar splitting for R > h

e2 (νQPC < 1).
The two photon processes in our simulation can be accounted for by
incorporating infinitesimally small nuclear density of states between
the peaks of the nuclear density of states. Simulations are done
for B = 4T , NI = 109, T

f

↑↓ = 0.01, T b
↑↓ = 0, T

f

↓↑ = 0, T b
↓↑ = 0.01.

T↑ and T↓ are calculated using NEGF formalism as elaborated in
the text.

hence results in an increase in the resistivity of the down-spin
edge channel due to decrease in transmission coefficient of
the down-spin channel through the QPC. The plots of the Hall
resistance versus the RF frequency sweep for the two cases
(a) R > h

e2 (νQPC < 1) and (b) R < h
e2 (νQPC > 1) are shown in

Fig. 7.

C. Capturing quadrupolar peaks

A current focus area in quantum computing is the possibility
of information processing via independent manipulation of
the individual nuclear spin levels. Materials with four nuclear
spin levels (GaAs) and nine nuclear spin levels (InAs) offer
attractive options since multibits of information can be stored
and manipulated. An attractive method to manipulate the
individual spin levels is introducing quadrupolar splitting,
which creates a slight difference in the splitting energy of
consecutive nuclear spin levels [17,41–43].

The aforesaid effects are taken into account by carefully
incorporating transitions between the individually broadened
nuclear spin levels using (21). A schematic of the broadened
nuclear density of states and simulated conductance variation
with an RF frequency sweep is shown in Figs. 8(b) and 8(c),
respectively. The simulation model can be further extended to
show peaks corresponding to multiphoton absorption [17,41].
Such peaks occur at higher RF powers, which induce higher
rates of scattering and consequently larger broadenings of
nuclear levels. This creates a density of states at energies
where nuclear population is otherwise absent. Transitions
corresponding to two consecutive photon absorptions can be
included in our model by adding an infinitesimally small
nuclear density of states in between the peaks of the nuclear
density of states. Such an infinitesimally small density of states
does not influence the total nuclear polarization but provides
intermediate levels with extremely small lifetimes to facilitate
an intermediate transition before absorbing the second photon.

A schematic diagram of nuclear density of states is shown in
Fig. 8(d) where a small nuclear density of states has been added
in between the main peaks to account for the multiphoton
transitions. The plot of conductance versus RF frequency
sweep with single-photon and multiphoton peaks is shown
in Fig. 8(e). Although the magnitude of conductance change
during the multiphoton processes should ideally depend on the
amount of RF power being supplied, taking into account such
variation requires book keeping of the details of photon density
in space and the interaction between photons and nuclear spin
levels. We leave these considerations for a future work.

IV. CONCLUSION

In this paper, we have developed a Landauer-Büttiker ap-
proach to understand various experimental features observed
in integer quantum Hall set ups featuring QPCs. Starting from
the Fermi contact hyperfine Hamiltonian, we have developed
physics based models to incorporate electron-nuclear spin
flip flops in to an extended Landauer-Büttiker formalism to
describe the edge state electronic transport near the QPC
region. This self-consistent simulation framework between
the nuclear spin dynamics and edge state electronic transport
aided a theoretical investigation of the hysteresis in the
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conductance-voltage and RDNMR line shapes noted in certain
experiments [3,11,18–20]. In particular, we demonstrated that
the hysteresis noted experimentally results from a lack of
quasiquilibrium between electronic transport and nuclear po-
larization evolution. In addition, we presented circuit models
to emulate such hyperfine mediated transport effects to further
facilitate a clear understanding of the electronic transport
processes occurring near the QPC. Finally, we extended our
models to account for the effects of quadrupolar splitting
of nuclear levels and also depict the electronic transport
signatures that arise from single and multiphoton processes.
We believe that this work sets stage for a more rigorous
approach which will include a self-consistent solution of the
potential profile [44–54] of the channel along with the spatial
distribution of the nuclear spin profile.
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APPENDIX A: DERIVATION OF THE SPIN-FLIP
TRANSMISSION COEFFICIENT

In this section, we show that the rate of spin-flip scattering
from the forward propagating up-spin (down-spin) channel
originating in the source contact to the forward propagating
down-spin (up-spin) channel terminating in the drain contact
per unit energy at the QPC can indeed be approximated by
a transmission coefficient that is dependent on the nuclear
polarization. The region around the QPC can be modeled
by a smooth Gaussian/bell shaped potential barrier [55],
which varies along the transport direction as well as along
the direction perpendicular to transport. However, to model
transport through a QPC, we need to know the minimum
potential along the transport direction [35,55]. If both μD and
μS lie above the top of the barrier, T↑(↓)(E) ≈ 1 in the range
of energy over which electronic transport takes place. On the
other hand, if the top of the barrier lie between μS and μD the
channel is partially transmitted.

Let us assume that the forward propagating down-spin edge
channel originating in the source contact is totally isolated
from forward propagating down-spin edge channel terminating
in the drain contact. A major part of the up-spin edge channel
originating in the source contact is, however, transmitted
through the QPC to the up-spin edge channel terminating in
the drain contact. A very small portion of the electrons in the
forward propagating up-spin edge channel terminating in the
drain contact however suffers a spin-flip scattering at the QPC
and is transmitted to the forward propagating down-spin edge
channel terminating in the drain contact via electron-nuclear

spin flip-flop process. Such processes at the QPC gives rise
to nuclear polarization which in turn influences electronic
transport via Overhauser field.

The forward propagating up-spin edge channel near the
QPC is characterized by nin

↑ (E) and v↑(E), which are the
density of electrons per unit energy per unit length and velocity
of electrons, respectively, at the forward propagating up-spin
edge channel near the QPC. Therefore

nin
↑ (E)v↑(E) = 1

h
.

A portion of the electrons in the forward propagating up-spin
edge channel is reflected, while the rest is transmitted with or
without a spin-flip. Since the total current is conserved,

nin
↑ (E)v↑(E) = nt

↑(E)vch
↑ (E) + nR

↑ (E)v↑(E),

1

h
= 1

h
T↑(E) + 1

h
R(E),

T↑(E) = 1 − R(E). (A1)

In the above set of equations, nt
↑(E) and nR

↑ (E) denote the
density of up-spin electrons in the forward propagating edge
channel at the QPC at energy E, and density of electrons
that are reflected to the backward propagating edge-channel
terminating in the source contact. In a similar fashion, vch

↑ (E)
and v↑(E) are the group velocity of up-spin electrons in the
forward propagating edge channel (terminating in the drain
contact) at the QPC and the group velocity of up-spin electrons
in the forward or backward propagating up-spin edge channel
far away from the QPC, respectively. Assuming the QPC to be a
single point, let nch

↓ (E)vch
↓ (E) be the total number of electrons

transmitted per unit time per unit energy at the QPC from
the forward propagating up-spin edge channel terminating in
the drain contact to the forward propagating down-spin edge
channel terminating in the drain contact. So,

nt
↑(E)vch

↑ (E) = nch
↑ (E)vch

↑ (E) + nch
↓ (E)vch

↓ (E).

If the rate of electron-nuclear spin flip-flop at the QPC is much
less compared to the rate at which electrons are transmitted
from the up-spin edge channel originating in the source contact
to the up-spin edge channel terminating in the drain contact
through the QPC, then, nch

↑ (E) ≈ nt
↑(E). Our intention is to

derive the approximate form for T
sff

↑↓ .
The flow of electrons between the up-spin edge channel

originating in the source contact to the down-spin edge channel
terminating in the drain contact at the QPC is

I sf (E) = I
sf

↑↓(E) − I
sf

↓↑(E)

= qNI ×
[

3

2

1

2
− 1

2
− 3

2

][
dF (E)

dt

]
conserving

= qNI

{
−3

2
	↓↑(E)F 3

2
+ 3

2
	↑↓(E)F 1

2

+ 1

2
	↓↑(E)F 3

2
− 1

2
[	↓↑(E) + 	↑↓]F 1

2
(E)

+ 1

2
	↑↓(E)F− 1

2
− 1

2
	↓↑(E)F 1

2

+ 1

2
[	↓↑(E) + 	↑↓(E)]F− 1

2
− 1

2
	↑↓(E)F− 3

2
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− 3

2
	↓↑(E)F− 1

2
+ 3

2
	↑↓(E)F− 3

2

}
= {−	↓↑(E)F 3

2
+ [	↑↓(E) − 	↓↑(E)]F 1

2

+ [	↑↓(E) − 	↓↑(E)]F− 1
2
+ 	↑↓(E)F− 3

2
} qNI .

(A2)

	↑↓(E) and 	↓↑(E) are given by

	↑↓(E) = 2π

h
J 2

effn
t
↑(E)pch

↓ (E),
(A3)

	↓↑(E) = 2π

h
J 2

effn
ch
↓ (E)pt

↑(E),

where

pch
↓ (E) = D↓(E) − nch

↓ (E),

pt
↑(E) = D↑(E) − nt

↑(E). (A4)

D↑(E) and D↓(E) are the density of states of the up-spin
electrons and down-spin electrons respectively at the QPC.
The Overhauser field at the QPC and the electron spin-flip
tunneling is determined by the nuclear polarization which
in turn is determined by the history of electron-nuclear spin

flip-flop scattering at the QPC. While electron-nuclear spin
flip-flop scattering can also occur between the channels far
away from the QPC terminating in the drain contact, such
spin flip-flop scattering hardly causes any change in the output
current as well as the Overhauser field at the QPC. We are only
interested in spin-flip scattering in the vicinity of the QPC
that determines the transmission coefficient of the spin-split
channels. The parameter Jeff takes into account the spatial
overlap of the density of states of the up-spin channel and the
down-spin channel at the QPC. It is quite different from the
parameter Aeff used in (5),

J 2
eff = A2

eff

∫
d3rndED↑(rn,E)D↓(rn,E)∫

d3rndED↑(rn,E)
∫

d3rndED↓(rn,E)
. (A5)

Since we are mainly interested in the spin flip-flop scattering
that occur at the QPC, the range of d3r includes the region
at the QPC, which determines the transmission coefficients of
the spin-split edge channels (narrowest region of the QPC):

I sf (E) = I
sf

↑↓(E) = qnch
↓ (E)vch

↓ (E).

Substituting I sf (E) from (A2) and p↑(E) and p↓(E) from
(A4) and doing some algebraic manipulations, we arrive at the
equation

nch
↓ (E)vch

↓ (E) = 2π
J 2

effNI

h
{nt

↑(E)D↓(E)[F 1
2
+ F− 1

2
+ F− 3

2
] − nch

↓ (E)D↑(E) [F 3
2
+ F 1

2
+ F− 1

2
] + nt

↑(E)nch
↓ (E)[F 3

2
− F− 3

2
]}

= 2π
J 2

effNI

h
{nt

↑(E)D↓(E)[1 − F 3
2
] − nch

↓ (E)D↑(E) [1 − F− 3
2
] + nt

↑(E)nch
↓ (E)[F 3

2
− F− 3

2
]}

⇒ nch
↓ (E) =

2π
J 2

effNI

h
nt

↑(E)D↓(E)[1 − F 3
2
]

2π
J 2

effNI

h
{nch

↑ (E)[F− 3
2
− F 3

2
] + D↑(E)[1 − F− 3

2
]} + vch

↓ (E)
. (A6)

If the rate of spin flip-flop scattering at the QPC is slower
compared to the rate of transfer of electrons between the up-
spin channel originating in the source contact and the up-spin
edge channel terminating in the drain contact through the QPC,

that is, if 2π
J 2

effNI

h
D↑(E) 
 vch

↓ (E), the first two factors in the
denominator can be neglected,

nch
↓ (E) =

2π
J 2

effNI

h
nt

↑(E)D↓(E)(1 − F 3
2
)

vch
↓ (E)

. (A7)

We assume that nt
↑(E) is independent of the nuclear polariza-

tion. So,

nch
↑ (E) = T↑(E)

hvch
↑ (E)

. (A8)

Eliminating nch
↑ (E) from (A8) and (A7), we get

nch
↓ (E) =

2π
J 2

effNI

h
T↑(E)D↓(E)(1 − F 3

2
)

hvch
↓ (E)vch

↑ (E)
,

T
sff

↑↓ (E) = h × nch
↓ (E)vch

↓ (E)

=
2π

J 2
effNI

h
T↑(E)D↓(E)(1 − F 3

2
)

vch
↑ (E)

= kT↑(E)(1 − F 3
2
), (A9)

where k = 2π
J2

eff NI

h
D↓(E)

vch
↑ (E)

. Under the assumption of constant

density of states over the range of energy between μS and
μD , k can be taken as a constant. Similar derivations can be
made to show that

T
sf b

↓↑ (E) = kT↓(E){1 − F− 3
2
} (A10)

for G > e2

h
.

We call the parameter k the spin-flip transmission coef-
ficient, denoted by T

f

↑↓ and T
f

↓↑ (T b
↑↓ and T b

↓↑) for spin-flip
scattering at the QPC from forward propagating up-spin
channel terminating in the drain contact to forward propa-
gating down-spin channel terminating in the drain contact
and forward propagating down-spin channel originating in
the source contact to forward propagating up-spin channel
terminating in the drain contact (forward propagating up-
spin channel terminating in the drain contact to backward
propagating down-spin channel originating in the drain contact
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and forward propagating down-spin channel terminating in
the drain contact to backward propagating up-spin channel
originating in the drain contact) respectively. The coefficients
T

f

↑↓ and T
f

↓↑ cause a change in the total charge current at
the drain since the scattering occurs to a forward propagating
channel. The coefficients T b

↑↓ and T b
↓↑, however, also cause a

change in the total output current since the scattering occurs
to backward propagating states. It should be noted that the
above equations are only valid at the QPC in the energy
range between μS and μD (μS > μD). For E < μD , both the
forward propagating and backward propagating channels are
filled and hence spin-flip scattering cannot occur giving T

f

↑↓ =
T

f

↓↑ = T b
↑↓= T b

↓↑ = 0.

APPENDIX B: NONEQUILIBRIUM GREEN’S FUNCTION
FORMALISM FOR CALCULATION OF CURRENT

THROUGH A POTENTIAL ENERGY BARRIER

We calculate the conductance of the device by calculating
the direct transmission coefficients T↑ and T↓ of the system
using the nonequilibrium Green’s function (NEGF) formalism
assuming that the edge states of the Landau levels can be
modeled as a quasi 1 − D ballistic conductor. Such a method of
modeling has been shown to accurately match the experimental
results [34,35]. We model the region of the QPC as a smooth
Gaussian energy barrier [55],

UO = 150e
− (x−xo )2

2σ2 meV,

with σ = 22 nm and xo is the narrowest region of the QPC
that determines the transmissivity of the channels.

In case of ballistic transport in nanodevices, the generalized
equations for Green’s function and scattering matrices are
given by the equations

G↑(↓)(Ez) = [EzI − H↑(↓) − U − �↑(↓)(Ez)]
−1,

�↑(↓)(Ez) = �L↑(↓)(Ez) + �R↑(↓)(Ez),
(B1)

A↑(↓)(Ez) = i[G↑(↓)(Ez) − G
†
↑(↓)(Ez)],

	L(R)↑(↓)(Ez) = [�L(R)↑(↓)(Ez) − �
†
L(R)↑(↓)(Ez)],

where H↑(↓) is the discretized device Hamiltonian matrix in
1 − D constructed using the effective mass approach [39],

H↑(↓) = H0 + U↑(↓),

where H0 is the Hamiltonian matrix in the absence of an
externally applied potential at the QPC. U↑(↓) is the minimum
potential energy of the electrons for the up-spin (down-spin)
channel, respectively, given by (B2). U is the additional
electronic potential energy due to an externally applied voltage
and �L↑(↓)(Ez) and �R↑(↓)(Ez) describe the coupling and
scattering of electronic wave functions due to left and right
contacts respectively for the up-spin (down-spin) channel. In
the above sets of equations, Ez is the free variable denoting
the electronic energy along the transport direction. A↑(↓)(Ez)
is the 1 − D spectral function and 	↑(↓)(Ez) is the broadening
matrix at energy Ez for the up-spin (down-spin) electrons.

The minimum potential energy of the up-spin and down-
spin channels (U↑ and U↓) at the QPC are modeled by potential

barriers of the form [2]

U↑ = UO − geμBB

2︸ ︷︷ ︸
Zeeman

field

+ (
AGa

eff + AAs
eff

)FI

2︸ ︷︷ ︸
Overhauser

field

,

(B2)

U↓ = UO +
︷ ︸︸ ︷
geμBB

2
−
︷ ︸︸ ︷(
AGa

eff + AAs
eff

)FI

2
,

where AGa
eff and AAs

eff are the effective hyperfine constants for
Ga and As respectively and has the respective value of AGa

eff =
42 μeV and AAs

eff = 46 μeV.
The electron and hole densities per unit length at point j

are given by the electron and hole correlation functions

nj↑(↓) =
∫ [Gn

↑(↓)(Ez)dEz]

2πa
,

pj↑(↓) =
∫ [Gp

↑(↓)(Ez)dEz]

2πa
,

where “a” is the lattice constant. In the above equations,
Gn

↑(↓)(Ez) and G
p

↑(↓)(Ez) are the electron and hole correlation
functions given by

Gn
↑(↓)(Ez) = G↑(↓)(Ez)�

in
↑(↓)(Ez)G

†
↑(↓)(Ez),

(B3)
G

p

↑(↓)(Ez) = G↑(↓)(Ez)�
out
↑(↓)(Ez)G

†
↑(↓)(Ez),

�in(Ez) and �out(Ez) are the in-scattering and the out-
scattering functions which model the rate of scattering of
the electrons and holes, respectively, from the contact to the
device,

�in
↑(↓)(Ez) = �in

S↑(↓)(Ez) + �in
D↑(↓)(Ez),

(B4)
�out

↑(↓)(Ez) = �out
S↑(↓)(Ez) + �out

D↑(↓)(Ez),

where the subscript “S” and “D” denote the influence of
source contact and drain contact respectively on the scattering
matrices. The in-scattering and out-scattering functions are
dependent on the contact quasi-Fermi distribution functions as

�in(Ez) = 	S(Ez)fS(Ez)︸ ︷︷ ︸
lef t−contact

inf low

+	D(Ez)fD(Ez)︸ ︷︷ ︸
right−contact

inf low

�out (Ez) = 	S(Ez)
{

1 − fS(Ez)
}

︸ ︷︷ ︸
lef t−contact

outf low

+	D(Ez)
{

1 − fD(Ez)
}

︸ ︷︷ ︸
right−contact

outf low

,

where fS(D) denote the quasi-Fermi distribution of
source(drain) contact.

The direct transmission coefficients are given by

T↑(↓)(E) = Trace[	L↑(↓)G↑(↓)	R↑(↓)G
†
↑(↓)]. (B5)

The current that flows directly through the QPC from the
up-spin (down-spin) edge channel originating in the source
contact to the up-spin (down-spin) edge channel terminating
in the drain contact (without electronic spin-flip) is given by

I↑(↓) = q

h

∫
T↑(↓)(Ez)[fL(Ez) − fR(Ez)]dEz. (B6)
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APPENDIX C: DERIVATION OF [�]

In case, where the electronic spin-flip rate is limited by
the supply of electrons from the source, 	↑↓ and 	↓↑ must
be related to |I sf

↑↓| and |I sf

↓↑|, respectively. We show that

	↑↓ = C1|I sf

↑↓| and 	↓↑ = C2|I sf

↓↑| and solve for C1 and C2.
We start our derivation from equation (A2). The total spin-flip
current I sf at the QPC can be written as the sum of up-to-down
electronic spin-flip current and down-to-up electronic spin-flip
current at the QPC:

I sf =
∫

I sf (E)dE = qNI ×
[

− 	↓↑F 3
2
+
{
	↑↓ − 	↓↑

}
F 1

2
+
{
	↑↓ − 	↓↑

}
F− 1

2
+ 	↑↓F− 3

2

]
= qNI

([
	↑↓

{
F 1

2
+ F− 1

2
+ F− 3

2

}
− 	↓↑

{
F 3

2
+ F 1

2
+ F− 1

2

}])

=

|I sf

↑↓|︷ ︸︸ ︷
qNI × 	↑↓

{
1 − F 3

2

}
−

|I sf

↓↑|︷ ︸︸ ︷
qNI × 	↓↑

{
1 − F− 3

2

}
.

Let us consider the situation where I
sf

↓↑ = 0. In this case, 	↓↑ = 0,

I sf = |I sf

↑↓|
= qNI × 	↑↓

{
1 − F 3

2

}
− qNI × 	↓↑

{
1 − F− 3

2

}
= qNI	↑↓

{
1 − F 3

2

}

	↑↓ = |I sf

↑↓|
qNI

{
1 − F 3

2

} . (C1)

In a similar way, setting I
sf

↑↓ = 0, we get

	↓↑ = |I sf

↓↑|
qNI (1 − F− 3

2
)
. (C2)

The transition matrix [	] is then given by

[	] =

⎡
⎢⎢⎢⎢⎢⎣

−C2|I sf

↓↑| C1|I sf

↑↓| 0 0

C2|I sf

↓↑| −(C2|I sf

↓↑| + C1|I sf

↑↓|) C1|I sf

↑↓| 0

0 C2|I sf

↓↑| −(C2|I sf

↓↑| + C1|I sf

↑↓|) C1|I sf

↑↓|
0 0 C2|I sf

↓↑| −C1|I sf

↑↓|.

⎤
⎥⎥⎥⎥⎥⎦, (C3)

with C1 = 1

qNI (1−F 3
2
)

and C2 = 1

qNI (1−F− 3
2
)
.

APPENDIX D: DERIVATION OF [�NMR] (INTERACTION
BETWEEN NUCLEAR SPIN LEVELS DUE TO

AN EXTERNALLY APPLIED RF FIELD)

When the nuclear spin levels are perturbed by an externally
applied RF field with energy corresponding approximately to
the difference in energy between the nuclear spin levels, the
nuclei undergoes a periodic oscillatory transition between the
consecutive spin states (Rabi oscillations [5,30]). However,
due to inhomogeneities and lack of coherence in the applied RF
field, the periodic oscillatory transitions decays along with an
exponential decay in the nuclear polarization. Such decay time
is of the order of 100 μs [4,5]. We model the temporal evolution
of the nuclear polarization without taking into account such
periodic oscillatory transition and calculate the occupancy
of the nuclear density of states without bookkeeping of the
correlation terms.

Let us assume that the applied RF frequency is ω. In steady
state, the rate of transition between the s th and the (s + 1)th

nuclear spin levels is given by [30]

Ns(ξ )Ps+1(ξ + h̄ω)rs→s+1

= Ns+1(ξ + h̄ω)Ps(ξ )rs+1→s

⇒ N2
I Ds(ξ )Fs(ξ )Ds+1(ξ + h̄ω[1 − Fs+1(ξ + h̄ω)]rs→s+1

= N2
I Ds+1(ξ + h̄ω)Fs+1(ξ + h̄ω)Ds(ξ ){1 − Fs(ξ )}rs+1→s

⇒ Fs(ξ )

1 − Fs(ξ )

1 − Fs+1(ξ + h̄ω)

Fs+1(ξ + h̄ω)
= rs+1→s

rs→s+1
.

In the above equations, Ds(ξ ), Ns(ξ ), Ps(ξ ), and Fs(ξ ) denote
the normalized density of states of the nuclear state with spin
“s” at energy ξ , density of occupied nuclear states with spin
s at energy ξ , density of vacant nuclear states with spin s at
energy ξ and fraction of the density of states which is occupied
at energy ξ . rs→s+1 denote the rate at which the nuclei can
undergo a transition from the nuclear state with spin ′s ′ to
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the nuclear state with spin s + 1. In general, rs→s+1 = cN for
stimulated absorption and rs+1→s = c(N + 1) for stimulated
+ spontaneous emission. N is the probability of occupancy
of the bosonic density of states for photons with energy h̄ω in
equilibrium at temperature T given by N = 1

e
h̄ω

kB T −1
and c is a

constant of proportionality. Putting these values in the above
equation, we get

Fs(ξ )

1 − Fs(ξ )

1 − Fs+1(ξ + h̄ω)

Fs+1(ξ + h̄ω)
= N + 1

N
= e

h̄ω
kB T .

When the nuclear spins are irradiated by an externally applied
RF field of sufficient power, N + 1 ≈ N . Hence

Fs(ξ ) ≈ Fs+1(ξ + h̄ω).

If the initial occupancy of the sth and (s + 1)th levels be
denoted by F 0

s and F 0
s+1, then

Fs(ξ ) = Ds(ξ )F 0
s (ξ ) + Ds+1(ξ + h̄ω)F 0

s+1(ξ + h̄ω)

Ds(ξ ) + Ds+1(ξ + h̄ω)

= Fs+1(ξ + h̄ω). (D1)

We assume that under the influence of the perturbing RF
frequency the decay of the difference in occupancy between the
nuclear spin levels occurs with a time constant τNMR. Hence the
rate of decay of nuclear spin polarization due to RF frequency
perturbation for the case discussed above is given by

d

dt
[Ds(ξ )Fs(ξ )] = 1

τNMR

πη

2

{
Ds+1(ξ + h̄ω)Ds(ξ )Fs+1(ξ + h̄ω)[1 − Fs(ξ )] − Ds+1(ξ + h̄ω)Ds(ξ )[1 − Fs+1(ξ + h̄ω)]Fs(ξ )

}
= 1

τNMR

πη

2

{
Ds+1(ξ + h̄ω)Ds(ξ )[Fs+1(ξ + h̄ω) − Fs(ξ )]

}
⇒ d

dt
[Fs(ξ )] = 1

τNMR

πη

2

{
Ds+1(ξ + h̄ω)[Fs+1(ξ + h̄ω) − Fs(ξ )]

}
(D2)

Similarly,

dFs+1(ξ )

dt
= 1

τNMR

πη

2

{
Ds(ξ − h̄ω)[Fs(ξ − h̄ω) − Fs+1(ξ )]

}
.

In the above equations, the factor πη

2 acts as a normalization constant. For a nuclear system with more than two spin levels, the
nuclear energy level can interact directly with the levels which energetically lie immediately above and below the level, that is,
a nuclear spin level with spin s can interact directly with the levels with spins s + 1 and s − 1. The equation for time evolution
occupancy of the sth nuclear spin density of states in such a case is given by:

dFs(ξ )

dt
= 1

τNMR

πη

2

{
Ds+1(ξ + h̄ω)[Fs+1(ξ + h̄ω) − Fs(ξ )] + Ds−1(ξ − h̄ω)[Fs−1(ξ − h̄ω) − Fs(ξ )]

}
. (D3)

For a system with four nuclear spin levels, the time evolution of the occupancy of the nuclear spin density of states under the
influence of an externally applied RF field (neglecting correlation) is hence given by:[

dF (ξ )

dt

]
NMR

= diag

(
1

τNMR

πη

2
[	NMR(ξ )][FNMR(ξ,h̄ω)]

)
,

where

	NMR(ξ ) =

⎡
⎢⎢⎢⎢⎣

−D 1
2
(ξ − h̄ω) D 1

2
(ξ − h̄ω) 0 0

D 3
2
(ξ + h̄ω) −[D 3

2
(ξ + h̄ω) + D− 1

2
(ξ − h̄ω)] D− 1

2
(ξ − h̄ω) 0

0 D 1
2
(ξ + h̄ω) −[D 1

2
(ξ + h̄ω) + D− 3

2
(ξ − h̄ω)] D− 3

2
(ξ − h̄ω)

0 0 D− 1
2
(ξ + h̄ω) −D− 1

2
(ξ + h̄ω)

⎤
⎥⎥⎥⎥⎦

FNMR(ξ,h̄ω) =

⎡
⎢⎢⎢⎢⎣

F 3
2
(ξ ) F 3

2
(ξ + h̄ω) 0 0

F 1
2
(ξ − h̄ω) F 1

2
(ξ ) F 1

2
(ξ + h̄ω) 0

0 F− 1
2
(ξ − h̄ω) F− 1

2
(ξ ) F− 1

2
(ξ + h̄ω)

0 0 F− 3
2
(ξ − h̄ω) F− 3

2
(ξ )

⎤
⎥⎥⎥⎥⎦. (D4)
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