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We theoretically study a tunneling effect in a two-dimensional Dirac semimetal with two Dirac points protected
by nonsymmorphic symmetries. The tunnel barrier can be arranged by a magnetic exchange potential which opens
a gap at the Dirac points which can be induced by a magnetic proximity effect of a ferromagnetic insulator. We
found that the tunnel decay length increases with a decrease in the strength of the spin-orbit coupling, and
moreover the dependence is attributed to the correlation of sublattice and spin degrees of freedom which lead
to symmetry-protected Dirac points. The tunnel probability is quite different in two Dirac points, and thus the
tunnel effect can be applied to the highly selective valley filter.
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Dirac semimetal has the gapless energy spectrum of
electrons with a point node at which the conduction and the
valence bands are touched and such a node, a so-called Dirac
point, emerges at a symmetrical point in the Brillouin zone
[1–5]. The electric excitation energy has a linear dependence
on the wave number from the Dirac point at which the even
number of electric states are degenerated. One can control the
low energy spectrum by a symmetry-breaking external field
and change the transport phenomena.

In recent years, several kinds of candidates and theoretical
predictions of the realistic Dirac semimetal in three dimensions
have been proposed [5–8]. The wealth of candidates in three
dimensions is associated with the simple necessary condition
for realization of the Dirac semimetal which requires the band
inversion and crystal symmetry C3. In two dimensions, on
the other hand, there are few candidate compounds with Dirac
points. Graphene had been regarded as a two-dimensional (2D)
Dirac semimetal and studied as a test ground for researching
the unique features of massless Dirac fermions [9]. However,
the linear dispersion in graphene is an approximation even
in a clean system because the spin-orbit interaction opens an
energy gap and it becomes a topological insulator [10,11].

Recently, it was proposed that nonsymmorphic symmetries
are necessary for Dirac points to be stable in a 2D system
[12], and these symmetries also play an important role in one-
and three-dimensional semimetals [13,14]. In practice, it is
shown that the Dirac points in such a 2D Dirac semimetal are
preserved even in the presence of the spin-orbit interaction
[15]. However, the spin-orbit interaction in graphene is quite
small ∼2K , and thus it seems that there is no difference in
ordinary experimental observations between graphene and the
symmetry-protected 2D Dirac semiemtal. Thus it is important
to suggest the different physical property of the electrons in the
symmetry-protected Dirac semimetal from the nearly massless
excitation in graphene.

In this paper, we discuss the tunneling electric transport in
the symmetry-protected 2D Dirac semimetal with two Dirac
points, i.e., the valley degree of freedom. The tunnel barrier
is fabricated by a magnetic exchange potential, e.g., which
is induced by the magnetic proximity effect in a junction
with a ferromagnetic insulator. We show that the perpendicular
component of the exchange field opens a gap in the 2D Dirac
semimetal similar to the surface states of three-dimensional

topological insulators [16,17] or the sublattice-symmetry-
breaking potential in graphene [9]. However, the exchange
potential, unlike that in the three-dimensional topological
insulator, is not a simple mass term for massless Dirac fermions
in the 2D Dirac semimetal because of the spin-sublattice corre-
lation associated with nonsymmorphic symmetry. We find that
the tunnel decay length, unlike ordinary 2D Dirac fermions,
becomes longer with a decrease in the spin-orbit coupling
because of the sublattice-spin correlation in the symmetry-
protected 2D Dirac semimetal, and propose that this tunneling
system plays a role of the highly selective valley filter.

We consider a model Hamiltonian proposed by Young and
Kane for describing electric states in the symmetry-protected
2D Dirac semimetal with a square lattice including two atoms
in a unit cell [12], and the simplest form is given by

H0 = 2tτx cos
kx

2
cos

ky

2
+ t2(cos kx + cos ky)

+ tsoτz(σy sin kx − σxky),

where τ and σ are Pauli matrices in the sublattice and
spin spaces, respectively. The electric states have three Dirac
points M = (π,π ), X1 = (π,0), and X2 = (0,π ) in the first
Brillouin zone. The energy of node at X1 and X2 is equal to
each other but it is different from that at M because of the
chiral symmetry-breaking term t2, and thus there is no dip
of density of states in this model. However, the C2 screw
symmetry-breaking term, which is introduced to simulate
iridium oxide superlattice proposed by Chen and Kee [18],

V1 = �1 sin
kx

2
sin

ky

2
τx,

opens a gap only at the M point. The Hamiltonian H = H0 +
V1 represents a rigorous 2D Dirac semimetal.

The electric transport is associated with the electric states
around the Fermi energy, and thus we can discuss the transport
phenomenon for the Fermi energy near the Dirac node by using
the effective Hamiltonian based on kp theory around the Xj as

HX1 (p) = −tsoτz(σypx + σxpy) + τx(−tpx + �1py),

HX2 (p) = tsoτz(σypx + σxpy) + τx(−tpy + �1px),

with a relative wave vector p = (px,py) from the Xj . In
what follows, we discuss the tunneling effect at only the X1;
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however, the result is applicable to the case at the X2 with
tso → −tso, −t → �1, and �1 → −t .

First, we consider the effect of a magnetic exchange
potential on the electric states in the symmetry-protected 2D
Dirac semimetal and we show that the potential enables us
to open the energy gap at the Dirac node. For instance, such
an exchange potential mμσμ can be induced by a magnetic
proximity effect of the junction with a ferromagnetic insulator,
and the coupling constants mμ can be controlled by changing
the magnetization in the ferromagnetic insulator. To analyze
the effect of the exchange potential, we rewrite the potential
in the basis of the eigenvectors for HX1 ,

U
†
θ,φHX1Uθ,φ =

√
t2
sop

2 + (−tpx + �1py)2τzσz,

where the unitary operator Uθ,φ consists of two rotation
matrices Rσ,θ in the spin subspace and Rτ,φ in the sublattice
subspace,

Uθ,φ = Rσ,θ

1√
2

(1 + iτxσz)Rτ,φ,

with p = (p cos θ,p sin θ ), sin φ = (−tpx + �1py)/ε0, and

Rσ,θ = 1√
2

(σz + σy cos θ + σx sin θ ).

In this basis, the spin operators are transformed into

U
†
θ,φσzUθ,φ = (−σx cos θ + σy sin θ )[τz sin φ

− (τx cos φ + τy sin φ) cos φ],

U
†
θ,φσxUθ,φ = σz sin θ − cos θ (σy cos θ + σx sin θ )[τz sin φ

− (τx cos φ + τy sin φ) cos φ],

U
†
θ,φσyUθ,φ = σz cos θ + sin θ (σy cos θ + σx sin θ )

× [τz sin φ − (τx cos φ + τy sin φ) cos φ].

One can find a particular angle θ0 for any exchange potential
coupling to an in-plane spin to be the identity in the sublattice
space, and thus the in-plane component of the exchange field
mμ preserves the gapless energy dispersion where two Weyl
nodes can be found on the line p with this angle θ0. The
potential coupling to the out-of-plane spin mzσz, on the other
hand, opens a gap in the energy spectrum because it provides a
nonzero component proportional to τμσν even with any angles
θ and φ. We show the energy dispersion in the presence of the
magnetic exchange potential coupling to out-of-plane spin and
in-plane spin in Fig. 1. The effect of the in-plane exchange field
is similar to the separation of the Dirac node into two Weyl
nodes in the time-reversal-breaking Weyl semimetal with an
exchange potential [19].

Next, we consider the tunnel junction arranged by the
exchange potential mσz in the symmetry-protected 2D Dirac
semimetal where the tunneling barrier can be fabricated by
attaching a ferromagnetic insulator locally as shown in Fig. 2.
The junction system can be described by

H = Hξ (0)θ (−x) + Hξ (m)θ (x)θ (L − x) + Hξ (0)θ (x − L),
(1)
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FIG. 1. The energy dispersion of the 2D Dirac semimetal around
X1 with a magnetic moment Hm = mxσx (a), myσy (b), and mzσz (c).

FIG. 2. The schematic picture of the tunneling junction arranged
by a ferromagnetic insulator.
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where the Hamiltonian can be represented in the basis of the
eigenvectors for the glide mirror operator τxσz,

Hξ (m) = (ξm + tpx − �1py)sz − tso(ξsypx + sxpy), (2)

with a Pauli matrix s and the eigenvalue of the glide mirror
operator ξ = τxσz because the glide mirror symmetry is
preserved even in the presence of mσz. Here, the Pauli matrix
s is the pseudospin in the basis of eigenstate for the glide
mirror operator and it represents the staggered alignment of
spin at two sublattices in each spin axis. The eigenstate with
the incident electron with the energy ε for the Hamiltonian (1)
can be written by a wave function consisting of three functions
smoothly connected at the boundaries of the three regions,

� =

⎧⎪⎪⎨
⎪⎪⎩

ψ+
ξ,p+

x
eip+

x x + Rψ+
ξ,p−

x
eip−

x x (x < 0)

C1ψ
+
ξ,q+

x
eiq+

x x + C2ψ
+
ξ,q−

x
eiq−

x (x−L) (0 < x < L)

T ψ+
ξ,p−

x
eip+

x (x−L) (L < x),

where ψ±
ξ,px

is the eigenfunction of Eq. (2). Here, T and R

are the transmission and reflection coefficients. If the two
boundaries of the second region 0 < x < L are assumed
to be parallel to each other, the wave number parallel to
the interface is preserved in the scattering, and the wave
number perpendicular to the boundary is a function of m as
p±

x = k±(m) and q±
x = k±(0) with

k±(m) = − t(ξm − �1py)

t2 + t2
so

±
√(

t2 + t2
so

)(
ε2 − t2

sop
2
y

) − t2
so(ξm − �1py)2

t2 + t2
so

,

(3)

for the eigenstate with the energy ε. The exchange potential
provides a tunnel barrier to the electrons with the energy |ε| <

tso
√

p2
y + (ξm − �1py)2/(t2 + t2

so).
In the tunnel junction, the analytic formulation of the

transmission coefficient T (py) can be obtained by smoothly
connecting the wave functions at the boundaries x = 0 and
x = L, and it can be represented by

T (py)−1 = − e−iq+
x L

[
1 − γ (m,q−

x ,0,p−
x )

γ (0,p+
x ,0,p−

x )

γ (0,p+
x ,m,q+

x )

γ (m,q−
x ,m,q+

x )

× (1 − e−i(q−
x −q+

x )L)

]
, (4)

with

γ (m1,k1,m2,k2) = (ε + m1 + tk1 − �1py)(py + iξk2)

− (ε + m2 + tk2 − �1py)(py + iξk1),

for each channel of py . We show the tunneling probability as
a function of the length of the barrier region L in Fig. 3. One
can find that the mean value of the tunneling probability |TX1 |2
shows the typical property of an ordinary tunnel junction where
the tunneling probability decreases with an increase in L.

However, the damping factor κ = Im[q+
x ] shows the charac-

teristic feature of the symmetry-protected 2D Dirac semimetal
unlike the ordinary 2D Dirac fermion. The damping factor
can be written by a function of the ratio rso of the spin-orbit
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FIG. 3. The tunneling probabilities at X1 as a function of L with
εF = 0.02t , �1 = 0.5t , m = 0.2t , and L0 = t/εF .

coupling constant tso to the hopping matrix t ,

κ =
√√√√ r2

so(ξm/t − �1/tpy)2(
1 + r2

so

)2 − ε2/t2 − r2
sop

2
y(

1 + r2
so

) ,

and the tunnel decay length κ−1 drastically increases with
a decrease in the spin-orbit coupling. This is because the
insulating gap induced by the magnetic exchange potential
reduces with a decrease in the spin-orbit interaction. This
dependence of the gap on the spin-orbit coupling constant is
quite different from the case of the ordinary 2D Dirac fermion
where the gap is fixed by the mass term, i.e., the exchange
potential, and does not change with the strength of the
spin-orbit coupling. The extension of the tunnel decay length
with the spin-orbit coupling can be observed by controlling
the strength tso which can be realized, e.g., by the effect of
substrates.

Finally, we discuss the difference between two Dirac points
X1 and X2 in the tunneling effect. We show the ratio of
tunneling probabilities at two Dirac points as a function of
the relative strength of distortion of the lattice �1/t , which
describes the nonequivalence in the two points, in Figs. 4
and 5. When the distortion is small �1/t � 1, the tunneling
at the X2 point is negligibly small compared with that at the
X1 point. This is because the sublattice degree of freedom
works as a pseudospin and the reflection is suppressed at
the X1 point by a mismatch of the pseudospin between
incident and reflected waves. In Eq. (2), the direction of the
pseudospin is determined by two factors: the hopping matrix
and the spin-orbit interaction. The hopping matrix between the
sublattces with the hopping parameters t and �1 couples to sz

in the subspace, and the spin-orbit interaction is represented
by the in-plane component of the pseudospins sx and sy .
Therefore, the pseudospin is nearly aligned in the z direction
because the spin-orbit interaction is generally much smaller
than the hopping matrix. With a small distortion �1/t � 1, the
pseudospin of the incident wave with 0 < px and the reflected
wave with px < 0 is nearly antiparallel at X1. The incident
and reflected waves at X2, on the other hand, have the nearly
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FIG. 4. The ratio of tunneling probabilities at X1 and X2 as a
function of �1/t with εF = 0.02t and tso = 0.4t .

parallel pseudospin because the sign of py , which is preserved
in the tunneling process, is relevant to its direction. In practice,
the tunneling probability is the same in two valleys under the
condition of �1/t = 1 where the contribution of px to the
alignment of the pseudospin is unchanged between the two
points.

The difference of tunneling probability in two valleys can
be enhanced with an increase in the exchange potential m

and the length of the insulating region as shown in Figs. 4
and 5, respectively. The dominant valley for the tunneling can
be selected by the direction of the tunneling junction. The
asymmetric tunneling effect in two valleys produces the valley
polarized current and gives a way to control the valley degree
of freedom without valley Hall effect.
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FIG. 5. The ratio of tunneling probabilities at X1 and X2 as a
function of �1/t with εF = 0.02t and tso = 0.4t .

In conclusion, we studied the tunneling effect in the
nonsymmorphic symmetry-protected 2D Dirac semimetal
with a tunneling barrier arranged by the magnetic exchange
potential, and found that the tunneling decay length shows
a quite different feature from ordinary 2D Diac fermions
as a function of the strength of the spin-orbit interaction.
The characteristic property is attributed to the C2 screw
symmetry-breaking interaction which preserves the other
nonsymmorphic symmetry about a glide mirror operation and
induces a rigorous 2D Dirac semimetal. We also found that the
tunneling junction works as a highly selective valley filter.
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