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Field-induced diverse quantizations in monolayer and bilayer black phosphorus
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This report provides a comprehensive understanding of the magnetic quantization effects in phosphorene
with the use of the generalized tight-binding model. Especially for bilayer systems, a composite magnetic and
electric field can induce the feature-rich LL spectrum. We demonstrate the existence of two subgroups of Landau
levels (LLs) near the Fermi level according to their distinguishable localization centers. The strong competition
between the two subgroups induces unusual quantization behaviors, such as multiple anticrossings for the Bz-
and Ez-dependent energy spectra. These results are clearly explained by the spatial distributions of subenvelope
functions from which two types of LLs are characterized by being either the usual or the perturbed distribution
modes. The detailed analysis of the diverse magnetic quantizations is quite important in understanding other
physical properties, such as the dispersion relations of magnetoplasmons, magneto-optical selection rules, as
well as electron transport properties. The unusual energy spectra are directly revealed by the special features
of the density of states, which could be further validated by measurements employing scanning tunneling
spectroscopy.

DOI: 10.1103/PhysRevB.95.115411

I. INTRODUCTION

Two-dimensional (2D) layered systems, with nanoscale
thickness and unique geometric symmetries, have initiated
considerable experimental and theoretical studies [1–3]. They
have been successfully synthesized by various experimental
methods to produce for example graphene [4], silicene [5],
germanene [6], tinene [7], and transition metal oxides [8].
Such 2D systems are very suitable for studying novel physical,
chemical, and material phenomena. Specifically, few-layer
black phosphorus (phosphorene) has been produced recently
by using mechanical cleavage [9,10], liquid exfoliation
[11–13], and the mineralizer-assisted short-way transport
reaction [14–16]. These structures inherently have energy band
gaps of ∼0.5−2 eV [17–19], as identified from optical mea-
surements [10,20]. Such gaps are higher than that (∼0.3 eV)
for the bulk [9,17,21], and are in sharp contrast with the zero
or narrow gaps of 2D group-IV materials [22]. Transport
measurements show that a phosphorene-based field-effect
transistor exhibits an on/off ratio of 105 and a carrier mobility
at room temperature as high as 103 cm2/V s [9]. Additionally,
the layered black phosphorus systems display unusual energy
spectra and quantum Hall effects due to magnetic quanti-
zation [23–28]. Similar calculations have been performed
on phosphorene ribbons [25,27]. In a ribbon geometry, the
competition between the quantum confinement and magnetic
quantization would lead to partially dispersionless energy
spectra [29]. Few-layer black phosphorus is expected to have
unparalleled potential in the next-generation electronic and
optical devices [9,30]. Our work is focused on how to produce
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diverse quantization phenomena in monolayer and bilayer
black phosphorus by tuning a composite magnetic and electric
field (B = Bzẑ and E = Ezẑ).

Each phosphorene layer possesses a puckered structure,
mainly due to the sp3 hybridization of (3s,3px,3py,3pz)
orbitals. The deformed hexagonal lattice in the x-y plane
is quite different from the honeycomb lattice of group-IV
systems [18]. This unique geometric structure fully dominates
the low-lying energy bands which are highly anisotropic in
the energy dispersion relations versus the wave vector, e.g.,
the linear and parabolic dispersions near the Fermi energy
EF , respectively, along the k̂x and k̂y directions [18]. The
anisotropic behaviors are clearly revealed in other physical
properties, as verified by recent measurements of the optical
spectra and transport properties [9,30]. This provides a unique
advantage for phosphorene in comparison with MoS2 and re-
lated semiconductors. The unusual anisotropy could be utilized
in the design of unconventional thermoelectric devices. For
example, the thermal gradient and potential difference could
be applied in two orthogonal directions, leading to one having
higher thermal conductivity and another with larger electrical
conductivity [31]. Moreover, this intrinsic property will greatly
diversify the quantization phenomena.

The low-lying electronic band structure is easily tuned by an
external electric and magnetic field. A uniform perpendicular
electric field can create a monotonic increase in the energy
band gap for monolayer phosphorene. In contrast, a high-
frequency laser field could close the band gap [32]. For bilayer
black phosphorus there are drastic changes in the energy
bands producing a gapless band structure after reaching a
critical electric field (Ez,c) [33,34]. There exist rich energy
dispersions as Ez is varied, including the appearance of
parabolic bands, graphene-like Dirac cones, and oscillatory
energy bands. These unusual transitions arise from a strong
competitive or cooperative relation between the intralayer and
interlayer atomic interactions and the Coulomb potentials.
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These will be directly exhibited in the diverse magnetic
quantization phenomena. The generalized tight-binding (TB)
model is further developed to explore the essential electronic
properties in detail [35]. The Hamiltonian is built from the
TB functions on distinct sublattices and layers for which
all interactions and external fields are taken into account
simultaneously. This method can deal with the the magnetic
quantization of electronic states even in the presence of
complicated geometrical structures and external fields [35,36].
Our procedure gives the correct Landau level (LL) spectrum
and wave functions out of the magnetically enlarged unit cell
(see Sec. II). This is essential for obtaining reliable physical
properties, such as magneto-optical and Coulomb excitations.
We report on the application of this numerically intensive
procedure to black phosphorus.

The dispersionless LLs come from the magnetic quan-
tization of neighboring electronic states. The main features
are investigated for monolayer and bilayer black phosphorus
in the presence of a combined electric and magnetic field,
especially for the Bz- and Ez-dependent energy spectra and the
spatial distributions of quantum modes. The generalized TB
model is suitable for investigating the competitive quantization
due to the multiconstant energy loops and the coexistent
extreme and saddle points in the energy-wave-vector space.
This study shows that the LL spectra exhibit a monotonic
or nonmonotonic dependence, and noncrossing, crossing, or
anticrossing behaviors. Furthermore, we obtain two types of
LLs characterized by being either the usual or the perturbed
distribution modes. The anticrossing spectra will be clearly
illustrated by obvious changes in the mixed modes. Specif-
ically, two distinct subgroups of valence (conduction) LLs
near the Fermi level are identified from the distinguishable
localization centers. . The energy spectra are directly revealed
in the special structures of density of states (DOS). They
could be verified from experimental measurements of scanning
tunneling spectroscopy (STS).

II. METHODS

Monolayer phosphorene, with a puckered honeycomb
structure, has a primitive unit cell containing four phosphorus
atoms, as plotted by the dashed green lines in Fig. 1(a). Two of
the four phosphorus atoms are located on the lower (red circles)
or higher (blue circles) sublattice sites. Similar structures are
revealed in few-layer systems, e.g., bilayer phosphorene as
shown in Fig. 1(b). The low-lying energy bands are dominated
by the atomic interactions of 3pz orbitals [18]. The few-layer
Hamiltonian is characterized by

H =
4∑

i=1,l

(
εl
i + Ul

i

)
cl
ic

† l

i +
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(1)
Here, εl

i is zero in a monolayer; for a few-layer system, it
is a layer- and sublattice-dependent site energy due to the
chemical environment. Also, Ul

i is the Coulomb potential
energy induced by an electric field. They both contribute to
the diagonal matrix elements. In the absence of a magnetic
field, the summation is written as �4

i=1,l , but in the presence of

a magnetic field it becomes �
4RB

i=1,l (seen later). In our notation,
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FIG. 1. Geometric structures of (a) monolayer and (b) bilayer
phosphorus, respectively, for the top and side views with various
atomic interactions. Also shown is the first Brillouin zone. The
magnetically enlarged unit cell for monolayer is depicted in (c).

cl
i (c† l′

j ) is an annihilation (creation) operator, t llij and t ′ ll
′

ij are,
respectively, the intralayer and interlayer hopping integrals,
and the effective interactions used in the calculations cover the
fourth and fifth neighboring atoms. These hopping parameters
have been adopted from Ref. [18].

Monolayer and bilayer black phosphorus are assumed to
be present in an applied uniform perpendicular magnetic field.
The magnetic flux through a unit rectangle is � = a1a2Bz,
where a1 = 3.27 Å and a2 = 4.43 Å are lattice constants [the
lattice vectors are shown by the green arrows in Fig. 1(a)]. The
vector potential, �A = (Bzx)ŷ, can create an extra magnetic
Peierls phase of exp {i[ 2π

φ0

∫ �A · d�r]}, leading to a new period
along x̂ and thus an enlarged rectangular unit cell with
4RB = 4φ0 /� atoms in a monolayer, as illustrated in Fig. 1(c).
Here, φ0 (=h/e = 4.1 × 10−15 T m2) is the magnetic flux
quantum; φ0 /� is chosen to be an integer. The reduced
first Brillouin zone has an area of 4π2 /a1a2RB . For bilayer
black phosphorus, the magnetic Hamiltonian matrix is very
large with 8RB × 8RB matrix elements within achievable
experimental field strengths, e.g., the dimension of 16 800 at
Bz = 30 T. The calculation procedure for a two-dimensional
system is in a large contrast to that for a one-dimensional
ribbon [27]. In ribbons, the periodicity along the longitudinal
direction (parallel to the edges) can be independent of the
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magnetic field in a chosen Landau gauge. The quantum
confinement would hinder the magnetic quantization, leading
to the partially dispersionless energy spectra [29] rather than
the dispersionless LLs in a two-dimensional system.

The generalized tight-binding model is based on the
subenvelope functions of the constituent sublattices [35]. The
calculation method is quite different from that in Ref. [28].
In the latter, the magneto-electronic states are the linear
superposition of original k states in zero fields; that is, the wave
functions are the superposition of wave-vector-dependent
states rather than the real-space tight-binding functions. The
spatial distributions of subenvelope functions derived from
the generalized tight-binding model are utilized to charac-
terize the magnetic quantum numbers and the types of LLs.
They are useful for explaining the peculiar LL behaviors
(discussed later). To achieve the experimentally attainable
field strengths, a bandlike matrix is developed to solve the
huge matrix efficiently [35]. Accordingly, we observe the
strong electrically tunable LL spectra in Bz < 60 T. The
methodology simultaneously incorporates the intralayer and
interlayer atomic interactions and the effects of external fields.
It is applicable to study the quantization effect in arbitrarily
stacked layered materials under any form of external fields.
Moreover, the results are accurate and reliable within a wide
energy range.

III. RESULTS AND DISCUSSION

A special lattice structure and multiple hopping integrals are
responsible for the rich energy bands of the black phosphorus
structures we are investigating here. Monolayer phosphorene
has a direct gap of Eg ∼ 1.6 eV near the � point as
illustrated in Fig. 2(a), while group-IV systems have zero
or narrow gaps at the K point [37]. Along the �X and �Y

directions, the energy dispersion relations are approximately
linear and parabolic, respectively. The effective mass along �X

is different than �Y , being affected by the preferred chemical
bonding along x̂ [34]. The conduction and valence bands
are asymmetric about EF = 0. They, respectively, arise from
linearly symmetric and antisymmetric superpositions of TB
functions on the two A and B sublattices. This simple relation
for the same layer is modified in bilayer black phosphorus,
mainly as a result of the finite site energies appearing as the
first term in Eq. (1). Furthermore, the smaller band gap of
Eg ∼ 1.01 eV is reduced by the interlayer atomic interactions.

A perpendicular electric field can greatly diversify the
electronic properties. The band gap Eg of the monolayer is
increased monotonically as the field strength is increased,
shown in Figs. 2(a) and 2(b) (Ez is in units of V/Å). For bilayer
black phosphorus, the first pair of energy bands approaches
EF [Figs. 2(c)–2(f)], whereas the opposite applies for the
second pair. The parabolic bands of the former lead to a zero
band gap near the � point at the critical field Ez,c ≈ 0.3 as
shown in Fig. 2(f). With a further increase in field strength,
their energy dispersions have a dramatic change, illustrated
in Fig. 2(g). Along �Y and �X (unit vectors k̂x and k̂y),
there exist linearly intersecting bands and oscillatory bands,
respectively. Two split Dirac-cone structures are situated on
the right- and left-hand sides of the � point [along +k̂y and
−k̂y in Fig. 2(h)]. Furthermore, the extremum points are just

at the � point, accompanied with two saddle points on the
opposite k′

xs. All the critical points and the constant-energy
loops in the energy-wave-vector space will dominate the main
features of the LL spectra. Specifically, the Coulomb potential
energy differences can create significant probability transfer
between two layers. For example, four TB functions might be
extremely noncomparable for a sufficiently high field strength.
This will play a crucial role in the forms of the unusual LL
wave functions.

The highly anisotropic energy dispersion relation generates
a unique dependence of LL energies on the quantum number
nc,v , which we discuss below, and the magnetic filed strength,
as shown in Fig. 3. Each LL is four-fold degenerate for
each (kx,ky) state because of the spin degree and the mirror
symmetry about the z axis. The (kx = 0,ky = 0) state in the
reduced Brillouin zone is chosen for a systematic study. In
monolayer and bilayer phosphorus, the low-lying LL energies
cannot be well described by a linear relation nc,vBz (the dashed
pink lines), especially for the higher energy and field strength.
This is different from the square-root dependence in monolayer
graphene [38], and the linear dependence in AB-stacked
bilayer graphene [39] and MoS2 [40]. There are two groups of
valence and conduction LLs in bilayer phosphorus [the right
panel of Fig. 3(b)]. Both of them cross each other frequently,
for which the main differences lie in the initiated energies and
the resulting LL spacings. Specifically, the initial LL energy
corresponds to that of the extremum point in the zero-Bz energy
band. The intragroup and intergroup anticrossings, as revealed
in intrinsic ABC-stacked graphene [35], are absent, since all
the well-behaved LLs are quantized from the monotonic band
structure in energy-wave-vector space, which we present in
Figs. 2(a) and 2(c).

The main features of the LLs are dramatically changed by
the electric field for Ez � Ez,c. The LL spectrum could be
divided into three regimes according to the energy ranges of
the distinct energy dispersion, e.g., Ez = 0.32 in Figs. 4(a)
and 4(b). Regimes (I), (II), and (III), respectively, correspond
to the Dirac cone (green), the inner and outer parabolic bands
(between the saddle and extremum points; blue and pink
curves), and the parabolic curve (below or above the extremum
point, i.e., the pink curve). In (I), the zero-energy LLs are
formed at the Fermi level, clearly indicating the magnetic
quantization is initiated from the Ez-induced Dirac point (the
extremum point). Eigenstate degeneracy of the low-lying LLs
is twice that for others, mainly due to the two Dirac-cone
features shown in Fig. 2(h). The LL energy spacings rapidly
decrease with increased quantum number. Specifically, the LLs
in regime (II) present an abnormal sequence, since they come
from a strong competition between magnetic quantization
in the two distinct constant-energy loops. The LL spectrum
becomes well behaved in (III), and its energy spacing is
almost uniform. This directly reflects the normal monotonic
quantization for a parabolic band.

The feature-rich LL spectrum could be fully understood
from the Landau wave functions. The subenvelope functions
are distributed onto the different sublattices and layers. They
are localized near the 1/2 and 2/2 positions of the enlarged unit
cell in the crystal lattice space, being related to the magnetic
quantization at the � point. These states contribute to the
initial LL energy spectra. Similar localization behaviors occur
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FIG. 2. Ez-induced changes of electronic structures for monolayer phosphorene in (a) and (b) and bilayer system in (c)–(g). At Ez = 0.32,
the diverse band dispersions in energy-wave-vector space is shown in (h).

around the two centers, so the 1/2 position is sufficient for
a model study. In general, the identical oscillation modes
are revealed in the two sublattices for the same layer. The
number of zero points in the dominant amplitude distribution
is the quantum number. There are the coexistent main and side
modes for the low-lying LL states at Ez � Ez,c, a feature due
to the cooperation of the multihopping integrals, the Coulomb
potential energies, and the magnetic field. The subenvelope
functions in regime (I) are simultaneously localized on the
left- and right-hand sides of the 1/2 position as shown in
Figs. 4(c) and 4(d), in which the two degenerate states possess
the same weight on the two sublattices and layers depicted

by light and heavy green curves. They are associated with the
magnetic quantization of two neighboring Dirac cones. Such
LL states are regarded as the first subgroup of valence LLs.
When state energies are a little away from the Dirac points,
the zero points in the spatial oscillations increase. The two
separate localization centers then merge, thereby reducing the
LL degeneracy fourfold at Ev < −0.034 eV. The zero-point
numbers of the l1

A and l2
A components quickly increase (pink

curves) when entering into (II). The well-defined oscillation
modes of many zero points clearly demonstrate that such LLs
come from the quantized states of the larger constant-energy
loop. On the other hand, the smaller constant-energy loop can
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FIG. 3. nc-dependent LL energy spectra of monolayer and bilayer phosphorus at various Bz, and (b) for the Bz-dependent ones.

create a second subgroup of LLs (blue curves). The initial
LLs at −0.053 eV, with the dominant zeroth mode in the l1

A

component, correspond to magnetic quantization near the �

point. The competitive quantization between two distinct loops
leads to the unfamiliar LL sequence and spatial oscillations in
(II). That is, there exist crossings and anticrossings of two
subgroups as shown in Fig. 5(a). The subenvelope functions in
regimes (I) and (II) do not present a single-mode oscillation,
and their components on the two layers differ from each
other. But for (III), they are all well-behaved oscillation modes
arising from the monotonic parabolic dispersion, i.e., they are
identical to those of a quantized simple harmonic oscillator

[39]. Specifically, the LL wave functions exhibit the same
oscillation modes on the two separate layers. In short, the two
subgroups of LLs are the magnetically quantized states near
the Dirac and � points. Their strong competition induces the
unusual quantization behaviors.

The LL energy spectra, shown in Figs. 5(a) and 5(b), are
greatly diversified by applying external fields. The valence
and conduction LLs exhibit similar Bz- and Ez-dependent
spectra. The former in regime (I) have a well-behaved Bz-
dependence when the magnetic field is less than 20 T which
can be seen from Fig. 5(a). Their energies could be fitted
by a square-root relation

√
nv

DBz. This dependence is similar
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(I)

(II)

(III)

FIG. 4. At Ez = 0.32, (a) the conduction and (b) valence LLs, and the subenvelope functions of the latter on the (c) first and (d) second
layers. The x axis in (c) and (d) presents the locations of phosphorus atoms in the enlarged unit cell. This unit cell contains a total of 8RB atoms.
Moreover, the different colors used for the curves are associated with the two distinct constant-energy loops and the three energy regions in (b).

to that of monolayer graphene with a linear Dirac cone
[38]. However, the two entangled LLs, which arise from the
anticrossing of two subgroups, appear at higher magnetic
fields. As for the valence LLs in (II), their spectrum presents
two coexistent subgroups for the nonmonotonic relations.
Furthermore, the nv

D and nv
� LLs have opposite Bz dependence.

The crossings and anticrossings occur continuously in an
alternative form. This abnormal Bz-dependent spectrum has
not been reported in other 2D materials. Thus, the unusual
LL spectrum of two competitive subgroups is absent in other
layered systems. The anticrossings clearly illustrate that such
LLs are composed of multioscillation modes seen in Fig. 6.
With the deeper state energies, the LL spectrum changes
into the monotonic Bz dependence, directly reflecting the
parabolic energy dispersion. All the LLs in regime (III)
belong to single-mode oscillations with many zero points. The
complicated LL spectra are also achieved by tuning the electric
field. At Ez > Ez,c for which we refer to Fig. 5(b), there
exist frequent crossings and anticrossings related to the two
subgroups of LLs. The diverse LL spectra will be obviously
revealed in DOSs as special structures, so that they could be
directly identified from the STS measurements.

The anticrossing spectra originate from the Landau states
with the multiple zero points. That is, the LLs are composed of

multioscillation modes, including a main mode and certain side
modes. To prevent the mixed LLs from crossing each other,
both of them must have identical oscillation modes. The drastic
changes of the wave functions during the anticrossing process
between the fourth LLs in the first and second subgroups
are illustrated in Figs. 6(a) and 6(b) (blue and pink curves).
The anticrossing region occurs in the range ∼27.6−31.5 T,
where the most hybridization of the two levels is present
at its center. At the initial field strength, both nv

D = 3 and
nv

� = 3 LLs have the main mode of three zero points in the l1
A

component. Furthermore, the former possesses side modes
with five, seven, and nine zero points. The latter presents
similar side modes for an increase of Bz. The side modes
are enhanced, but the main mode weakened. Such oscillation
modes are mixed at the anticrossing center (Bz = 29.6 T). And
then, the mutlioscillation modes gradually become the typical
ones. Similar transformation of oscillation modes are revealed
in the l2

A component, in which the main and side modes of
the two anticrossing LLs, respectively, correspond to 10 and
(4,6,8,12) zero points. The frequent LL anticrossings occur
in the Bz- and Ez-dependent energy spectra of Figs. 5(a) and
5(b), since the external fields and the intralayer and inter-
layer atomic interactions strongly compete or reinforce each
another.
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FIG. 5. (a) Bz- and (b) Ez-dependent LL energy spectra.

The main features of the energy bands and LL spectra are
directly reflected in the DOS, which is defined as D(ω) =∑

nc,nv

∫
1stBZ

δ(ω − Ec,v(n,k))dk. In the absence of any fields
or in the presence of weak Ez fields, the band-edge states of
parabolic bands create gap-dependent shoulder-like structures,
e.g., Ez = 0.29 in Fig. 7(a) shown as the blue curve. The
initial structures are replaced by a valley-like structure due
to the deformed Dirac cone displayed in Fig. 2(g), when the
gap transition happens at Ez = Ec [Fig. 7(b)]. The symmetric
peaks in the logarithmically divergent form, corresponding
to the saddle points in energy bands, come to exist on both
sides of this valley. The special structures are more obvious
when Ez > Ec, especially for the extended valley structure in

Figs. 7(c) and 7(d). Furthermore, shoulder structures arise from
the extremum � points. The prominent peaks and shoulders
gradually move away from the Fermi energy with a further
increase in Ez. The Ez-induced drastic changes in the energy
bands could be verified from STS measurements of the energy
gap and the valley-like, shoulder, and peak structures [41,42].

A uniform magnetic field induces several δ-function-like
peaks. The height and spacing of peaks reflect eigenstate
degeneracy and energy dispersion of Bz = 0. At Ez < Ec, the
low-frequency DOS peaks have uniform height with four-fold
degeneracy and almost the same spacing as shown as the
red curve in Fig. 7(a), mainly due to the quantization for a
parabolic band [see Fig. 2(e)]. But for Ez � Ez,c, the unusual
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FIG. 6. (a) LL anticrossing energy spectrum (blue and pink curves), and (b) dramatic transformation between oscillation modes on the first
and second layers.

features appear for the energy ranges in Figs. 7(b)–7(d).
There is a pair of peaks centered around the Fermi level
at Ez = Ez,c in Fig. 7(b). With an increase in Ez, a very
prominent peak, with eightfold degeneracy, appears at EF = 0
as we show in Fig. 7(c). Similar peaks, which come from the
quantized Dirac cone, could survive at stronger electric fields
as apparent in Fig. 7(d). The double-peak character at higher
energies is due to two anticrossing LLs. Apparently, all the
low-lying peaks present highly nonuniform spacings. The STS
measurements on the main features of low-energy LL peaks
could provide useful information about the diverse magnetic
quantizations.

Monolayer and bilayer phosphorus are in sharp contrast
with graphene with respect to their electronic properties such

as the field-dependent band structures and LLs. The Dirac
cone for graphene can yield a square-root dependence on Bz

for the LL energy spectrum. Each LL is eightfold degenerate
because of the hexagonal symmetry (or two equivalent valleys)
[39]. The AA- and AB-stacked bilayer graphene structures are
semimetals with band overlaps. The AA stacking could be
regarded as a superposition of two monolayers of graphene in
magnetic quantization; that is, this system has the usual energy
spectra and LL wave functions. However, an electric field
applied to AB stacking leads to an energy gap and valley-split
LLs. The LL degeneracy is reduced by half by destroying the
mirror symmetry about the z = 0 plane. Furthermore, each
split LL subgroup exhibits anticrossing behavior. However, the
coexistent magnetic quantization, which originates from the
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FIG. 7. DOSs of bilayer phosphorus at Bz = 0 and 30 T (blue and red curves) (a)–(d) under various Ez. γ = 0.2 meV is the broadening
factor in calculating DOS.

Dirac-cone structure and the two-constant loops in one valence
(conduction) energy band, is absent in graphene systems. The
lattice symmetries and the intralayer and interlayer atomic
interactions are responsible for the crucial differences.

IV. CONCLUDING REMARKS

The generalized tight-binding model is developed to inves-
tigate the electronic properties of monolayer and bilayer phos-
phorus in perpendicular uniform electric and magnetic fields.
The feature-rich characteristics include the Ez-induced drastic
changes in the energy band structures and the Bz-created
diverse magnetic quantizations. The spatial distributions of
the subenvelope functions are crucial in illustrating the main
features of the LLs, some of which, such as the quantum

number and subgroup classification, can be determined by
the number of zero points and the dominant sublattices. This
method provides an approach for describing other main-stream
2D materials under various external fields. For example, im-
portant differences exist between phosphorene and group-IV
systems in quantization phenomena [36]. Furthermore, it could
be employed in single- and many-particle theories to explore
the essential physical properties, such as the magneto-optical
and Coulomb excitations [43,44].

Single-layer phosphorene only exhibits a monotonic depen-
dence on Ez and Bz in its energy spectra and wave functions.
The electric and magnetic fields can create diverse phenomena
in a bilayer system, such as the gap transition, coexistent
linear, oscillatory and parabolic bands, two subgroups of
LLs, uniform and nonuniform LL energy spacings, and
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frequent crossings and anticrossings. The subenvelope func-
tions present dramatic changes between the well-behaved and
multioscillation modes during the hybridization of two mixed
LLs. The former is identical with a quantized simple harmonic
oscillator, while the latter means a perturbed distribution mode.
The main characteristics for the energy bands and LLs are
reflected in the DOS as various structures, including valleys,
shoulders, and logarithmic and δ-function-like peaks. The
number, form, height, and energy of the LL peaks near the
Fermi level are closely related to the magnetic quantization
arising from the Dirac cone and the two constant-energy loops,

e.g., a stronger peak at E = 0 and the double-peak structures.
The STS measurements on the low-lying special structures
would be useful tools in understanding the competitive or
cooperative relations among the external fields, and the
intralayer and interlayer atomic interactions.
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