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In a tight-binding lattice model with n orbitals (single-particle states) per site, Wannier functions are n-
component vector functions of position that fall off rapidly away from some location, and such that a set of them
in some sense span all states in a given energy band or set of bands; compactly supported Wannier functions are
such functions that vanish outside a bounded region. They arise not only in band theory, but also in connection
with tensor-network states for noninteracting fermion systems, and for flat-band Hamiltonians with strictly
short-range hopping matrix elements. In earlier work, it was proved that for general complex band structures
(vector bundles) or general complex Hamiltonians—that is, class A in the tenfold classification of Hamiltonians
and band structures—a set of compactly supported Wannier functions can span the vector bundle only if the
bundle is topologically trivial, in any dimension d of space, even when use of an overcomplete set of such
functions is permitted. This implied that, for a free-fermion tensor network state with a nontrivial bundle in class
A, any strictly short-range parent Hamiltonian must be gapless. Here, this result is extended to all ten symmetry
classes of band structures without additional crystallographic symmetries, with the result that in general the
nontrivial bundles that can arise from compactly supported Wannier-type functions are those that may possess,
in each of d directions, the nontrivial winding that can occur in the same symmetry class in one dimension,
but nothing else. The results are obtained from a very natural usage of algebraic K-theory, based on a ring of
polynomials in e±ikx , e±iky , . . . , which occur as entries in the Fourier-transformed Wannier functions.
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I. INTRODUCTION

The subject of topological phases in quantum noninter-
acting particle systems, or in linear wave-equation systems,
has grown into a major area of research in condensed matter
physics, which includes the free (i.e., noninteracting) fermion
approximation to topological insulators and superconductors.
Various approaches to the latter problems have lately been
converging around questions of which of the phases can
be represented by examples that possess sets of compactly
supported wave packets for a single particle, constructed from
states in a single band or from a subset of the bands in k
space, that are in some sense complete sets (like Wannier
functions), and with associated single-particle Hamiltonians
in which the hopping matrix elements are strictly short range
(i.e., their range is bounded). (We consider only systems
that are invariant under a discrete group of translations on a
lattice in real [position] space, and have in mind tight-binding
models that have only a finite-dimensional space of orbitals
[single-particle states] available at each lattice site.) The
various approaches just mentioned are (i) tensor network states
[1,2]—the extension of matrix product states [3] to more than
one dimension—which can be applied to interacting [4] as
well as to noninteracting particles; (ii) compactly supported
Wannier-type functions [5,6], an extreme example of Wannier
functions [7], of interest in electronic structure calculations;
and (iii) flat-band Hamiltonians with strictly short-range
hopping [8], an extreme form of the flat-band approach popular
in constructions of topological insulator states, including ones
with interactions.

In each of these areas, which have been progressing largely
independently, there are by now “no-go” theorems [1,8] and
numerical results [6] that in each case say (expressing it
loosely) that some topologically nontrivial phases cannot
be constructed with the techniques mentioned (and with an

appropriate gap in the spectrum of the Hamiltonian in the
model) due to some sort of obstruction. The cases ruled out
are some of those occurring in a space of dimension d larger
than 1. On the other hand, constructions as matrix-product
states have long been known for some nontrivial topological
phases in dimension d = 1 (even if not always under those
names), including some for noninteracting fermions [9]. But
in each approach, many cases among the distinct nontrivial
topological phases remained unresolved.

In this paper, we provide a unified view of these techniques,
and a full solution of the problem for noninteracting topolog-
ical phases in each of the ten symmetry classes [10–12] that
arise on a lattice (in a tight-binding model) that possesses
translation symmetry, but no other crystallographic symmetry,
and in all dimensions of space. The essential nature of the
problem lies in the form of functions in k space, which are
vector functions of k with entries that are polynomials in e±ikx ,
e±iky and so on, that lie in a band (or in the span of the states in a
set of bands) for all k. In position space, these become packets
that have compact support, that is, they vanish outside some
bounded region of the lattice. (Single-particle tight-binding
Hamiltonians that are strictly short-range have matrix elements
that are the same type of polynomials, when written in k
space.) These polynomial functions in k space form certain
algebraic rings, and lead to the use of algebraic methods. The
solution to the question of which phases can be constructed
(subject to some conditions, and under a certain notion of
equivalence of topological phases) is given by a classification
that uses algebraic K-theory of the given rings, in contrast to
the topological K-theory [13] now familiar to physicists in the
classification of noninteracting topological phases in general
[12]. The solution reveals that the only nontrivial topological
phases that can be constructed in these ways in dimensions
higher than 1 are those that are nontrivial only because
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they utilize topology that comes from the one-dimensional
case in the same symmetry class, applied to each of the d

directions in space, together with topology that comes from
the zero-dimensional case in the same symmetry class; thus
for d > 1 these are particular examples of “weak” topological
insulators and superconductors. We also comment on the form
of this general result, and speculate that something similar
should hold for interacting tensor network states. This work
was motivated by the necessity of extending the previous
results on tensor network states by Dubail and the author [1]
(to be referred to as DR) to other symmetry classes.

In the remainder of this introduction, we review the general
problems, the older results, and work by others within the
various approaches, then describe our results. Readers should
note that some basic terms used later are defined in this section
only.

A. Compactly supported Wannier-type functions

The basic natural place at which to begin is the compactly
supported Wannier-type functions, which are the central topic
of the discussion, and which will be defined in this section.
First, however, we recall the nature of energy-band structure.
For a tight-binding model on a lattice (with the translation-
symmetry assumption mentioned above), the single-particle
Hamiltonian is a matrix with rows and columns labeled by
pairs (i,α), where i denotes a site in a Bravais lattice and
α = 1, . . . ,n labels the single particle states, or orbitals, on
each lattice site; α could subsume any spin indices. (Models
for other, non-Bravais, lattices can be brought to this form by
grouping lattice sites in the same unit cell together onto sites of
a Bravais lattice, and treating each group as a single site.) For
the present, the Hamiltonian is generic; it is not required to be
real, nor to have any symmetries other than under translations.
In Fourier (or Bloch) space, single particle states are labeled
instead by k and α (k has components kμ, μ = 1, . . . ,d), with
k in the Brillouin zone which, because of equivalence of ks that
differ by addition of reciprocal lattice vectors, topologically is
a d-dimensional torus, which we call T d . The Hamiltonian in
k space is diagonal in k, and so is an n × n matrix function
of k. Its energy eigenvalues form a set of n continuous real
functions of k, called energy bands. (The bands may cross,
making their identification as n distinct functions nonunique.)
We are more interested in the corresponding eigenvectors, each
of which is an n-component vector that varies with k. Then the
eigenvectors corresponding to any subset of m of the bands at
any k span a subspace of dimension m in the n-dimensional
vector space.

Wannier functions have a long history (see Refs. [7,14]).
They may be associated with a single band, or with a set of
bands. A Wannier function is a wave packet in position space,
taking values in the space spanned by the orbitals for each
site; thus it is a vector with components labeled by the indices
i, α. In the original definition, it and its translates on the lattice
are further supposed to be constructed from the states in a
single band, and to be orthogonal to one another. This can be
accomplished if each of them is the inverse Fourier transform
of a single function of k that is a normalized eigenvector in
the desired band at each k. The lattice translations of such

a Wannier function correspond to inverse transforms of the
same function of k multiplied by integer powers of eikμ for
each μ; the power in each eikμ determines the translation
of the function. (Here and below, for simplicity we treat the
lattice as square, cubic, or hypercubic; other Bravais lattices
behave similarly, and are included by using nonorthogonal
coordinates that correspond to the primitive translations of the
lattice, while k vectors are viewed as being in the dual space
to these coordinates, so that no metric on space or reciprocal
space is ever used.) More generally, one could consider a
set of m functions in k space that are in the span of the
eigenvectors for a set of m bands, vary continuously with k, and
are orthonormal at each k in T d . In order to make the Wannier
functions well localized in position space, the functions in k
space must be smooth, not just continuous. In recent years,
there has been interest in making the Wannier functions as
localized as possible, in some definite sense; these are called
maximally localized Wannier functions. See Ref. [15] for a
recent review.

We will define a broader notion. For theoretical purposes,
orthonormality of the vector-valued functions in k space is not
really required; one may consider only linear independence
and completeness at each k. In fact, in some situations,
linear independence is not essential either, and we can drop
it, in particular we can allow more than m functions of k
(still in the span of the same m bands). But completeness
does seem important. Hence (following DR) we define a
collection of Wannier-type functions to be a set of continuous
vector-valued functions of k which, at each k, lie in and span
the m-dimensional subspace spanned by the eigenvectors in
the m bands in question (the inverse Fourier transforms of
these, and translations thereof, give the actual Wannier-type
functions in position space). We will see that the set can always
be taken to be finite.

The language of vector bundles can be useful in these
problems, even for band theorists. A vector bundle [13,16]
consists of a “base” space B, which for band theory is just the
Brillouin torus T d (points in which can be labeled by k), and
for each k a vector space of the same dimension, m say, for
all k. (In our discussion, the vector spaces are complex.) The
totality of vectors in these spaces forms the “total space” of
the vector bundle, while the vector space at each k is called the
“fibre” at k. The dimension of the fibre at each point is called
the “rank” of the vector bundle; we emphasize that (because
the Brillouin torus is a connected space) it is the same at all
k. In band theory for a tight-binding model, there is a rank n

vector bundle which includes all possible states in k space. For
a set of m bands, the states in those bands (may) form a rank m

vector bundle that is a sub-bundle of that; the fibre at each k is
a subspace of the n-dimensional space. (The notation n and m

for these numbers will be used fairly consistently throughout
the paper.) In order to be a vector bundle, it is crucial that
the fibres vary continuously with k; here that means that the
rank-m subspace (or one could say, the projection operator
onto the subspace) varies continuously with k. (When bands
cross, this may not be satisfied, depending on the choice of
which m bands to consider, and then one does not obtain a
vector bundle. However, for a set of bands that occupy a range
of energies and are separated at every k by a gap or gaps from
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other bands higher or lower in energy, this will hold.) Next, a
“section” of a vector bundle is a function of k that takes values
in the fibre of the vector bundle at each k, that is defined for
all k, and continuous in k. We can see that a Wannier function
corresponds to a section of a vector bundle, however, in general
sections are allowed to vanish at some k. One can consider
sections, or sets of sections, that have additional properties,
such as being smooth, or normalized, and so on. The virtue
of the language of vector bundles in general is that there are
situations in which it is more convenient to speak of the fibre
at k as a vector subspace, rather than of particular vectors,
or of the totality of vectors at all k, rather than of particular
sections. Then in the language of vector bundles, Wannier-type
functions correspond to a set of sections that span the fibre of
the vector bundle at every k. Even if the vector bundle is not
given in advance, we can define a set of Wannier-type functions
to be a finite set of continuous n-component vector functions
of k that at every k span a subspace of dimension precisely m

(the same m at all k); this then defines the vector bundle.
Wannier functions are usually supposed to be well localized

in position space. The inverse Fourier transform of a section
of an arbitrary vector bundle over the Brillouin torus may
not be well localized, because a section is only required to
be continuous (as an n-component vector function of k).
In order to obtain Wannier functions that fall exponentially,
asymptotically at large distance from the Wannier “center”,
one requires that the section of the vector bundle be (real)
analytic as a function of k (again, this means each component
of the vector is an analytic function of k). We will sometimes
use the term analytic for a rank-m vector bundle that is a
subbundle in the tight-binding model, if it has the property
that, for every k in the Brillouin torus, there is a set of m

sections of the vector bundle that are both (real) analytic and
span the fibre at k, or equivalently if the projection operator
into the fibre varies real-analytically with k at all (real) k.
Again, not all vector bundles satisfy this property, however, if
there is an energy gap (above or below) separating the bands
making up the vector bundle from the remaining bands at every
k, then the vector bundle will be analytic.

It has long been realized that in a topologically nontrivial
band, Wannier functions in the traditional sense do not decay
rapidly with distance [17]. This is typically described by
saying something like “there is no smooth gauge” for the
function in k space (the Fourier transform of the Wannier
function). When expressed in the language of vector bundles,
this result becomes immediate. First, we introduce the standard
definition of a trivial vector bundle: a rank m vector bundle
is (topologically) trivial if it has a set of m sections that
are linearly independent at all k (in particular, none of
them vanishes anywhere). Otherwise, of course, it is termed
nontrivial. Note that this definition of trivial and nontrivial
does not require examination of any Chern numbers and
so on, as used for example in Refs. [17]; Chern numbers,
though possibly convenient computationally, in general give
only partial characterizations of vector bundles anyway (i.e.,
a trivial vector bundle has all Chern classes zero, but the
converse does not have to hold). (However, in low dimensions,
i.e., d � 3, the familiar first Chern numbers do characterize
complex vector bundles up to isomorphism; see Sec. III B
below.) Then for a nontrivial vector bundle, any attempt to

find a linearly independent set of m sections (corresponding
to a “choice of gauge”) will find that they cannot be
made continuous (let alone analytic) at all k, while use of
discontinuous “pseudosections” will produce slowly decaying
tails in position space. (A similar result has been discovered
for topological insulators [18].)

Our definition of Wannier-type functions reflects an attempt
to circumvent this result. Even a nontrivial vector bundle can
have a larger set of more than m sections that span the fibre
at every k, but necessarily any subset of size m becomes
linearly dependent at some k. If the sections in the set are
analytic, then the corresponding Wannier type functions will
decay rapidly, and may be useful, at the cost of having to
work with an “overcomplete” set of more than m functions.
Indeed, the construction of a pair of time-reversal noninvariant
sections of the occupied band bundle in a topological insulator
in Ref. [18] can be viewed as an example of this, if one includes
the time-reversed partners of the sections in the set (compare
Sec. III A below).

One type of highly localized behavior for functions is
that they could be compactly supported, that is, vanish
outside some bounded region on the lattice in position space
(this is not necessarily equivalent to other definitions of
maximally localized). In Fourier space, such functions become
polynomials in e±ikμ , that is the degree in each eikμ is bounded
both above and below. We define

Xμ = eikμ (1)

(for the hypercubic lattices); polynomials with both positive
and negative powers of the variables Xμ are called Laurent
polynomials, while the usual kind with only non-negative pow-
ers in Xμ will be called “ordinary” polynomials. (Frequently,
the distinction is not significant.) The use of such functions
has recently been advocated and connected with compressed
sensing [5]. For band structure, the corresponding sections
of a vector bundle can be called (following DR) polynomial
sections. It may be unlikely that a generic band structure has
a vector bundle that admits polynomial sections. However, for
studies of model systems, one can consider band structures
that have (over-)complete sets of polynomial sections for
the vector bundle for, say, the filled bands—in other words,
compactly supported Wannier-type functions. (Such a vector
bundle, which we will term polynomially generated in Sec. II B
below, is necessarily analytic [1].) Then the question has been
raised of whether such models exist for topologically nontrivial
vector bundles (phases of matter) [6]. This is the problem that
is solved in the present paper.

B. Free-fermion tensor networks, parent Hamiltonians,
and no-go theorem

A little earlier, similar issues were discussed in an appar-
ently different setting, that of tensor network states (TNSs).
TNSs are a broad subject, but here we will describe only the
free-fermion versions.

A ground state that corresponds to band structure of the
sort we have been discussing, and with m bands filled, has the
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general form in terms of second quantization

exp

(∫
ddk

(2π )d
∑
α,α

gk,αα c
†
k,αck,α

)
|11 · · · ,00 · · · 0〉. (2)

Here, α = 1, . . . ,m, α = m + 1, . . . ,n, and the reference state
|11 · · · ,00 · · · 0〉 is annihilated by c

†
k,α (ck,α) for all k, or

equivalently by c
†
x,α (cx,α) for all x, and for all α (α).

The creation and annihilation operators obey {ckα,c
†
k′α′ } =

(2π )dδ(k − k′)δαα′ for α, α′ = 1, . . . ,n. We write gk,αα as
gk, which is an (n − m) × m matrix of functions of k in the
Brillouin zone, say [−π,π ]d for the hypercubic lattice.

The ground state is annihilated by single-particle operators
of the form

d
†
k =

∑
α

uk,αc
†
k,α +

∑
α

vk,αc
†
k,α, (3)

where the coefficients obey

vk = gkuk, (4)

where uk (vk) is an m-component (n − m-component) column
vector. These are creation operators for particles in states in
the filled band, and so annihilate the ground state. There are
other operators of a similar form for the empty band.

For a TNS, the coefficients gkαα must be ratios of polynomi-
als [1,2] (if one gkαα is initially a ratio of Laurent polynomials,
then it can be turned into a ratio of ordinary polynomials by
multiplying numerator and denominator by positive powers of
some Xμs). Then we can find solutions for u, v as polynomials.
The equations for them can be rewritten with polynomial
coefficients by multiplying each component by the lowest
common denominator in that row of g. Then they have the
form

Zkwk = 0, (5)

where Zk is fixed (n − m) × n matrix with polynomial entries
and wk is an n-component column vector. The polynomial so-
lutions wk have inverse Fourier transforms that are compactly
supported. When the filled band is determined by such a set
of polynomial equations, we call it a polynomial bundle [1];
this should not be confused with a polynomially generated
bundle, because in general the set of all solutions (together
with their translations in position space) may not contain a set
of Wannier-type functions.

However, if there is a gap in the energy spectrum that
separates the filled from the empty states at each k, then the
vector bundle formed by the filled-band states will be analytic.
In Ref. [1], it was shown that for a polynomial bundle that is
analytic, for each k there is a set of m polynomial sections
[solutions to Eq. (5)] that span the fibre of the filled band
bundle in a neighborhood of that k. Thus, for an analytic
polynomial bundle, there are compactly supported Wannier-
type functions, and conversely it is easy to see that if there
are compactly supported Wannier-type functions, then the
vector bundle is analytic, though not necessarily a polynomial
bundle.

A further strong result, called a no-go theorem, was proved
by DR in Ref. [1]. It says that for band structures as discussed,
if the filled-band bundle is polynomial and analytic, then it is
topologically trivial as a complex vector bundle. (A heuristic

argument for a version of this statement in two space dimen-
sions was given in Ref. [19].) This then implies that if a TNS
state of this type is constructed with a nontrivial vector bundle,
then it is nonanalytic, and hence any parent Hamiltonian for it
must be gapless. Here a single-particle parent Hamiltonian
is one for which there is a set of energy bands in which
the eigenstates span the fibre of the “filled-band” bundle
at each k, and the remainder span the empty-band bundle,
and further the Hamiltonian has strictly short-range matrix
elements. The latter condition is equivalent to having Laurent
polynomial matrix elements in k space (for a Hamiltonian, one
cannot reduce the problem to ordinary polynomials, because
the Hamiltonian has to be Hermitian). More generally, the
result implies that any short-range single-particle Hamiltonian
(with, say, exponentially decaying matrix elements) for which
the states in the filled and empty (i.e., positive and negative
energy) bands span the given nontrivial polynomial filled- and
empty-band bundles must be gapless.

A modified version of the proof of the no-go theorem also
shows [1] that if there are compactly supported Wannier-type
functions for a vector bundle, then the vector bundle is
topologically trivial. This statement is more general than the
no-go theorem for a free-fermion TNS, because for the latter
the polynomial sections are defined by polynomial equations,
and this is presumably less general than simply having a set of
sections given.

These statements about triviality should be interpreted with
care, because in fact the proofs in DR in general establish
only that the bundle is stably topologically trivial, but not
necessarily topologically trivial; however, for d � 3, these
notions are equivalent to each other and to the vanishing of
all Chern numbers. We define and explain the notion of stable
triviality, which is natural in K-theory, in Sec. III B below.

C. Flat-band Hamiltonians

A further area where similar ideas have appeared is flat-
band Hamiltonians for nontrivial vector bundles; here a flat
energy band is an energy band in which the energy eigenvalue
is independent of k over the whole Brillouin torus. When more
than one flat band is present, the case of interest is usually that
in which there are flat bands that all have the same energy
eigenvalue (regardless of whether or not the remaining bands
are also flat, with different energy). A particular question
that has appeared [8] is whether the Hamiltonian that has
the flat band or bands can have strictly short-range matrix
elements. (This paper appeared earlier than the published
version of Ref. [1], but later than the first version and Ref. [2];
it was unfortunately not known to us until a late stage in
the present work.) We note immediately the similarity to the
parent Hamiltonians discussed in the preceding section. In
Ref. [8], the authors proved that for such a two-dimensional
Hamiltonian with a single flat band, or a degenerate set
of flat bands, the Chern number of the (set of) band(s)
must vanish. Further work on related problems appears in
Ref. [20].

We can give a short proof of the result of Ref. [8] as a
consequence of the no-go theorem mentioned in the preceding
section. First, we notice that the eigenvalue problem for the
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flat band (or degenerate flat bands) is given by

Hkwk = 0, (6)

where wk is again a section of the vector bundle defined by the
flat bands, Hk has Laurent polynomial entries, and we have set
the energy of the states in the flat band to zero by a shift of the
Hamiltonian by a multiple of the identity if necessary. After
multiplying by positive powers of Xμs (as necessary), these
equations have the same form as the polynomial equations (5).
Thus the flat-band vector bundle is polynomial. If we assume
that an energy gap is present above and below the flat band
at all k, then it is also analytic; this assumption seems to be
implicit in the problem at hand. Then it follows from the DR
no-go theorem [1] that the vector bundle is stably trivial. This
includes the d = 2 result of Ref. [8], and in fact goes further,
as it applies in all dimensions d of space.

The flat-band problem is less general than the TNSs, be-
cause in the former case the polynomial equations involve the
Hamiltonian, not a more general matrix, and the Hamiltonian
must be Hermitian at each k, unlike the Zk matrix above. We
see that the problem of compactly supported Wannier-type
functions is the most general of all.

D. Symmetry classes, role of algebraic K -theory, and results

The full topological classification of the ten symmetry
classes of band structures for noninteracting particles (or linear
wave equations), with a gap in the energy spectrum, on a lattice
with translation, but no other crystallographic, symmetries was
introduced in Refs. [11,12]. It was connected with topological
K-theory by Kitaev [12]; see also Refs. [21,22]. The basic
meaning of each of the ten classes will be explained later in
the paper as we go through the cases.

In the present paper, the goal is to generalize the no-go
theorems already mentioned, which were for the general
case of band structures for complex hopping Hamiltonians,
or for complex vector bundles, to all of the ten symmetry
classes that occur when the system has translation symmetry
but no other crystallographic symmetries. These will include
the paired states, or superconductors, for which particle
number is not conserved; these can always be mapped onto
number-conserving single-particle models by “doubling” in a
well-known way.

If one starts by examining the compactly supported func-
tions, or polynomial sections, it soon becomes apparent that
an algebraic approach may be fruitful. As explained above,
given a finite set of compactly supported functions, one can
obtain others by applying translations in position space, and
by taking linear combinations of the functions and their
translates. (Our analysis always assumes that the lattice is
infinite, though the results nonetheless have applications in
finite systems with periodic boundary conditions.) We restrict
the linear combinations to consist of finitely many terms, each
of which is some translate of one of the (finite) initial set of
compactly supported functions; this condition ensures that the
combinations are again compactly supported. In Fourier (k)
space, translation in position space becomes multiplication
by factors like Xμ (defined above) to positive or negative
integer powers, and so we are taking linear combinations of
the given set of polynomial sections, with coefficients that are

polynomials in Xμ with complex coefficients in the polynomial
(in the simplest case of complex vector bundles without further
symmetries, as in all examples so far). The set of all such
combinations forms what is called a “module” over the ring
of such polynomials, and the module is said to be “generated”
by the initial compactly supported functions or polynomial
sections; this is analogous to having a vector space that is
generated (spanned) by a given finite set of vectors, meaning
that all others are obtained as linear combinations of the latter
with complex coefficients. The difference is that the “scalars”
are now taken in a ring (of polynomials), rather than belonging
to the field of complex numbers, while the vectors are actually
vectors of polynomials in Xμs (and so both the scalars and
the vectors can be viewed as functions of k), and this makes a
significant difference to the structure, which can be much less
trivial than it is for vector spaces with complex scalars.

It turns out that algebraic K-theory provides appropriate
tools for classifying this structure. (For experts, we men-
tion that we need only the “lower” algebraic K-theory of
Grothendieck and Bass, not the “higher” theory of Milnor
and Quillen.) In particular, our goal is to classify which of the
topological classes of bundles in each symmetry class can be
generated by a set of polynomial sections; this classification
is the desired extension of the no-go theorem to the remaining
nine symmetry classes. For this, we need to associate a
topological K-theory class (or element of the K group, or
values of a complete set of numerical invariants characterizing
such classes or elements), as in Ref. [12], with the bundle
generated by the compactly supported Wannier-type functions.
This information can be obtained from algebraic K-theory
groups because of the existence of natural maps from the latter
into the topological K-group classification (a similar approach
was also used in Ref. [8]); hence it is useful first to classify
the possible modules using algebraic K-theory, for each of the
ten symmetry classes, before checking that the maps to the
topological theory work properly.

The final results can be characterized as follows. One does
not quite have a no-go theorem, saying that no non-(stably)-
trivial band structure can be obtained, but instead there is a
very limited set of possibilities. To describe this, we point
out that (in some of the symmetry classes, though not for the
complex vector bundles as in DR), there can be a nontrivial
“winding number” of the vector bundle (or of some aspect
of it) as a function of k along a closed path in the Brillouin
torus that winds around it, for example a path along one of
the coordinate axes. Such winding can occur in that symmetry
class in any dimension, and in the case of d = 1 dimension it
provides the only possible nontrivial invariant of the bundles,
taking values in some cases in the integers Z, and in other
cases in Z/2 (read as “Z mod 2”, i.e., the group with two
elements); in five of the ten symmetry classes, the invariant
can only be zero. In higher dimensions for the symmetry
classes, the same values as in one dimension for the same
symmetry class for these winding-number invariants can occur
independently for each of the d directions of k space, giving
groups consisting of d tuples of elements of either Z or Z/2, or
else the trivial group. In the topological classification, there are
topological classes distinguished by nonzero values of other
invariants (such as a Chern number) as well as by the winding
numbers. But the result of the algebraic analysis for the bundles
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obtained from compactly supported Wannier-type functions is
that the only nontrivial instances are those with nontrivial
winding numbers as just described, and which are trivial in
all other ways, except in some cases for a global invariant
coming from zero dimensions. In zero and one dimensions,
these cover all topological classes, but in more than one
dimension these instances are particular examples of “weak”
topological insulators or superconductors, in which the only
nontrivial topology essentially arises from what is possible
in one dimension in that symmetry class, applied to each of
the d directions of k space, together with what is possible in
zero dimensions. For d > 1, none of the “strong” topological
insulators or superconductors can be obtained from compactly
supported Wannier-type functions or as free-fermion TNSs.
For the reader’s convenience, these results are spelled out in
full detail, without the technical derivation, in Sec. VI, where
a table also appears that makes comparison with the general
case in zero, one, and two dimensions.

The plan of the remainder of the paper is as follows. Section
II gives some of the mathematical background used. Sections
III, IV, and V give the detailed analysis, first for the three
classic Wigner-Dyson classes (Sec. III), then for the three
chiral symmetry classes (Sec. IV), and finally for the remaining
Altland-Zirnbauer classes (Sec. V). Each of these sections
consists of two parts, the first describing the relevant features
of the symmetry classes, the second the algebraic K-theory
analysis of them (including the mapping into topological
K-theory). Much of the structure of the arguments in the
later sections is the same as that in Sec. III, which should
be read carefully. Section VI, as mentioned, includes a
summary of the precise results, and also some discussion of the
underlying reasons for the results, and a conjectured extension
to interacting systems. The final section is Conclusion.

II. MATHEMATICAL BACKGROUND

A. Algebraic background and definitions

This section mostly provides background, but can be
skimmed and referred back to later. For this general back-
ground, see also Refs. [23–26]. We recall that a ring is a set of
elements that forms an Abelian group under addition (with 0
as the identity) and has an associative multiplication operation
that distributes over addition; we denote a generic ring by
R. All our rings have the multiplicative identity element,
written 1. A ring is called commutative if multiplication
is commutative. The elements in a ring R that have a
multiplicative inverse in R are called the units, and form a
multiplicative group denoted R×. A division ring is a ring in
which every nonzero element is a unit; a commutative division
ring is a field. A ring R is an algebra over a field F if the center
of R (the set of elements that commute with all elements)
contains a copy of the field F (with the multiplicative identity
identified with that in the field); thus an algebra is a vector
space over F with an associative and distributive multiplication
(with an identity) defined on the vectors. Our most basic
examples of rings are the integers Z, real numbers R, complex
numbers C, and quaternions H. The latter are defined as linear
combinations, using real coefficients, of the identity 1 and
elements î , ĵ, k̂ (not to be confused with vectors k) subject to

the relations

î2 = ĵ2 = k̂2 = î ĵk̂ = −1. (7)

R and C are of course fields, and H is a noncommutative
division ring. R, C, and H are also algebras over the field
R, and are the only finite-dimensional associative division
algebras over R.

We will also use some polynomial rings. The simplest are of
the form R[X1, . . . ,Xd ], with d � 0 indeterminates Xμ,μ =
1, . . . ,d, and consist of polynomials in the Xμs with coeffi-
cients in a ring R; addition and multiplication are defined in
an obvious way. We will also use extensively the rings of Lau-
rent polynomials, denoted R[X1,X

−1
1 ,X2,X

−1
2 , . . . ,Xd,X

−1
d ],

which are polynomials with both positive and negative powers,
but with the exponent of each Xμ in a polynomial bounded
both above and below. More generically these two types of
polynomial rings will be written R[Xμ] and R[X±1

μ ]. For the
following Laurent polynomial rings, we will use notation

R1 = C
[
X1,X

−1
1 , . . . ,Xd,X

−1
d

]
,

R2 = R
[
X1,X

−1
1 , . . . ,Xd,X

−1
d

]
, (8)

R3 = H
[
X1,X

−1
1 , . . . ,Xd,X

−1
d

]
,

or R
(d)
i (i = 1, 2, 3) when we wish to specify the space

dimension d. The last of these rings R3 is not commutative.
Each of them contains an image of the underlying ring R,
consisting of the constant polynomials (with no Xμ appearing
in the expression). Further, the units (invertible elements) in
the polynomial rings R[Xμ] with R = R, C, or H are precisely
the nonzero constants, while those in the Laurent polynomial
rings Ri are the monomials, of the form

c
∏
μ

X
mμ

μ , (9)

where c is a nonzero constant and mμ are integers, as
may easily be checked. All polynomial rings (Laurent or
not) over a division ring are both right and left Noetherian
(see Refs. [23,24,26] for the definition and the result); the
distinction between right and left lapses for commutative rings.
R1 and R2 are unique factorization domains (as is Z), that is any
element [a (Laurent) polynomial] can be factored into prime or
irreducible polynomials, and the prime factorization is unique
up to permutation of the factors and multiplication of factors
by units. [This is well-known for the ordinary polynomial
rings over a field [23], and for Laurent polynomials follows by
shifting exponents (by multiplying by units) until all exponents
of all Xμ are non-negative.]

We will use modules over various rings. A module M over
R (an R module) is a set of elements that form an Abelian
group (written additively), with an action of the ring R taking
any element of the module to some other element, written
as multiplication: if m ∈ M, r ∈ R, then m → mr is the
map, with (m1 + m2)r = m1r + m2r and (mr1)r2 = m(r1r2).
Notice that we write the element of the ring acting from the
right, so all our modules are right modules unless otherwise
stated; for commutative rings R, a right module can be viewed
as a left module (or vice versa), but for noncommutative
rings, right and left modules are distinct. (Many properties
of a ring are module-theoretic in character, and so, in the
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noncommutative case, are defined for right or left action, as
for “Noetherian”, which was already mentioned. When the
term “right” appears before the name of a property, it means
that there is a parallel definition for the “left” version.) The
ring R is both a left and right module over itself (i.e., a
bimodule). A homomorphism from one module to another,
both over the same ring, is a “linear” map that commutes both
with addition and with the action of the ring on the modules.
An isomorphism is a homomorphism that has an inverse
homomorphism; we write A ∼= B when an isomorphism exists.
Usually our modules M will be finitely generated (f.g.), that
is, there is a finite set of generators in M such that any element
can be expressed as a linear combination of the generators,
with coefficients in R. A submodule of a module is any subset
that also forms a module. A direct sum, written M1 ⊕ M2

of modules over R is really a module consisting of all pairs
(m1,m2) with m1 ∈ M1,m2 ∈ M2, with addition of pairs, and
multiplication of a pair by an element of the ring, defined
componentwise. It will be common to say that some module
“is” a direct sum if it is isomorphic as a module to a direct sum
of modules; in this case the module is “decomposable” as a
direct sum. It is important that in general when a module has a
submodule, the module is not necessarily a direct sum (unlike
for representations of finite groups, for example).

Different types of modules will enter this work. Some are
free modules, which can be generated by n generators that
are linearly independent over the ring. (We will usually only
require f.g. free modules.) Using the generators, an f.g. free
module, say F , can be represented faithfully as the set of all
column vectors with entries in R, and so is isomorphic to
Rn (the iterated direct sum of n copies of R) for some n.
Such a free module is said to have rank n. If the ring is right
Noetherian, then any submodule of a finite-rank free module
is finitely generated [23–26]. As examples, we mention that
modules over a division ring are always free, and can be termed
“vector spaces” over the division ring. This includes the case
of noncommutative division rings such as the quaternions H
[27], as well as the fields R and C.

An important tool is the idea of an exact sequence. If A,B C

are modules over R, then a pair of maps (homomorphisms)
φ1 : A −→ B and φ2 : B −→ C form an exact sequence

A
φ1−→ B

φ2−→ C (10)

if and only if the image im φ1 of A under φ1 is precisely
the kernel ker φ2 of φ2 (both the kernel and the image of a
homomorphism are modules). Thus not only do they compose
to give the zero map φ2 ◦ φ1 = 0 from A to C, but the first
map is a surjection onto the kernel of the second. When more
maps are present, as in

A1
φ1−→ A2

φ2−→ · · · φn−1−→ An, (11)

then the statement that the sequence is exact means that
exactness holds at each term at which there is both a map
in and a map out, as for A2 through An−1 here. In particular, a
“short exact sequence”

0 −→ A
φ1−→ B

φ2−→ C −→ 0 (12)

means that C ∼= B/A as a module, or strictly C ∼= B/im φ1.
In this case, one can say that A is (isomorphic to) ker φ2, while
C is (isomorphic to) the cokernel of φ1, that is, B/im φ1.

Another important class of modules are the projective
modules [24–26] (they must not be confused with projective
representations, which are entirely different). They can be
defined in several ways. One way is as a module that is
isomorphic to a summand in a free module. Thus P is
projective if and only if there is a P ′ such that P ⊕ P ′ ∼= F

for some free module F (it follows that P ′ is also projective);
for P finitely generated, P ′ and F can be taken to be finitely
generated. Clearly, any free module is projective. Another way
to define a projective module is by saying that any short exact
sequence ending in a projective module splits, that is, P is
projective if and only if for any short exact sequence ending
in P ,

0 −→ A −→ B −→ P −→ 0, (13)

we have B ∼= A ⊕ P .
We will sometimes need the general notion of a tensor

product over a ring that may be noncommutative. If M1 is
a right module and M2 is a left module over R, then the
tensor product M1 ⊗R M2 is generated (over Z, in the basic
case) by the set of pairs (m1,m2) of elements m1 ∈ M1,m2 ∈
M2, modulo relations that make it bilinear in m1 and m2

under addition, and also such that elements of R can be
moved between the factors: (m1r) ⊗ m2 = m1 ⊗ rm2 for all
m1,m2, r ∈ R. The tensor product is not always a module over
R, though it is always a module over Z. But for a bimodule,
one does get a module. For example, as R is a right-left R

bimodule, for any right R module M,M ⊗R R ∼= M as a right
module.

Sometimes it is desired to relate modules for one ring
to those of another, when the rings can be related. Given a
homomorphism from one ring R to another S, say ϕ̂ : R −→
S, modules over R and S can be related. Suppose for simplicity
(as for the case we will use) that R is a subring of S, so ϕ̂

is an inclusion. One way to relate the respective modules is
via the pullback or forgetful map: in view of the inclusion, a
module M over S is automatically a module over R. Formally,
this can be expressed using the tensor product, because S can
be viewed as a left S module and as a right R module, so
M ⊗S S (which is isomorphic to M as an S module) is a right
R module. On the other hand, there is also the change-of-rings
map. Given a right R module N , and using S viewed as a
left R module and right S module, N ⊗R S produces a right
S module, which is likely to be larger than N . For example,
in the context of representation theory of groups, one studies
modules over the group algebra. For a subgroup H of a group
G, there is a corresponding inclusion of group algebras, and the
pullback and change-of-rings maps are known as restriction
and induction, respectively. It will be helpful to realize that
when one has a set of generators for an R module, it can be
proved that the change-of-rings map produces a corresponding
set of generators for the resulting S module; in particular, the
latter set of generators has the same cardinality as the former.

Finally, we should mention that the collection of all
modules over a ring R, together with the homomorphisms
between them, form a category [24–26]. The modules are the
objects, and the homomorphisms are the maps (or arrows, or
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morphisms) of the category; a morphism into a module can
be composed with a morphism out to yield another morphism,
and there is a unique identity morphism from each object to
itself. (The subcollection of all f.g. modules together with all
homomorphisms between them forms a “full” subcategory, as
does the collection of all f.g. projective modules likewise).
Maps between categories are called functors; one has to
specify an image under the functor for each object and for
each morphism, with the condition that the functor respects
composition of morphisms and the identity morphisms. The
pullback and change-of-rings maps mentioned above in fact
define functors between the categories of modules of the two
rings.

B. Vector bundles as modules

We have already discussed the notion of a vector bundle.
Here we want to relate vector bundles to modules over a
ring, and so make contact with the algebraic approach. First,
given a (finite-rank) complex vector bundle over a base space
B (such as a subbundle of a rank-n trivial vector bundle,
as for the vector bundle associated to some bands in a
tight-binding model; then B is the Brillouin torus), we can
consider the space of all its sections. It is clear that these form
an (infinite-dimensional) vector space over C, and that the
vector bundle can be recovered from its space of sections. (This
space is not a Hilbert space, but can be completed to obtain
a “single-particle” Hilbert space consisting of “states” in the
bundle, expressed as vector-valued functions on B, by using
a nondegenerate inner product on each fibre, and integration
over B with some measure, to obtain the inner product on an
L2 space formed from the bundle. For the case when B is
the Brillouin torus, this Hilbert space is equivalent to that of
single-particle states in the original lattice. This is a good place
to point out that, except for passing inessential references to
orthonormality or to unitary matrices on the fibre, we make no
use of these inner products on the fibre and on the bundle in
the arguments in this paper.) If we introduce the ring CC(B)
of continuous complex functions on B, then because we can
take linear combinations of sections using elements of CC(B)
as coefficients, the space of sections is in fact a module over
CC(B).

Further, Swan’s theorem [28] says that if B is a compact
Hausdorff space, then a module over CC(B) is isomorphic (as a
module over CC(B)) to the space of sections of a vector bundle
if and only if the module is finitely generated and projective.
Thus, when B is compact and Hausdorff, the f.g. projective
CC(B) modules are precisely the spaces of sections of vector
bundles. [It is clear that a free CC(B) module corresponds to a
trivial vector bundle over B.] Being projective means that for
any vector bundle (such as a filled-band bundle in our case),
there is another vector bundle such that the direct sum (i.e., the
direct sum of the fibres at each k, also known as the Whitney
sum) of the two is a trivial vector bundle (indeed, in our basic
example, we also have an empty-band bundle, and these are
two subspaces of the fibre at each point in k space, so the direct
sum is the trivial vector bundle of the tight-binding model).
The condition that the rank of the vector bundle is constant
on B (which we can assume is connected) is necessary for
this to be valid. Being finitely generated means that there is

a finite set of sections that generate the module, that is such
that combinations of them (with continuous complex function
coefficients) span the space of sections, or in particular span
the fibre at each point of B. The assumptions that B is compact
and Hausdorff ensure that this is true for a vector bundle. We
note that similar statements can be made for types of vector
bundles other than complex ones, such as the ones we will
encounter later.

Our definition of a set of Wannier-type functions (after
Fourier transform) was a set of sections that span the fibre at
all points k in B = T d , the d-dimensional (Brillouin) torus
T d , and hence which generate the space of sections as a
module over the ring CC(B). Hence part of Swan’s theorem
guarantees that the set can be assumed to be finite. Notice that
the mathematical argument (and our definition) only required
sections to be continuous, and that if stronger smoothness
conditions are placed on the sections (so that in position space
they decay rapidly), this might change the result; whether a
finite set obeying such conditions exists in general is outside
the scope of this paper. We will be discussing finite sets of
Wannier-type functions that are analytic, indeed polynomial,
sections.

When we turn to compactly supported packets within some
set of bands, in k space each one corresponds to a section of
the vector bundle, and in our standard basis derived from the
tight-binding model these are vectors with Laurent polynomial
entries. If we have a set of compactly supported Wannier-
type functions, then we have a set of polynomial sections that
generate the projective module of all continuous sections. We
will call this a set of polynomial generators for the module
(or by abuse of language, the vector bundle), and say that a
vector bundle that is a subbundle of a trivial vector bundle
and has a set of generators that are polynomial sections is a
polynomially generated module (over CC(B)) or vector bundle.
This terminology is briefer than saying that the vector bundle
admits a set of compactly supported Wannier-type functions;
we note that we already used the term polynomial bundle for
a different notion.

The ring R1 of complex Laurent polynomials can be related
to CC(B) when B = T d by evaluating each Xμ as a complex
number with |Xμ| = 1. A Laurent polynomial then becomes
a continuous function on the torus [these functions are dense
in the sup-norm topology on CC(T d ), but we make no use of
this fact]. Hence we have a homomorphism of rings R1 →
CC(T d ), which is injective, so R1 is a subring of CC(T d ).
A module over R1 consisting of some set of n-component
vectors with polynomial entries (i.e., a submodule of a free
module) then produces a module over CC(T d ) simply by
combining the polynomial vectors (sections) using arbitrary
continuous complex-function coefficients. This is an instance
of the change-of-rings functor corresponding to the inclusion
R1 ⊆ CC(T d ). (This functor was already used in Ref. [8]
and in a less formal way in DR [1].) This functor always
maps a projective module to a projective module (a vector
bundle). However, if the R1 module is not projective, the
resulting CC(T d ) module may not be projective, and so
may not correspond to a vector bundle. If there is a finite
set of generators (consisting of n-component vectors with
polynomial entries) for the R1 module, then after change of
rings those generators are viewed as n-component vectors
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with polynomial functions of k as entries, and generate a
CC(T d ) module, which is a submodule of the free module
CC(T d )n. Thus our condition that the compactly supported
Wannier-type functions span the fibre (with constant rank) at
each k ensures (by construction) that the change-of-rings map
produces a polynomially generated bundle, or in other words,
that the resulting module over CC(T d ) is in fact projective. This
condition is weaker than the condition of being a projective
R1 module. In order to obtain results about vector bundles, the
use of this condition will be crucial to our treatment.

III. WIGNER-DYSON CLASSES A, AI, AND AII: K0(R)

Now we begin to describe the extension of the no-go
theorem to other symmetry classes. The simplest cases are
the classic Wigner-Dyson symmetry classes, which (like the
others) originated in the context of random matrix theory.
These are known as the unitary, orthogonal, and symplectic
ensembles, or as symmetry classes A, AI, and AII. The
unitary class A was already covered [1], but we will include
some review of that case here. In these classes, the basic
issues involve vector bundles of certain types; this part of
the discussion is also relevant for the other classes later.

A. Cases AI and AII

We will begin with general descriptions of these symmetry
classes in the context of translation-invariant single-particle
Hamiltonians. The use of a Hamiltonian here is solely to
motivate the symmetry structure; the arguments in the proof
refer only to the module of sections of the filled-band bundle,
not to a Hamiltonian.

As mentioned already, for class A the single-particle
Hamiltonian H is allowed to be complex, and in k space is
a Hermitian n × n matrix for each k, continuous (or even
smoother) in k. For the orthogonal class AI, we simply require
the Hamiltonian H in position space to be real; we can think
of this as a statement of time-reversal symmetry, implemented
by an antiunitary operator T̂ with T̂ 2 = +1, and the time
reversal operation T̂ reduces to complex conjugation T̂ = K;
thus T̂HT̂ −1 = H means H is real. (Strictly, this statement is
basis dependent, and one should say that there exists a basis
in which the Hamiltonian is real; by saying the Hamiltonian
is real we have chosen such a basis once and for all. In fact,
we are assuming that it is real in a basis of the form natural
for a tight-binding model, as already defined.) In k space, the
Hamiltonian splits into blocks Hk labeled by k, which are
Hermitian. Now the matrix elements in k space are the Fourier
transforms of corresponding “hopping” functions f (x) (for
a displacement by x) in position space, which are real. The
Fourier transform fk of such a function obeys

f−k = fk, (14)

where ¯ is complex conjugation. Atiyah [29] calls such a
function (of k) Real (with a capital R) instead of real. In
fact, he defines a Real space B (such as our Brillouin torus)
to be one with an involution that sends a point x ∈ B to
a “conjugate point” x̄ ∈ B (where the bar does not mean
complex conjugate), with ¯̄x = x. In our case, the map is
k −→ −k, which is well defined modulo reciprocal lattice

vectors. We may now describe our time-reversal–invariant
Hamiltonian Hk by saying that its matrix elements are Real;
it obeys

Hk = H−k, (15)

where ¯ on a complex matrix stands for complex conjugation
of each matrix element.

Because the Hamiltonian in position space is real and
symmetric, its eigenvectors can be chosen to be real. In
k space, these become Real vectors, and we can speak of
Real sections of the vector bundle; the inverse transform of a
Real section is a real wave packet in position space. In this
case, the filled-band bundle has a Real structure [29], that is
a map of the total space that sends vectors in the fibre at x

to ones in the fibre at x̄, which is antilinear (like complex
conjugation) on each fibre and squares to the identity. Hence
the vector bundle formed by the filled-band states is a Real
vector bundle. Without loss of generality, it can be studied as a
module (over the ring of continuous Real functions) consisting
of Real sections only. Clearly, there are sections of the (Real)
vector bundle that are not Real, however, any such section
can be decomposed as a sum of two Real sections (using the
Real and “Imaginary” parts), so no information is lost. This is
similar to studying a complex vector space with a real structure
(i.e., the operation of complex conjugation) in terms of real
vectors only. Note that for the eigenvectors of the Hamiltonian,
the Real symmetry implies that if wk is an eigenvector of
Hk with energy eigenvalue Ek, then wk is an eigenvector of
H−k with the same energy eigenvalue E−k = Ek, and we can
choose phases and identify the eigenvectors as w−k = wk.
When this holds for all k, these are vectors with Real entries.

When we turn to compactly supported functions and
polynomial sections, we must consider Real polynomials.
These are polynomials in the Xμs, and should be Real
functions. But the conjugate of Xμ = eikμ is, for real k, just Xμ

evaluated at −kμ. So the involution on T d leaves Xμ invariant.
Then Real polynomials are simply polynomials in the Xμs
with real coefficients; they form the ring R2 already defined.

Now we turn to the symplectic class AII. In this case, we
think of spin-1/2 particles, and there is time-reversal symmetry
acting in the Kramers mode, with T̂ 2 = −I in the single-
particle Hilbert space. For a general one-particle Hamiltonian
H acting in a finite-dimensional Hilbert space of orbitals for
either spin, we define T̂ (with conventional choice of basis) to
be

T̂ = KU, (16)

where K is complex conjugation, and U is unitary, with

U = iσy ⊗ I (17)

(where the second factor is the identity on the space of orbitals,
the first acts in the spin space, and

σx =
(

0 1
1 0

)
, σy =

(
0 −i

i 0

)
, σz =

(
1 0
0 −1

)
(18)

are the usual Pauli matrices). We write matrices like σα ⊗ I

generically as �α (α = x, y, or z) for a tensor product space
of this form for any dimension of the second factor, and also
i�y as J , so T̂ = KJ .
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Time-reversal symmetry means that

T̂HT̂ −1 = H. (19)

Because of the structure of J , this can be reduced to a similar
condition for the 2 × 2 blocks of H in the first factor in the
tensor product. The time-reversal–invariant 2 × 2 blocks can
be expressed as linear combinations, with real coefficients, of
the 2 × 2 matrices [24]

1, î = iσz, ĵ = iσy, k̂ = iσx (20)

(note the ordering of the indices). These obey the relations
in Eq. (7) of the generators of the quaternions, so we used
the same symbols. Thus the matrix representing a quaternion
q = a + b̂i + cĵ + dk̂, where a, b, c, d are real, has the form

q =
(

a + ib c + id

−c + id a − ib

)
, (21)

and there is a natural injective map of the real numbers R into
H that maps the real number to a. Notice that the determinant
of the matrix is a2 + b2 + c2 + d2 = |q|2, which defines the
norm |q| � 0 of the quaternion, a real number. One can define
a “conjugation” operation on the quaternions, q → q (q ∈ H),
which is an isomorphism that reverses the order in a product
of quaternions, by

î = −î , ĵ = −ĵ, k̂ = −k̂, (22)

while 1 = 1. (When quaternions are expressed as 2 × 2
matrices, this is the usual adjoint. We hope that no confusion
will arise from the use of the bar ¯ to represent both complex
and quaternionic conjugation; which is meant should be clear
from the context, specifically whether complex or quaternionic
coefficients are in use.) The norm-square of q is equal to
qq = qq = |q|2 as a quaternion or as a 2 × 2 matrix (i.e.,
a non-negative multiple of the identity). The (right or left)
inverse of a quaternion q can be expressed as q−1 = q/|q|2.
Then a time-reversal invariant matrix such as H (Hermitian
or not) can be expressed as a matrix of quaternions. A matrix
of quaternions H is Hermitian when viewed as a complex
matrix if and only if it is Hermitian as a matrix of quaternions,
where the adjoint A → A† (for a matrix A) is defined as the
corresponding conjugate of the transpose of the matrix, and
has the usual property (AB)† = B†A†, in either point of view.

In addition, time-reversal applied to an eigenvector (viewed
as a column vector of complex numbers) ofH, sayHψ = Eψ ,
implies that T̂ ψ is also an eigenvector with the same energy
eigenvalue, and not equal to ψ . For any vector ψ , it and −T̂ ψ

can be assembled into a matrix v with two columns. The two
columns are exchanged by time reversal (with a minus sign in
one place, so that T̂ 2 = −1), as we defined its action so far. If
we define time reversal to act on the matrix (as on any matrix)
by

v → T̂ vT̂ −1, (23)

(using the appropriate size of J in each place) then v =
T̂ vT̂ −1, and we can view v as a column vector of quaternions.
This shows that in the symplectic ensemble, or symmetry
class AII, we are in effect dealing with quaternionic vector
spaces; using a basis, maps such as the Hamiltonian act as
matrices from the left, as mentioned before, while the scalar

multiplication by a quaternion is from the right. This relation
is mentioned briefly by Atiyah [13], page 33.

When we turn to band structure, we have similar properties
for Hk, however again complex conjugation sends k → −k.
Then the relation is

T̂HkT̂
−1 = H−k, (24)

and a similar argument shows that Hk can be viewed as a
matrix with entries that are linear combinations of 1,î , ĵ, k̂
with coefficients that are Real functions of k, rather than real.
It seems reasonable to use the term “Quaternionic function”
(with a capital Q) for 2 × 2 complex matrix functions of k
obeying

T̂ fkT̂
−1 = f−k, (25)

and call the total space a Quaternionic vector bundle (over T d ),
by analogy with the Real ones. In addition we have H†

k = Hk.
Then we can assemble the eigenvectors wk and −T̂ w−k into a
2n × 2 complex matrix. Doing so for all k gives a vector with
entries that are Quaternionic functions (on which translations
in position space still act as multiplication by powers of the
Xμs), parallel to the Real functions for the AI case.

If we now consider a Wannier function, then the assumption
that time-reversal holds for the filled-band bundle in question
means that the function and its time-reversed partner must
both be sections of the vector bundle. If wk is the transform
of a Wannier function, −T̂ w−k is (minus) the transform of
its time-reverse, and we can form Quaternionic sections (i.e.,
vector functions of k, with Quaternionic entries) from these
as noted just now. (Then gk also has Quaternionic entries,
and vk = gkuk holds for this pair of Wannier functions as
vectors with Quaternionic entries, with notation as in Sec. I B.)
For functions that are also compactly supported, we obtain
polynomial Quaternionic sections, that generate a module
over H[X±

μ ] = R3 or possibly its subring H[Xμ], completely
parallel to the complex and Real cases.

It may be helpful here to be explicit about the meaning of
a trivial vector bundle for orthogonal and symplectic classes.
A Real (Quaternionic) vector bundle of rank m over B = T d

is trivial if it has a set of m Real (Quaternionic) sections that
are linearly independent at all k. (Here linear independence is
over C, and so for the Quaternionic case involves 2m complex
vectors, for k such that k �≡ −k; however, it reduces to, or
can be viewed as, linear independence over R or H when
k ≡ −k.) In all cases, triviality of a vector bundle of rank
m can be viewed as the vector bundle being isomorphic to a
product of B and Cm (C2m in the Quaternionic case), with the
obvious action of T̂ on the vector bundle in the cases of classes
AI and AII. The tight-binding model itself has precisely this
product form, with m replaced by n.

When B is a Real space, we will use notation CR(B)
[CQ(B)] for the rings of continuous Real [Quaternionic]
functions on B, by analogy with the ring CC(B) for continuous
complex functions (in which case the Real structure can be
forgotten). Of course, our main interest is in B = T d , the
Brillouin torus. For that case, there are natural embeddings
(injective ring homomorphisms) of R

(d)
2 [R(d)

3 ] into CR(B)
[CQ(B)], similar to that for complex Laurent polynomials
and functions on T d . We will write Ci or C

(d)
i , i = 1, 2, 3,

115309-10



COMPACTLY SUPPORTED WANNIER FUNCTIONS AND . . . PHYSICAL REVIEW B 95, 115309 (2017)

for the rings CC(T d ), CR(T d ), and CQ(T d ), respectively, so
that R

(d)
i ⊆ C

(d)
i for each i and d. A bundle in one of the

three classes gives rise to its space of sections, which is a
module over the corresponding Ci ; for the trivial bundles just
discussed, this module is Cm

i .
It is now fairly straightforward to extend the proof of

the DR no-go theorem [1] to the symmetry classes AI and
AII. First we note that, as in class A [1], it is in fact
sufficient to consider polynomial sections consisting of column
vectors with entries in the polynomial rings R[Xμ] for R = R,
C,and H, with no negative powers; these polynomial rings
are more accessible than the Laurent polynomial analogs. The
syzygy theorem holds for polynomial rings with coefficients
in any field [30], so for R[Xμ] the proof in DR goes over
essentially unchanged. The polynomials over the quaternions
form a noncommutative ring, but again a version of the syzygy
theorem holds [26]. We discuss these facts in more depth
in the section immediately following; modern treatments of
them, especially for noncommutative rings, invariably enter
into some K-theory.

B. Syzygy theorem and relation with K0(R)

We will now give some discussion of the syzygy theorem
and of its relation to the algebraic K-theory group K0(R),
and give a more conceptual account of the proof of the no-go
theorem. In brief outline, given the module over the polynomial
ring generated by the compactly supported Wannier-type
functions, the proof consists of two parts: the syzygy theorem
establishes that there is a finite-length free resolution of the
module over the polynomials, and then the change of rings to
the ring of continuous functions produces a corresponding free
resolution of the vector bundle, from which stable triviality of
the vector bundle follows (terms used here are defined below).
We will explain how the argument and result are interpreted
in K-theory. We repeat that parts of this discussion are crucial
for the cases of other symmetry classes as well. For a nice
introduction to algebraic K-theory, see Rosenberg’s book [31];
Refs. [32–34] are also useful.

First, we introduce resolutions and the length of a reso-
lution, all for modules over some given ring R. A (possibly
infinite) exact sequence

· · · −→ P2 −→ P1 −→ P0 −→ M → 0 (26)

is a projective resolution of a module M if Pi is projective for
i = 0, 1, . . . . It is a free resolution if each Pi is a free module
Fi . If a projective resolution terminates at the left with a zero,
say (the labels φi on the maps are for future reference)

0 −→ P


φ
−→ F
−1
φ
−1−→ · · · φ2−→ F1

φ1−→ F0
φ0−→ M −→ 0,

(27)

then it is a finite projective resolution and we say it has length

 (if it does not terminate, then its length is ∞). We note that,
without loss of generality, the projective modules P0, . . . ,P
−1

in a projective resolution can be replaced by free modules, as
shown, because of the definition of a projective module (the
final projective module P
 in the sequence shown may then not
be the same one as in the original projective resolution). The
length of a free resolution [i.e., as in Eq. (27), but where P
 is

free] is defined the same way. Finally, when R is Noetherian
(as our rings are) and M is finitely generated, each projective
or free module in the sequence can be taken to be finitely
generated also.

For any module M , there is a minimum length for a
projective resolution, and that minimum is called the right
projective dimension of the module [26]. The projective di-
mension measures how close the module is to being projective;
for example, the projective dimension of a projective (or of a
free) module is zero. Finally, the supremum of the projective
dimensions of the modules is called the right global dimension
of the ring R. If all f.g. modules have finite right projective
dimension, then we say the ring is right regular (note that
a regular ring could have infinite global dimension). For any
Noetherian ring, the right and left global dimensions are equal.
We will sometimes use the term length of a module for the
minimum length of a free resolution of the module.

A precursor to the syzygy theorem is the statement that, if
a ring R has (right) global dimension N , then the polynomial
ring R[X] in one variable has global dimension N + 1 [26].
As the global dimension of any division algebra is zero, it
follows that the global dimension of the polynomial rings
D[X1, . . . ,Xd ] is d, where D = R, C, or H. Thus this limits the
lengths of minimum projective resolutions, but more is true:
it can be proved that any f.g. projective module P over one of
these polynomial rings is stably free, that is there exists a free
module F ′ such that P ⊕ F ′ = F is free. (Clearly, any stably
free module is projective.) This means that, for any module
over one of these polynomial rings, there is a free resolution
whose length is greater by at most 1 than the projective
dimension; that is, a free resolution of length at most d + 1
[26]. These statements—that is, that the global dimension is d

and that all f.g. projective modules are stably free—also hold
for the three rings of Laurent polynomials Ri (i = 1, 2, 3),
for any d [35]. This “weak” version of the syzygy theorem is
sufficient for the proof of our no-go theorem. Hilbert’s syzygy
theorem in its original or “strong” form says even more: it
says that for D a field (say R or C), there is a free resolution
of length � d of any f.g. module over the polynomial ring;
however, we will only rarely require this refinement.

Next we relate these results to algebraic K-theory. First,
one way to define the Grothendieck group K0(R) for a ring R

is as follows [31]. We begin with the f.g. projective modules
over R, and take isomorphism classes. A direct sum of f.g.
projective modules is f.g. projective, and is well defined for
isomorphism classes. Thus the equivalence classes of the f.g.
projective modules form an Abelian semigroup, that is a set
with an associative, Abelian, binary operation (which we write
as addition). [Indeed they form a monoid, because the zero
module is projective and is the identity element for direct
sum.] Given any Abelian semigroup S, there is a universal way
to turn it into an Abelian group G, called group completion
or the Grothendieck construction. G can be defined as the
Abelian group that has one generator for each element of the
semigroup, and relations that state that if x + y = z in S (for
elements x, y, z ∈ S), then the corresponding generators in G

obey the same relations. In particular, if there is an identity
element in S, its image in G is the identity. [G can also be
defined as a group of pairs of elements of S, obeying some
relations such that a pair (x,y) gives a meaning to the difference
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x − y which was not in general defined in S, similar to the
usual constructions of the integers from the natural numbers
(with addition as the operation), or of the nonzero rational
numbers from the nonzero integers (with multiplication as
the operation).] Applying this definition to the semigroup of
equivalence classes of f.g. projective modules over the ring R

yields K0(R). The equivalence relation involved in passing to
the K0 group can be identified as stable isomorphism [33,34]:
two f.g. projective modules P1, P2 map to the same element
in K0(R) if and only if there is a free module F such that
P1 ⊕ F ∼= P2 ⊕ F . We may note here that if the definition is
applied to the case of the ring CC(B) on a compact Hausdorff
space B, the result is isomorphic to the usual topological
K-theory group K0(B), while when B is also Real, for the
rings CR(B), CQ(B) it produces the corresponding groups
that we denote KR0(B) (following Atiyah [29]) and KQ0(B)
(∼= KR−4(B) in Atiyah’s notation), respectively; these classify
stable isomorphism classes of respective types of finite-rank
vector bundles over B, relevant to classes A, AI, and AII on
putting B = T d .

The group K0(R) for the polynomial rings Ri is not
sufficient for our purposes, because the module generated
by a set of compactly supported Wannier-type functions is
not in general projective. The generators of the module are
supposed to have the property that, when evaluated as vectors
for any k (that is, for any set of Xμ such that |Xμ| = 1 for all
μ = 1, . . . ,d), they span a subspace of Cn of rank m [these
become C2n and rank 2m (over C) in the case of class AII]. This
property of the vector-valued functions on the torus |Xμ| = 1
does not imply much about their behavior at other Xμ, and
though the module is finitely generated, it seems unlikely to be
projective in general. For example, consider a submodule of the
rank-one free module Ri , which for us is the case m = n = 1;
such a submodule is a (right) ideal in Ri . Suppose further
that Ri is commutative (i = 1 or 2). In one variable (d = 1),
the polynomial ring R = F[X] (F = R or C) is a principal
ideal domain (PID), that is, all ideals are generated by a single
element, so the module is free of rank one. But for d > 1, such
polynomial rings R are not PIDs, which implies that there
are ideals (submodules of R) that cannot be generated by a
single element. If the polynomials f, g are two generators,
then there is a linear relation with coefficients in R that they
obey (namely, fg − gf = 0), and so the module is not free.
However, for these rings all f.g. projective modules are free
(Serre’s problem, solved independently by Quillen and Suslin
[26]), and hence these f.g. modules cannot be projective. We
can obtain examples for larger values of m and n by taking the
direct sum of one of these modules with, for example, a free
module.

For this reason, we must work with a larger category of
modules. We consider the category of all f.g. modules over R,
together with all the homomorphisms between them. In this
setting, there is a further Grothendieck group G0(R), defined
as follows [26,31,35]. (Its use is not essential to the proof,
however it can be viewed as providing an “upper bound” on
the classification of the modules of interest.) It is constructed
from generators, one corresponding to each isomorphism class
of f.g. modules (call the class [A] if it contains the module
A), and relations [A] + [C] = [B] if there is a short exact
sequence as in (12) connecting A,B and C (again, this is

well-defined for isomorphism classes). Other categories of
modules can be handled in the same way, provided they
“possess exact sequences” [31,34]; in particular, the category
of f.g. projective modules can also be treated in this way, and
the result is the same group K0(R), essentially because short
exact sequences of projective modules split, so B ∼= A ⊕ C.
As the f.g. projective modules form a full subcategory of the
category of f.g. modules, K0(R) is a subgroup of G0(R). We
note that in G0(R) or K0(R) we can also write under the same
conditions [C] = [B] − [A], an “alternating sum”, and that
similar forms apply for the class [M] of the module M in a
resolution like (27) of any finite length, by iteration of this
formula for a short exact sequence. As an example, for the
sequence (27), we have [M] = ∑
−1

i=0 (−1)i[Fi] + (−1)
[P
].
The statements above about the syzygy theorem now

translate into statements about these groups. First, for any right
regular ring R, every f.g. module M possesses a projective
resolution of finite length. This in effect reduces questions
about the structure of M to questions about the structure of
the f.g. projective modules (including free modules) in the
resolution. In particular, it was proved by Grothendieck in this
manner that G0(R) ∼= K0(R) [34]; note that what happened
here was that the class (group element) [M] in G0(R) can
be computed as a finite alternating sum of the classes [Pi]
of the f.g. projective modules in the finite-length resolution,
and these classes all lie in the subgroup K0(R) ⊆ G0(R), and
hence so does [M]. (This form of calculation based on the
syzygy theorem will recur in the arguments for every symmetry
class.) Second, if every f.g. projective module over R is
stably free—that is, stably isomorphic to a free module—then
it follows immediately that K0(R) is generated by the free
module R, and so K0(R) = Z. (Actually, this also requires
that R has the “invariant basis property” that for f.g. free
modules, Rn ∼= Rn′

implies n = n′, which holds for nonzero
right Noetherian rings [34,35]. Then the free modules indeed
generate a copy of Z in K0(R).) Note that we generally view
K and G groups additively, and so also a direct product of
groups will be written as a direct sum, for example Z ⊕ Z,
because it is additive, and because such a group is in a natural
way a module over the integers, so it is a genuine direct sum.
Such a form will also be written 2.Z, and similarly for k.Z for
a positive integer k.

These results then imply that for the polynomial rings
Ri,G0(Ri) = Z. This gives the classification of all f.g. mod-
ules over Ri up to the equivalence used in the Grothendieck
construction. (When dealing with more general categories
than the category of f.g. projective modules, this relation is
no longer stable equivalence.) Within this classification, this
result says that the modules are effectively trivial, as they
are described by a single invariant, which corresponds to the
rank of a free module (the invariant is the alternating sum
of the ranks in a free resolution of the module). We would
like to relate this to the class of the vector bundle that the
elements of one of our modules span, within the topological
classification of vector bundles of the appropriate type. To
this end, we can map a module into a vector bundle over
T d , and map the corresponding Grothendieck K0 groups,
in two steps. For the first step, the rings of polynomials
D[Xμ], D = C, R, or H, (and also the corresponding rings
of Laurent polynomials D[X±1

μ ]), can be embedded into the

115309-12



COMPACTLY SUPPORTED WANNIER FUNCTIONS AND . . . PHYSICAL REVIEW B 95, 115309 (2017)

rings Ci of continuous functions on T d by evaluating the
indeterminates Xμ as complex numbers with |Xμ| = 1, as
already discussed. Given a module over one of the polynomial
rings, this produces a module over the corresponding ring of
functions, and is an instance of the change-of-rings functor that
can be given formally by tensor product with the latter ring
(see Sec. II A). The functor maps f.g. projective modules to f.g.
projective modules, so it gives a well-defined homomorphism
of groups from K0(R(d)

i ) to K0(C(d)
i ). Free modules clearly

map to trivial vector bundles, and our K0(Ri) = Z maps to the
Z in the K group of the vector bundles that describes the rank
and is exemplified by the trivial vector bundles; that is, the
homomorphism of K0 groups just mentioned is injective (one
to one). This may suggest that the general f.g. modules over R

map in some sense to trivial vector bundles.
The last statement, however, is too naive. For a module over

the polynomial ring Ri that is not projective, its image under
the change of rings may not even be a vector bundle (because
it is not projective as a module over the ring of continuous
functions). The way this can happen is that the elements in
the module do not span a vector space of full rank m at some
points of the Brillouin torus T d ; then vector-valued functions
in the module over the ring of continuous functions have the
same property at that point, and we do not have a projective
module or a vector bundle. Hence there is no natural functor
from the category of all f.g. Ri modules to that of f.g. projective
Ci modules, and neither do we wish to begin discussing the
category of all f.g. Ci modules and G0(Ci) (and likewise for
higher G and K groups relevant to later sections). Thus it is
crucial that we want to classify, not all f.g. modules (over Ri),
but only the modules that have the completeness property of
Wannier-type functions; the latter property, by definition, gives
us a vector bundle (projective module) as the image under the
change-of-rings functor.

The basic idea with which to complete the proof, as in DR,
is to use the finite-length free resolution of the Ri module, and
map it onto a similar sequence of Ci modules. Each free Ri

module in the resolution maps to a free Ci module of the same
rank, but there is the question of showing that the resulting
sequence (which has the same length) is actually exact. If it is
exact, then it gives a free resolution of the Ci module, which is
the (space of sections of the) bundle of interest. The K0 class
of the latter is then given by the alternating sum of those of the
free modules in the resolution, showing that the K0 class of
the bundle is that of a trivial bundle. Hence essentially the only
remaining point to prove is that the sequence of Ci modules
is exact. We note that this requires proof because exactness of
a sequence of vector bundles means exactness of the maps of
the fibres at each k. The maps φi are described by the same
ni × ni−1 matrices with entries in Ri as in the free resolution
of Ri modules (we put n−1 = n), and so the composites φi ◦
φi+1 = 0. The issue is whether im φi+1 is onto the ker φi ; this
could fail to hold when evaluated at some k, even though the
sequence over the polynomial ring is exact. In DR this was
proved using the notions of analytic polynomial bundles. In
the present setting of polynomially generated bundles, a more
direct argument using less structure seems appropriate, and is
given here to make the argument self-contained and perhaps
simpler.

The argument proceeds, as in DR, by starting at the right and
working back up the sequence. To begin, our module M (which
we view as a submodule of a free module Cn

i ), is polynomially
generated and so projective as a Ci module, and also is the
image of the map φ0 from the free module F0 = C

n0
i onto

M . The kernel of φ0 is a complex vector space of dimension
n0 − m [2(n0 − m) for i = 3] at all (real) k, by the rank-nullity
theorem of linear algebra, and so forms a vector bundle. We
must show that im φ1 spans ker φ0 at all (real) k. Because φ1

is a matrix of polynomials, this means showing that ker φ0 is
itself polynomially generated (the generators are the columns
of φ1).

Now studying the kernel of φ0 means solving a system
of n homogeneous linear equations in n0 unknowns. For
equations with coefficients in a division ring, this can be
done using Gaussian elimination, even in the noncommutative
case [27]. (The approach used in DR can be viewed similarly
also.) The result of the algorithm is expressions for n0 − m

linearly independent (over the division ring) vectors in the
kernel of the linear map. These expressions are the result
of a finite number of arithmetical operations in the division
ring, including division by a number of “pivots” [36]; it is of
course important that the latter are invertible (i.e., nonzero)
in the division ring. Our rings Ri are not division rings, but
each can be “completed” to a division ring of “fractions”
or “quotients” by including an inverse for every nonzero
element. The resulting rings, say Di , with Ri ⊆ Di , consist
of all finite linear combinations of elements of R, C, or H
for i = 1, 2, 3, respectively, with coefficients that are now
ratios of polynomials in Xμ with real coefficients, in which
the denominator must not be the zero polynomial. For the
commutative cases i = 1, 2,Di is the familiar field of rational
functions, but the noncommutative D3 is likely less familiar
(see Ref. [37] for general discussion). Note that the inverse
in D3 of an element r of R3 can be expressed in a similar
way as for quaternions, as an element of R3 divided by a real
polynomial, that is, by an element |r|2 of R2. If r is expressed
as a 2 × 2 matrix, |r|2 is the determinant, and is a sum of four
squares of polynomials, each with real coefficients; crucially,
it vanishes as a polynomial in R2 only when r = 0 in R3. (We
remark that for classes A, AI, and AII, the matrix gk used
in the definition of a TNS, as in Sec. I B, has entries in Di .)
The Gaussian elimination algorithm can be carried out in Di ,
and the resulting solutions form a set of n0 − m n0-component
vectors with entries in Di , and are linearly independent over
Di . Finally, we can multiply each n0-component vector by
a common denominator of its entries [37] to obtain vectors
with entries in Ri . These must be linearly independent over
Ri , because if not then the original vectors in D

n0
i would be

linearly dependent over both Ri and Di .
In slightly more detail, Gaussian elimination in Di recur-

sively reduces the n × n0 matrix of φ0, which initially has
entries in the subring Ri , to echelon form [36]: all rows below
the mth are zero, and (after permuting the columns, i.e., the
unknowns, if necessary) the top left m × m block is upper
triangular with the pivots, which are nonzero elements of Di ,
on the diagonal. A linearly independent set of solutions in D

n0
i

to the homogeneous equations is obtained using the n0 − m

standard basis vectors (with a single 1, and other entries zero)
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for the n0 − m-dimensional subspace in which the first m

entries of the vectors are zero. The denominators of the entries
of these vectors are products of elements of Ri that are also
numerators of pivots.

Now we must investigate the finiteness and linear inde-
pendence over C of these solutions when evaluated in the
neighborhood of some k0. By hypothesis, we can assume that
we have obtained an echelon matrix in which, when evaluated
at k0, the pivots are invertible, meaning nonzero for i = 1, 2,
and invertible as 2 × 2 matrices for i = 3. (The denominator
of a pivot cannot vanish at k0, because in Gaussian elimination
starting with a matrix with entries in Ri , the pivots are produced
in a sequence 1, 2, . . . ,m, and the denominator of an entry in
the j th row of the echelon matrix can only vanish at k0 if
one of the pivots from a stage earlier than j vanishes at k0.)
This ensures that the rank of φ0 evaluated at k0 really is m, as
assumed. Then our set of n0 − m vectors in D

n0
i that span ker φ0

are finite when evaluated at k0, and still linearly independent.
By continuity of polynomial functions, this is also true in some
neighborhood of k0. (If expressed as vectors in R

n0
i , they may

not be linearly independent when evaluated at some k outside
a neighborhood of k0.) Thus the dimension of the space of
solutions is locally constant and equal to n0 − m. When the
common denominator of each vector is removed, they lie in
ker φ0 viewed as a map of Ri modules, and the sequence of
modules over Ri was exact, so these vectors also lie in im φ1.
Hence im φ1 spans ker φ0 when evaluated at any (real) k. This
means the sequence of Ci modules is exact at F0, or in other
words that the corresponding sequence of vector bundles is
exact at F0. The argument can now be iterated to show that
the whole sequence of vector bundles is exact; it can also be
called a free resolution.

Exactness of the sequence of vector bundles, or in other
words the free resolution of the projective Ci module, now
allows us to apply the (at this stage, algebraic) K0 functor
to the modules in the sequence, as they are all projective.
As explained above, the K0(Ci) class of our module M (or
corresponding bundle) is the alternating sum of those of the
free Ci modules in the sequence (the same alternating sum
as for the free resolution over Ri). The classes of the free Ci

modules lie in the image of the injective homomorphism from
K0(Ri) to K0(Ci) that is induced from the change of rings
map. Alternating sums of these classes also lie in the same
group. Hence the K0 class of the vector bundle that we have
obtained is that of a free Ci module, and K0(Ri) classifies the
polynomially generated bundles. In each of the three cases, this
K0(Ri) group is the group of integers Z, and the integer-valued
invariant associated with the bundle can be identified as its rank
(it will always be positive). [The analysis for the remaining
symmetry classes will also follow a similar path, which is
similar to the method for proving that G0(Ri) ∼= K0(Ri).]

In DR, the conclusion of the no-go theorem (or its extension
to compactly supported Wannier functions) was stated as
saying that the polynomially generated bundle (or in particular,
the analytic polynomial bundle) obtained must be trivial (as
a complex vector bundle, as only class A was considered). In
fact, in general, the proof given there or here only establishes
that the bundle is stably trivial. We define stably trivial to
correspond to the definition of a stably free module, given
above, on passing to the space of sections: a bundle E

is stably trivial if there are trivial bundles F,F ′ such that
E ⊕ F ∼= F ′. Indeed, stable triviality of our bundle follows
directly from the existence of a finite-length free resolution:
as the image of each map is a projective module, the sequence
splits as a direct sum at each term. Then M ⊕ ker φ0

∼= F0 is
free; ker φ0 might not be free, but we can apply ⊕ ker φ1 to
both sides, to obtain the free module F1, and so on. This
process terminates after a finite number of steps, and the
result M ⊕ F1 ⊕ . . . ∼= F0 ⊕ F2 ⊕ . . . [ending with P
 (free)
and F
−1 on the two sides] shows the stable freeness of the
module (i.e., stable triviality of the bundle). (On mapping to
K0 classes, this produces an expression equivalent to the one
for [M] as an alternating sum.)

It was assumed in the main proofs in DR that stably trivial is
the same as trivial, when dealing with the (split) exact sequence
of bundles. However, in general, it does not seem that stably
trivial bundles are always trivial; there are counterexamples at
least for real (not Real) vector bundles [38]. However, for d �
3, complex vector bundles over any d-dimensional manifold
B can be reduced (i.e., are isomorphic to) to a direct sum of a
rank-one (or “line”) bundle and a trivial bundle [38], and the
complex line bundles in any dimension d are classified up to
isomorphism by their first Chern numbers (see, e.g., Ref. [34],
page 45). (This notion of ordinary isomorphism of complex
vector bundles describes our problem, i.e., rank-m complex
vector sub-bundles of a trivial rank-n bundle, in the case of m

fixed and n sufficiently large. For general values of m and n, a
finer classification is possible; see, e.g., Ref. [39].) Hence for
complex vector bundles in d � 3, stably trivial and trivial are
the same. DR also established triviality directly in some special
cases. But in general, the conclusion of our analysis should be
stated as the stable triviality of the bundles for classes A, AI,
and AII. This stable triviality is what K-theory deals in, and
for class A with B = T d corresponds also to the vanishing of
all Chern classes of a bundle.

To avoid a possible confusion, we should mention that when
the polynomial sections fail to span the space of rank m at some
point in the Brillouin torus, it may still be possible to produce a
nontrivial vector bundle, even though the Grothendieck group
of all f.g. modules G0(R) = Z. The idea is to allow sections
obtained from those mentioned already by using functions that
tend to infinity at the points in question; the pseudosections
obtained that way may span a vector bundle (i.e., be continuous
as vector-valued functions of k, that span a rank-m subspace).
This is the phenomenon discovered in DR [1] and Ref. [2],
which can lead to a nontrivial vector bundle in this manner.
However, such a vector bundle is necessarily nonanalytic, and
the reason for the nontriviality of the bundle (contrary to the
classification above) is the use of noncontinuous (diverging)
coefficients when the vector bundle was obtained from the
polynomial sections.

This essentially concludes the argument for these symmetry
classes, but we have not yet mentioned the second step in re-
lating the algebraic classification of modules over polynomial
rings to the topological classification of vector bundles over the
Brillouin torus. This step is the passage from the algebraic to
the topological classification in the case of projective modules
over a ring of continuous functions on T d , which correspond to
vector bundles. While this requires more explanation in some
cases (see the following section), in the present case the result
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of the algebraic classification [e.g., K0(CC(B)) in the complex
case] is already a discrete group, which is just isomorphic to
the topological K-theory group [K0(B) in the complex case]
[33], so there is nothing more to do.

We mention here some consequences of the strong form
of the syzygy theorem for low-dimensional versions of our
problems, in terms of the nature of the modules over the
appropriate polynomial ring. We begin with classes A and AI.
First, a set of compactly supported Wannier-type functions
generate a module which we will now call M ′ over one of
the commutative polynomial rings Ri (i = 1, 2), which is a
submodule of a free module F0 of rank n over Ri . The quotient
module of F0 by M ′ is a module M , and so in the resolution (27)
M ′ is the image of φ1. In one dimension (d = 1), the syzygy
theorem says there is a length 1 free resolution of M , and so
M ′ is actually a free module. (To be precise, we have used here
not only the existence of a length d free resolution, but the fact
that any given projective resolution can be truncated to one of
length at most d, because it splits [26,35], together with the fact
that any projective module is free. The result for d = 1 also
follows directly from the fact that the polynomial ring in one
variable is a PID [26,31].) For the polynomial bundles, relevant
to TNSs, the module of interest (say M ′′ ⊆ F1) is defined as
the solutions to polynomial equations, and so is the kernel of
a map φ1, again into a free module, and the cokernel of φ1 can
be taken as the module M . In one dimension, this sequence
is longer than required by the syzygy theorem, and so again
splits: M ′′ is a direct summand in F1, and so is projective, and
actually free in the real and complex cases. Put another way,
the preceding result applies a fortiori to M ′′. For d = 2, we see
from the syzygy theorem that M ′′ is a free module; this extends
the result of DR that for a rank 1 vector bundle, the module is
free in any dimension. In general, the module M ′ in the case of
compactly supported Wannier-type functions has length d − 1,
while in the case of a TNS the module M ′′ corresponding to
the filled-band bundle has length d − 2 for d � 2 (here we
have corrected some misstatements in DR about the minimum
length of the free resolutions that did not invalidate any results).
For class AII, the polynomial ring H[Xμ] is not commutative.
The same statements as before hold in one dimension, however,
stably free projective modules over H[X1,X2] are not always
free [26], so the “strong form” of the syzygy theorem does not
hold for d � 2. Hence, when d = 2,M ′′ does not have to be
free, but must be stably free and hence projective.

IV. CHIRAL SYMMETRY CLASSES AIII, BDI,
AND CII: K1(R)

In this section, we turn to the classes with so-called chiral
symmetry. These are the chiral unitary ensemble, or class AIII,
chiral orthogonal class BDI, and chiral symplectic class CII.
For these cases, we will handle the three classes mostly in
parallel.

A. Chiral symmetry classes

A typical way for chiral symmetry to arise in a tight-binding
model is when there are two sublattices, say A and B, and the
only possible hops are from one sublattice to the other. Then in
a basis in which the indices for sites and orbitals are partitioned

into the two subsets corresponding to the two sublattices, the
Hamiltonian has the block off-diagonal form

H =
(

0 h

h† 0

)
, (28)

with square blocks (in cases where the off-diagonal blocks are
not square, there are zero-energy states in the spectrum; we
do not consider this as we wish to discuss only topological
phases), and h is an arbitrary matrix with complex entries.
(This most general case defines class AIII; we discuss the
other chiral classes afterwards.) In the translation-invariant
case on a lattice, with 2n orbitals per site (n assigned to each
“sublattice”; note that in our hypercubic lattice models, they
actually all sit on the same lattice sites), the Hamiltonian in k
space has the similar form

Hk =
(

0 hk

h
†
k 0

)
, (29)

where the blocks are now n × n. To ensure a gap in the energy
spectrum, we assume that hk is nondegenerate at all k. The
chiral symmetry acts as multiplication by 1 on all orbitals on
the A sublattice, and by −1 on the B sublattice, that is by
conjugating the Hamiltonian by �z: �zHk�z = −Hk, which
forces it to have the above form.

The energy eigenvalues of Hk come in plus-minus pairs,
determined by the square roots of the eigenvalues of H2

k, and
so by the singular values of hk (the positive square roots
of the eigenvalues of h

†
khk). A complete orthonormal set of

eigenvectors can be written as the columns of a matrix of the
form

1√
2

(
In In

U −U

)
, (30)

where In is the n × n identity, U = Uk is a unitary matrix
function of k, and the first n columns are basis vectors for
negative-energy (filled) bands, and the others for positive-
energy (empty) bands. The chiral symmetry acts by multi-
plication by �z from the left, and exchanges the eigenvectors
corresponding to Ek and −Ek.

For the chiral orthogonal (chiral symplectic) version, we
also impose time-reversal symmetry as discussed in Sec. III A,
with T̂ 2 = +1 (−1), which in k space implies that the entries
ofHk are Real (Quaternionic), and likewise Uk must be unitary
(at each k) with Real (Quaternionic) entries. Consequently, the
vector bundles of rank 2n with chiral symmetry are classified
topologically by the homotopy classes of maps (without
basepoints) of T d into U (n); in the Real (Quaternionic) case,
the maps involved also respect the involution k → −k which
acts as T̂ on the entries of the unitary matrix U in either case.
(For the Quaternionic case, the ranks over C mentioned are
doubled due to spin; we will usually not mention this, just
as if we describe the rank over H for a quaternionic vector
space.) We discuss the precise (basis-free) meaning of this
statement in the next section. The limits as n → ∞ of these
groups of homotopy classes of maps give the topological K

groups K−1(T d ),KR−1(T d ), and KQ−1(T d ) ∼= KR−5(T d )
[13,29,32], which classify the topological classes of band
structures in these symmetry classes. This definition for
K−1(B) is equivalent to another definition as K̃0(S(B+)),
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where K̃0 is a “reduced” K group, S is “reduced suspension”,
and B+ is B with a disjoint basepoint adjoined to it [13,32];
the equivalence arises because the map into unitary complex
matrices determines the “clutching function” used to construct
a rank-n bundle over SB [13,32].

For a set of compactly supported Wannier-type functions to
respect the chiral symmetry, we only require that they come in
pairs related by the symmetry transformation (multiplication
by �z). Since we allow overcomplete sets, this means that
even if we begin with a set that does not respect the symmetry,
we can simply include all polynomial vectors obtained by the
symmetry action as generators.

B. Classification by K1

First, we will unpack the implications of our assumptions
about the compactly supported Wannier-type functions in
these classes. At each k there is a subset of these functions
(polynomial 2n-component vectors in k space) that span the
fibre of the rank-n filled-band bundle, and their counterparts
(obtained by applying �z) span the empty-band bundle.
Together, they span at each k the trivial rank-2n vector
bundle of the total system. Clearly, by restricting to the first
n components, we obtain generators for a module (always
over one of the polynomial rings Ri in this paragraph) in the
sublattice A orbitals, and restricting to the last n components
gives a set generating a module in the sublattice B orbitals.
(Instead of restricting, we could take the sum and difference
of the pair of corresponding functions.) The latter sets of
orbitals give in k space two trivial vector bundles of rank
n over T d , which are two orthogonal subbundles of the total
rank 2n trivial vector bundle, and the overcompleteness of
the generating sets of sections implies that their restrictions
to the two subbundles span each of them at all k. At the
same time, there is a correspondence between the fibres of the
two (sublattice) subbundles, which is an invertible linear map
between the fibres, exactly like that defined in (30), except that
here we allow U to be a general invertible matrix (with entries
that are complex, Real, or Quaternionic functions, depending
on the symmetry class). Given any element of the module (i.e.,
a polynomial section) associated to sublattice A, this map gives
an associated element of the module associated to sublattice
B, and there is an inverse map. Hence we obtain an invertible
homomorphism between the two Ri modules.

We point out that for two free modules of the same rank
over a ring R, presented as Rn, an invertible map from the
first to the second is equivalent to an invertible matrix with
entries in R, because each generator of the first, represented
by a column vector (0, . . . ,1,0, . . . ,0)T with a single nonzero
entry, must be mapped to a vector with entries in R. For
modules that are isomorphic to a free module, an invertible map
(or isomorphism) can be represented this way, up to changes
of basis on the two free modules. However, maps between
general modules need not have this form. For modules that are
submodules of a free module, like many of those we study, a
map from one to another can be expressed as a matrix because
of the embeddings of the modules in the free modules, but
the entries of the matrix need not be elements of R; it is
only necessary that it map an element of the first module to
an element of the second, not that it map the standard basis

vectors to vectors with entries in R. That is, it does not have
to be a homomorphism of the first free module into the second
at all, and so even though invertible on the submodules, it
does not have to be an invertible map of the first free module
to the second. On the other hand, if an element of the first
module is now expressed as a linear combination of generators
(with coefficients in R), and so is its image in the second,
then the map determines a matrix with entries in R (because
the generators express each module as the image of a free
module, represented by matrices with entries in R). However,
the expression as a linear combination of generators in either
place need not be unique, and consequently the matrix of the
map, or of its inverse, need not be unique.

This shows that the basic problem we need to study is
posed as two submodules of free modules of rank n, with
an invertible map (isomorphism) between the submodules.
This will lead us to the algebraic K1 groups of the various
rings. A first basic point is that if, naively, we attempt to
classify isomorphisms α : M1 → M2 (up to isomorphism)
between two given modules M1,M2, the result will be trivial,
because we can simply compose the given isomorphism with
an automorphism of M2 (i.e., an isomorphism to itself; it could
be viewed as a change of basis if M2 is free and expressed
as Rn), and so obtain any isomorphism from M1 to M2. To
obtain anything nontrivial from the given data, we will have to
compare different isomorphisms between the given modules.
Thus if we pick an isomorphism, say α0 : M1 → M2, and use
it as a reference with which to compare other isomorphisms
α, then this is equivalent to studying the automorphism
α−1

0 α : M1 → M1, which is not necessarily a trivial problem.
(Indeed, when we discussed the basic band-structure problem
above, we described it as classifying U , the unitary matrix
functions of k. There we referred to some fixed bases for
the two subspaces on the two sublattices. This choice of two
bases sets up a reference isomorphism, so that the present
formulation is equivalent to what was used there.) Using
henceforth the notation α : M → M for an automorphism on
M , the effect of a further change-of-basis automorphism (say
α′) on M is to conjugate α with α′: α → α′−1αα′. This cannot
reduce α to the identity id unless α = id to begin with. It is also
clear that if we want to classify automorphisms of a module in
a meaningful way, then those that differ by conjugation should
be viewed as equivalent.

We are now ready to introduce the definitions of the Bass-
Whitehead group K1(R) for a ring R, or in fact K1(C) for any
category C with exact sequences [31] (going straight to the
more general form this time). We consider pairs (M,α) where
M is an object in the category (we can think of M as a module
over R), and α is an automorphism of M . We construct a type
of Grothendieck group for these pairs, as an Abelian group
with a generator [(M,α)] for each pair (M,α), subject to the
following two types of relations: (i) for two automorphisms
α, β of M ,

[(M,α)] + [(M,β)] = [(M,αβ)], (31)

(so composition of automorphisms gives addition of elements
in K1, with in particular [(M,id)] as the zero element of the
group for all M; note this relation also shows that αβ and βα

give the same element, since the group operation + is Abelian);
and (ii) if there is a commutative diagram in the category with
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exact rows

0 −→ M1 −→ M2 −→ M3 −→ 0
α1 ↓ α2 ↓ α3 ↓

0 −→ M1 −→ M2 −→ M3 −→ 0,

(32)

where α1, α2, α3 are automorphisms of M1,M2,M3, respec-
tively, then

[(M2,α2)] = [(M1,α1)] + [(M3,α3)]. (33)

The latter implies in particular invariance under conjugation
of an automorphism (set, say, M1 = 0, and M2 = M3). It
also implies (taking M1 = M3,M2 = M1 ⊕ M3, α2 = α1 ⊕
α3) that addition of two automorphisms of the same module
(as direct sum) is equivalent to composition (mentioned just
now). When C is the category of all f.g. right R modules, the
resulting group is called G1(R). When instead C is the category
of f.g. projective modules, it is called K1(R). Apart from the
polynomial rings Ri , the preceding definition of K1(R) can be
applied without change to the case of the rings of continuous
functions Ci , and of vector bundles or f.g. projective modules
over such a ring, to obtain the groups K1(C(d)

i ).
For the case in which R is a right regular ring, there is

a theorem analogous to that for K0(R) and G0(R), namely,
G1(R) ∼= K1(R) (again due to Grothendieck [31]). Once again,
this is a consequence of the syzygy theorem, together with a
result that given a module M with an automorphism α, there
exists a projective resolution with compatible automorphisms
of each term (of a form similar to the commuting diagram
above) [31].

Now we need to calculate K1(Ri) for the Laurent polyno-
mial rings Ri . (In the present case, one cannot reduce the
problem to the ordinary polynomials, because multiplying
generators of the module by positive powers of Xμ cancels
out in the automorphism. Indeed, the K1 groups of the two
types of rings are different, as we will see.) We can begin
with a simpler looking problem: we suppose that M is a free
module Rn for some n. Then an automorphism α is represented
by an invertible matrix with entries in R, that is an element
of the group GL(n,R). As free modules are projective, α

will give rise to an element in K1(R), and we know that
composition of automorphisms gives composition in the group,
and (hence) that conjugation by an automorphism leaves the
element invariant. If R is commutative, then we know that
the determinant of the matrix of α has these properties; here
the determinant is a map onto R× (because the matrix must
be invertible), viewed as a multiplicative group. [In general,
we might think of a determinant operation on invertible n × n

matrices as defining a homomorphism of GL(n,R) into an
Abelian group, whether or not R is commutative.] Thus for
the Laurent polynomial rings R1 and R2, the determinant map
gives (calling the resulting group det R temporarily)

det R(d)
1 = C× ⊕ d.Z, (34)

det R(d)
2 = R× ⊕ d.Z. (35)

Here we reverted to additive notation for direct products of
groups; the integers arise from the exponents mμ in the units.
Note that we could write the group of units additively as Z/2 ⊕

R instead of the multiplicative R× (the latter is obtained by
using the exponential map). For C×, it can be obtained by
applying the exponential map to the additive group C, but note
that this map of course has a kernel, the integer multiples of
2πi. These groups are independent of the size n of the matrices
used; the determinant already gives values in these groups for
the n = 1 case.

For matrices whose entries are quaternions, it is possible
to define a determinant, the Dieudonné determinant [27,31].
There seems to be no simple algebraic expression for it, but
the result is

det R(0)
3 = R×

>0, (36)

the group of positive real numbers under multiplication. For
quaternions, the group of units H× is not Abelian, whereas K1

and det should be. The properties of a determinant, applied to
1 × 1 matrices, imply (at least if it is independent of n) that
det R should contain a quotient of R×

ab. Here for any group
G we define its Abelianization to be Gab = G/[G,G], where
[G,G] denotes the group generated by elements of G that are
group-theoretic commutators, that is [g,h] = ghg−1h−1 for
g, h ∈ G. For quaternions, the group of units H× is isomorphic
to R×

>0 × SU (2) by using the norm |q| defined above, so H×
ab

∼=
R×

>0, and the map H× → R×
>0 can be represented by the norm

map q → |q|. For the Laurent polynomial ring, the units were
described above, and the Abelianization is

R
(d)×
3 ab = R×

>0 ⊕ d.Z. (37)

One would expect this group to play the role of the determinant
group for this ring. We also note that, if one decides to
represent Quaternionic functions by 2 × 2 matrices of complex
functions, then the usual (complex) determinant can be taken,
and the values for an invertible matrix are of the form
|c|2 ∏

μ X
2mμ

μ , where c �= 0 is a quaternion and all exponents
are even. Thus the result is effectively the same, and this gives
some justification for identifying det R(d)

3 = R
(d)×
3 ab also. (Only

our reluctance to take a square root stops us from using this as
the basis for a definition of the determinant for matrices with
Quaternionic polynomial entries.)

The group GL(n,R) has an obvious embedding into
GL(n + 1,R) given by mapping n × n matrices to the n × n

top left block, with a 1 at the bottom right place, and zeros
elsewhere. The sequence of embeddings allows us to take
the direct limit as n → ∞ of these groups, called GL(R).
K1(R) can in fact be defined as GL(R)ab, the Abelianization
of GL(R); this can be shown by using the fact that the
projective modules are defined as direct summands in a free
module [31]. This makes K1(R) a “stable” version of a
determinant. (Likewise, the group K0(R) can also be defined
using idempotent matrices over R, that is matrices p with
entries in R such that p2 = p [31], similar to projection
operators that can be used to define a vector bundle as a
subbundle of a trivial vector bundle. In both cases, these
definitions show that the K groups are the same whether right
or left modules are used in the other definitions.) In the case
of a division ring D = R, C, or H, it turns out that K1(D) is
precisely the Abelianized group of units in each case, that is,
as in the results above with d = 0.
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These results leave the question of whether the determinant
(when defined) or R×

ab actually is all of K1(Ri) for the
polynomial rings when d > 0. This question is answered
(affirmatively) in a different way by a further result. If R is a
right regular ring, then K1 of the Laurent polynomial extension
ring R[t,t−1] (with indeterminate t) is

K1(R[t,t−1]) ∼= K1(R) ⊕ K0(R); (38)

this is part of the “fundamental theorem of algebraic K-theory”
proved by Bass, Heller, and Swan [31,34]. Because a Laurent
polynomial ring is itself right regular, the result can be applied
iteratively, and using the results for K0 and the d = 0 results
for K1 already stated, we obtain

K1
(
R

(d)
1

) = C× ⊕ d.Z, (39)

K1
(
R

(d)
2

) = R× ⊕ d.Z, (40)

K1
(
R

(d)
3

) = R×
>0 ⊕ d.Z, (41)

in agreement with the Abelianized groups of units discussed
above. Note that, as mentioned already, these also give
the corresponding G1 groups, relevant to the classification
problem in which we are interested. We may mention that
under the same conditions K1(R[t]) = K1(R), so that K1

for ordinary and for Laurent polynomial rings differ for
d > 0, whereas for the K0 groups they are all the same and
independent of d.

The presence of continuously varying factors in these
groups may seem surprising to readers used to the topological
classifications of free-fermion topological phases by topolog-
ical K-theory. But there is a simple way to map the algebraic
classification here (essentially based on isomorphisms) into
a topological one (essentially based on homotopies). The
continuous factors in the groups above represent distinctions
between automorphisms, already seen for a 1 × 1 matrix or an
element of R×, which clearly can be continuously deformed
to one another. Thus for a classification up to homotopy
equivalence, we can simply remove the continuous factors,
which more formally means we take the quotient by the
path-connected component of the identity element of the group
[34], which is a normal subgroup. We can also describe this
operation as passing to the homotopy set of path-connected
components π0(K1) of the K1s, which we write as π0K1; this
homotopy set inherits a group structure. Then we obtain

π0K1
(
R

(d)
1

) = d.Z, (42)

π0K1
(
R

(d)
2

) = Z/2 ⊕ d.Z, (43)

π0K1
(
R

(d)
3

) = d.Z. (44)

We will now confirm (i) that this classification of modules up
to equivalence describes what can be attained with compactly
supported Wannier-type functions, and (ii) relate this to the
topological classification of all band structures in these three
symmetry classes. For (i), it is sufficient to point out that rank
one (or n = 1) examples exist corresponding to the groups
π0K1 just obtained. This is clear, because we already discussed
how the results correspond to the (Abelianized) groups of
units R×

i ab (i = 1, 2, 3) of the three polynomial rings. For each

choice of a unit, there is a corresponding vector bundle in
the chiral-symmetry class in question (set U equal to the
unit; we have pointed out already that with a given choice
of basis for the free module associated to each sublattice,
the automorphism α is represented by the matrix U , which
here is 1 × 1), and it is immediate that the vector bundles
are polynomially generated. These constructions correspond
to Wannier functions that in position space are simply dimers,
with one end on a single site in the single A orbital, and the
other end in the B orbital on a site displaced by (m1, . . . ,md ),
the set of exponents of the Xμ in k space. Incidentally, these
examples also possess a flat-band parent Hamiltonian with
hk = U−1

k , provided that in the unit |c| = 1 [see Eq. (9)]. For
(ii), it is also immediate that these examples are nontrivial
in the topological classification of vector bundles of these
symmetry classes. The exponents mμ are “winding numbers”
for the behavior of U in k space (i.e., when evaluated at
|Xμ| = 1). Part of the characterization of vector bundles of
these classes in general uses the one-dimensional winding
number of the automorphism U , which is essentially the
winding of the determinant, similar to the above discussion.
(For the Quaternionic case, the complex determinant is usually
used, leading to the appearance of factors of 2.) These uniquely
label the “weak topological insulators” that arise in dimensions
larger than 1 by using the topology of one-dimensional
systems, namely a winding in each of the d directions.

To prove that these results classify all polynomially gen-
erated vector bundles in the chiral symmetry classes, we will
again proceed in two steps, as in the case of K0 in the previous
section; namely, we first consider a map (a functor) from
the K1 group of the polynomial ring Ri to the K1 group
of the corresponding ring Ci of continuous functions, and then
the map from the latter to the topological K-theory groups
K−1(B). The argument does not use the full strength of the
G1(R) groups, since we are not interested in all f.g. modules,
but these groups do provide an “upper bound” on the groups
classifying the modules in which we are interested: the ones
generated by (the Fourier transforms of) a set of compactly
supported Wannier-type functions. However, our arguments do
use the methods that went into the proof that G1(R) ∼= K1(R)
for the polynomial rings. Namely, as mentioned above, for any
f.g. Ri module M with an automorphism α, we can set up a
resolution that is equipped with an automorphism of the free
module at each step, that is a commutative diagram similar
to the sequence (32) above, though possibly longer in the
horizontal direction (this involves the “resolution theorem” for
K1 [31]). The resolution essentially reduces the equivalence
class [(M,α)] [in G1(Ri)] to an alternating sum of the classes
[in K1(Ri)] of the automorphisms of the free modules, which
is why G1(Ri) ∼= K1(Ri). [The automorphisms of the free
modules in the resolution can be described as matrices with
entries in the Laurent polynomial ring; we know that the class
in K1(Ri) of one of these is determined by the determinant of
the matrix.]

If the module M we begin with is generated by a set of
compactly supported Wannier-type functions, then we know
that the exact sequence of free modules in the resolution
becomes an exact sequence of trivial vector bundles (free
modules) when viewed as modules over the continuous
functions. Moreover, the automorphism of each free module
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is given by a matrix with polynomial entries, and is invertible
over Ri , so its determinant is an (Abelianized) unit of Ri , and
in particular is therefore nonzero at all real k, as required for an
automorphism of a free module over the ring Ci . (Such an exact
sequence of free modules and automorphisms can still involve
nontrivial automorphisms of each free module.) This is an
application of the change-of-rings functor (see Sec. II A), to the
change from R = Ri , to S = Ci , using the natural embedding;
let us denote these generically by R → S. This maps a free
module Rn to Sn, a f.g. projective R module to a f.g. projective
S module, and a direct sum to a direct sum. Consequently, it
induces a natural map (a homomorphism) K1(R) → K1(S). It
is important that this is well-defined; it means that free modules
and automorphisms that are in the same class in K1(R) are
also in the same class when mapped to K1(S). In our case, the
former contains d copies of the integers (we disregard the other
part for a moment), as does the latter (the winding numbers
mentioned two paragraphs ago).

We will pause the main argument to address K1 of a ring S of
continuous functions briefly. For any commutative ring S, such
as C1 and C2, the algebraic K1(S) has a natural decomposition
as a direct sum of S× coming from the determinant, plus in
general a remainder called SK1(S) which can be defined as
SL(S)/[GL(S),GL(S)] [here SL(S) is the subgroup of GL(S)
of matrices with determinant 1, and note that all commutators
have determinant 1]. For us, S× is the multiplicative group
of nowhere-vanishing continuous functions, so is rather large,
but ultimately only its image under the homotopy equivalence
that mods out the connected component of the identity will
be of interest, and that leaves only the group of homotopy
classes of such nonvanishing functions (under multiplication).
(Here we are referring to the second step of mapping.) For
functions with values in C× (as both examples are, at least
away from points where k ≡ −k), the homotopy classes are
obtained by considering only functions into U (1), and for
B = T d these are determined only by their winding numbers
on going around the torus in one of the d directions. It is
clear that the K1(R)s map onto this group d.Z in each case.
It should be similar for the noncommutative rings R3 and C3

also; we can carry through the argument using the ordinary
complex determinant of a matrix of Quaternionic functions
with the quaternions expressed as 2 × 2 matrices, as before,
and so define SK1(R3) even in this case. In the particular case
of R2, π0K1(R2) has an additional summand Z/2 due to the
sign of the determinant, which also occurs in the corresponding
determinant for π0K1(C2).

We now return to the free resolution of our Ri module
with automorphism, which we converted (by change-of-rings
Ri → Ci) to a similar resolution by free Ci modules (trivial
bundles) of the bundle (with automorphism) of interest. We see
that the automorphism of the bundle is classified [in K1(S)]
by an element that is an alternating sum of elements of K1(R),
which we can view as a subgroup of K1(S). Consequently, the
possibilities are classified algebraically by K1(R(d)

i ); we know
that all of these can be attained in some rank-one example.
This concludes the more constructive part of the argument.

Finally, for the second step, in which one removes the
continuous part of the space K1(S) by passing to the homotopy
group of connected components, Milnor [33] (Chap. 7) shows

that for any commutative ring of continuous functions, the only
effect is to remove the part we just discussed as the continuous
part of the determinant, because SK1(S) is already a discrete
group. Hence π0K1(CC(B)) ∼= K−1(B) and π0K1(CR(B)) ∼=
KR−1(B). Using the methods outlined above, this goes
through for R3 also, giving π0K1(CQ(B)) ∼= KQ−1(B). In
summary, the polynomially generated vector bundles with an
automorphism are classified up to homotopy by π0K1(Ri)
above, and do not yield any nonzero element of SK1(Ci),
just as polynomially generated vector bundles do not yield
any nonzero element of K̃0(Ci), the nontrivial part of K0(Ci),
which was the statement of the no-go theorem for vector
bundles.

The remarks that follow in this paragraph will not be used
in the remainder of the paper. As regards the second step,
Milnor also mentions that, for the ring CC(B), there is an exact
sequence involving the first few algebraic groups Kj (CC(B))
and the topological groups K−j (B). This exact sequence can
be understood conceptually, and extended to all values of j ,
because in some of Quillen’s definitions of algebraic K-theory
(e.g., the B(S−1S) construction [34]) there is the option, in
the case of rings such as C, R1, or CC(B), of using two
different topologies under either of which the ring operations
are continuous maps. The usual algebraic theory corresponds
in Quillen’s treatment to using the discrete topology on the
ring, while there is also a natural “continuous” (nondiscrete)
topology (as in Milnor’s discussion), the use of which in the
appropriate construction leads to the topological K groups
(Ref. [34], Secs. IV.3.9 and IV.4.12.3). There is a “change of
topology” functor (see the same references) that, for the given
ring, leads to an infinite long exact sequence involving the two
types of K theory and some relative groups, and which explains
Milnor’s statements. (The references state that there is a map
of spaces associated to the two topologies on the ring; the
K groups are homotopy groups of these spaces, and the long
exact sequence for homotopy groups of two spaces with a map
between them produces the long exact sequence of K groups.)
We used a purely algebraic formulation, but then referred to
a natural continuous topology when identifying the connected
component of the identity, before taking the homotopy sets;
together, these correspond to the change-of-topology functor
on R1. Thus essentially the two steps we used are the composite
of the change of rings and change of topology to pass from R1

(with the discrete topology) to CC(T d ) (with the continuous
topology) and relate algebraic to topological K-theory; the
functors can be considered in either order. (Naturally, similar
statements apply for the other rings and other K groups used in
this paper.) We will continue to use the simpler homotopy-set
point of view.

V. ALTLAND-ZIRNBAUER CLASSES D, DIII, C, CI:
RELATIVE K0

In this section, we deal with the final four symmetry
classes, those characteristic of paired states of fermions,
the Bogoliubov-de Gennes or Altland-Zirnbauer (AZ) [10]
symmetry classes D, DIII, C, and CI. (Other symmetry classes,
such as BDI and CII, can also arise in relation to paired states,
but have already been covered.)
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A. AZ symmetry classes

In this section, similar to the previous two groups of
symmetry classes, we characterize each class, and define the
problem that needs to be solved algebraically, before turning
to the methods to do so in the following section. We will be
able to treat the four cases in parallel, but we present details in
only one case, as an example.

We begin with what we view as the most basic class, class
D. It is necessary to begin with a second quantized “reduced”
Hamiltonian Hred, which has the most general form

Hred = 1

2
C†

(
h �

−� −h

)
C = 1

2
C†HC, (45)

where C stands for a column vector of creation and destruction
operators, in which the first M components are cα , the
remaining M are c†α; further, for the M × M matrices h

and �, h must be Hermitian and � must be antisymmetric.
Using the 2M × 2M matrix H viewed as acting in a tensor
product of M dimensional vector space and a two-dimensional
space (“Nambu space”), the required behavior of H can be
characterized by

�xH�x = −H, (46)

as well as H† = H. The operation on the left can also
be described using a time-reversal-like antilinear operator,
τ = K�x with τ 2 = +I , as τHτ−1. (Note we are not saying
the system has time-reversal symmetry here). Such H can be
viewed as elements of the Lie algebra of O(2M), and have
eigenvalues in ±E pairs; an orthonormal set of eigenvectors
can be assembled into an orthogonal matrix. The eigenvectors
corresponding to a pair of eigenvalues ±E are related by
τ , so have the form w, τw. The more familiar basis for
O(2M) can be obtained by taking the real and imaginary
components of vectors; for the operators cα, c†α , they are
written as combinations of the now-familiar self-adjoint or
“Majorana” operators. In this basis, H becomes i times a
real antisymmetric matrix. The eigenvectors can be viewed
as defining a complex structure on the real vector space (i.e.,
choosing a real 2M × 2M matrix J with J 2 = −I ), turning
R2M into CM ; the choice of such a complex structure can
be labeled uniquely by a point in the space O(2M)/U (M),
because the complex structure is invariant under a group
isomorphic to U (M) (a change of basis on CM ). In this
point of view, the familiar Bogoliubov transformation (used
to diagonalize a second-quantized Hamiltonian in the form
above) corresponds to a change from the given reference
complex structure to the equivalence class that contains the
basis in which the single-particle Hamiltonian H is diagonal.

For a translation-invariant system with n orbitals per site,
we obtain a 2n × 2n Hamiltonian matrix Hk in k space, which
obeys

τHkτ
−1 = −H−k (47)

with τ = K�x as before, and alsoH†
k = Hk. The explicit form

can be written as

Hk =
(

hk �k

−�−k −h−k

)
. (48)

Then the eigenvectors of Hk come in pairs wk =
(uk,vk)T , τw−k = (v−k,u−k)T , with eigenvalues Ek, − E−k.
Using an orthonormal set, we assemble these into a matrix

Wk =
(

uk v−k
vk u−k

)
(49)

(where here uk, vk stand for n × n matrices) which obeys
τWkτ

−1 = W−k and W
†
k = W−1

k ; Wk represents the Bogoli-
ubov transformation at each k. We might describe this as repre-
senting a choice of a complex structure on a Real vector bundle;
it is similar to the Quaternionic case, class AII, except that the
energies come in E, − E pairs, more like the chiral classes.
At k such that −k ≡ k, it reduces to a complex structure on
the real vector space, and Wk becomes an element of O(2n).

For Wannier-type functions, we have only to find a set
of such pairs wk, τw−k, which one may think of as a set
of wave functions for quasiparticle creation and annihilation
operators, with of course the overcompleteness property in k
space to make them Wannier-type. For compactly supported
functions, they should in addition have components that
are Laurent polynomials in Xμ = eikμ . For the latter, we
have simply vectors w (with entries in R1) and its partner
τw, in which complex coefficients are conjugated and X is
unaltered [corresponding to Xμ(k) = Xμ(−k)]. There is a
matrix Wk with τWkτ

−1 = W−k as above, and the vectors
w (τw) together span the same space spanned by the first
(second) n columns of Wk when evaluated at k. (This does
not necessarily mean that W has polynomial entries.) W

represents the transformation from the standard complex
structure (corresponding to W = I2n) to another one. The
vectors w can be linearly combined with one another using
coefficients in R1 (complex polynomials), so they generate a
module over R1, while w ± τw give real and imaginary parts,
which can be linearly combined only using coefficients in
R2 (Real polynomials), so they form a module over R2; we
recall that R2 is a subring of R1: R2 ⊆ R1. Hence the complex
structure turns an R2 module into an R1 module.

For the remaining symmetry classes, the details are similar
but more intricate, and in principle can be found in the literature
[10–12] (for vector bundles, not for modules over polynomi-
als); note, however, that AZ mainly focused on the Hamilto-
nian, not on the vector space or bundle formed from the eigen-
functions. The structure parallels that in class D, where it in-
volved the natural embedding (or inclusion) of rings R ⊆ C for
d = 0, or R2 ⊆ R1 for Laurent polynomials, and for modules
over these rings an additional structure turning an R1 module
into an R2 module (i.e., the reverse direction). We briefly recall
the symmetries involved in the remaining classes, in addition to
the τ symmetry; for class DIII, time-reversal symmetry T̂ 2 =
−I is present. For class C, the system admits an SU(2) “spin
rotation” symmetry, but not time-reversal symmetry. For class
CI, time-reversal symmetry is present as well as spin-rotation
symmetry. We present the inclusions of rings, showing the
d = 0 case as well as the Laurent polynomial rings:

D: R ⊆ C, R2 ⊆ R1;
DIII: C ⊆ H, R1 ⊆ R3;
C: H ⊆ M2(C), R3 ⊆ M2(R1);
CI: C ⊆ M2(R), R1 ⊆ M2(R2).

(50)
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[Here and below Mn(R) for a ring R means the ring of n × n

matrices with entries in R.] The forms of all these inclusions
can be understood using constructions of the complex numbers
and quaternions as matrices, as we have discussed; for exam-
ple, C can be represented by 2 × 2 real matrices in M2(R), or
as a subset of the quaternions H, by representing i as ĵ = iσy

(which is real) in the construction discussed earlier. (Similar
forms apply also for the rings C1, C2, C3 of continuous
functions on T d , corresponding to the rings R1, R2, R3, respec-
tively.) For use below, we also point out that in each of these in-
clusions R ⊆ S, S is a free module of rank 2 over R (generated
over R by 1 and i,î , i1, or i î , respectively, where the last three
refer to the 2 × 2 matrix constructions). The remaining spaces
that describe the spaces of possible structures in the general
(or d = 0) case, corresponding to O(2M)/U (M) for class
D, are U (2M)/Sp(2M), Sp(2M)/U (M), and U (M)/O(M),
respectively, in correspondence with the inclusions above.
(The full list of ten spaces, all related to topological K-theory,
appears, e.g., in Refs. [32,40], as well as in Ref. [10] in a
slightly different way.)

B. Classification by relative K0

For the analysis of the band structures in the AZ classes,
we need to characterize the possible ways in which a module
over a ring R can be extended to obtain a module over a
ring S, where R → S is an inclusion of rings, so R ⊆ S.
To describe this, we first notice that for any S module MS ,
there is an R module MR , obtained using the pullback or
forgetful functor (see Sec. II A): as MS is an S module, it
is certainly an R module, when R is viewed as a subset of
S. (The subscript R or S records the ring for which M is
viewed as a right module.) Different S module structures can
be obtained from a reference one by following the map by an
automorphism of MR as an R module, while automorphisms
of MS correspond to the same S module structure; note that
such an automorphism maps to an automorphism of MR . As
automorphisms of projective modules MR , MS are described
by K1(R) and K1(S), we expect that the desired classification
should involve the quotient of K1(R) by (the image under
a homomorphism of) K1(S), though this quotient might not
exhaust the classification. For the example of class D, in the
simplest example of matrices or in zero-dimensional space,
R ⊆ S is R ⊆ C, and the description just given appears to be
an algebraic analog of the classifying space O/U mentioned
above in similar terms, because O(2M) [U (M)] describes
the automorphisms of the free R modules of rank 2M (free
S modules of rank M)—that is, of real (complex) vector
spaces. We return to the precise K-theoretic characterization
of the classification that we need after introducing the correct
machinery.

For the formal description in K-theory, we need the relative
K0 group associated to a functor ϕ that takes a category of S

modules to a category of R modules; for various versions of
this, see Refs. [31] (page 131), [32] (Sec. II.2.13), or [34]
(Sec. II.2.10), which is the simplest. First, a functor is said to
be exact if it maps a short exact sequence in the first category
to a short exact sequence in the second (thus, the categories
must possess exact sequences). The pullback functor of an
inclusion is exact on the categories of f.g. modules of the two

rings whenever S is f.g. as an R module, which is true for
the examples here. It also induces an exact functor between
the categories of f.g. projective modules, provided S is f.g.
projective as an R module; in our examples, S is actually free
of rank 2. These general statements follow by representing
the pullback functor as the tensor product − ⊗ S, described in
Sec. II A; see Ref. [34], page 350. Then the definition of K0(ϕ)
goes as follows: we take triples (M1,M2,α), where M1,M2 are
S modules in the category in question, and α is an isomorphism
α : ϕ(M1) → ϕ(M2) from the image of M1 to the image of
M2 under the functor ϕ; in other words, M1 and M2 become
isomorphic after forgetting the S module structure. Then with
some natural-looking equivalence relations imposed on these
triples (for which we defer to the references), we obtain a
Grothendieck group, and when the categories of modules
are those of f.g. projective modules, we will denote it by
K0(ϕ); again we will write [(M1,M2,α)] for the equivalence
class of a triple (M1,M2,α) in K0(ϕ). There is a natural map
K0(ϕ) → K0(S), given by [(M1,M2,α)] → [M1] − [M2]. For
the inclusions R → S in our examples, there are natural
homomorphisms (called “transfer maps”) Kj (S) → Kj (R) for
j = 0, 1, which come directly from the forgetful (pullback)
functor. Clearly, the image of [(M1,M2,α)] in K0(R) under the
composite of these maps is zero, because of the isomorphism α.

When the functor ϕ is also “cofinal” (or “quasi-surjective”),
essentially meaning that it maps f.g. free modules to f.g. free
modules, as is the case for the pullback in our examples (again
because S is free of rank 2), then there is an exact sequence
of K groups (Ref. [32] Secs. II.2.20 and II.3.22 or Ref. [34],
page 210),

K1(S) → K1(R)
∂→ K0(ϕ) → K0(S) → K0(R) (51)

(∂ is the “connecting map”). If the image of K0(ϕ) in K0(S)
is zero, then this shows that K0(ϕ) ∼= K1(R)/im K1(S), as we
anticipated above. If one knows the K groups of the two rings,
and the maps between them in the exact sequence, then the
sequence can be used to calculate K0(ϕ). The same can also
be done for the rings of continuous functions. We use a change
of rings to an inclusion of rings of (possibly matrices over)
continuous functions that correspond to the inclusion R ⊆ S,
and denote it as R′ ⊆ S ′ [coming from replacing each Ri by Ci

in the inclusions (50)], and the corresponding pullback functor
as ϕ′, leading to the calculation of K0(ϕ′). Finally, this can be
related to the homotopy classification of vector bundles at the
end, as for the K0,K1 cases.

To cement the identification of the relative K0(ϕ) [or K0(ϕ′),
likewise] group as the correct classification for the f.g. modules
or bundles in the AZ symmetry classes (at least when the
modules are projective), we first note that when ϕ is cofinal,
any class in K0(ϕ) can in fact be represented by the class of
a triple [(M1,S

n,α)] for some n, so while M1 is projective,
M2 = Sn is now free (see Ref. [34], page 80; the proof is
straightforward). Since ϕ(Sn) is free, this means that ϕ(M1) is
isomorphic to a free R module, which is exactly the situation
in the paired states in tight-binding models that we study, at
least for the projective modules over the polynomial rings (in
view of the projective modules being stable free, so possibly
after taking direct sum with a free module), and for bundles:
namely, when the pairing is ignored, the system just becomes
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the tight-binding model band structure, which is trivial as a
vector bundle (i.e., free as a module over the ring of continuous
functions corresponding to R). We note that this description
contains, but is more general than, the description above as a
quotient K1(R)/im K1(S), since it allows im K0(ϕ) ⊆ K0(S)
to be nonzero; instances of this occur for K0(ϕ′) for modules
over the continuous functions (or for band structures) in class
D in two dimensions (and a calculation then leads to the
correct results for the classification). We will see that the image
im K0(ϕ) is always zero in the cases of the polynomial rings
considered below.

We will now carry out the calculation in the four cases of
interest. First, for class D, the exact sequence reads

K1(R1) → K1(R2) → K0(ϕ) → K0(R1) → K0(R2). (52)

For the polynomial rings, the K0 groups are always ∼= Z,
while the K1 groups have been determined earlier. Now
we require information about the maps (homomorphisms of
Abelian groups) in the sequence. In general, it is sufficient
to understand how the functor (pullback, in our case) acts
on some representative module in each equivalence class in
each K0(S) and K1(S) group. In the present case, the rings
are Laurent polynomial extensions of division rings, and we
know from the earlier analysis that free modules of rank m

over each ring give representatives for the classes. Thus in the
present case, the pullback functor ϕ maps the space of complex
vectors (with polynomial entries in R1) of rank m over R1 to a
space of Real vectors, by taking Real and “Imaginary” parts,
thus producing a module of rank 2m over R2. In this way,
only free modules over R2 of even rank can be produced, so
the last map in the sequence is multiplication by 2, or ×2, on
the integers, and hence its kernel is zero. Thus K0(ϕ) maps to
zero, and the map before it must be a surjection. For K1s, the
relevant information is contained in the determinants (again
using free modules). Invertible matrices of size m over R1

map to invertible matrices of size 2m over R2 when complex
numbers are represented as 2 × 2 real matrices, and the (real)
determinant of the latter is the square of the absolute value
of the (complex) determinant of the former (in the absolute
value, the Xμs are treated simply as indeterminates, so not
complex conjugated). Hence the units c

∏
μ X

mμ

μ in R1 (which
are the possible values of the complex determinant) map to
units |c|2 ∏

μ X
2mμ

μ , and the first map is |.|2 ⊕ d.(×2) (i.e.,
absolute-value squared on C×, and multiplication by 2 on
each group of integers), mapping K1(R1) = C× ⊕ d.Z into
K1(R2) = R× ⊕ d.Z. We can summarize these statements by
writing out the exact sequence explicitly as

C× ⊕ d.Z
|.|2⊕d.×2→ R× ⊕ d.Z → K0(ϕ)

0→ Z
×2→ Z (53)

(the unidentified connecting map being the quotient, which is
a surjection). Because R× contains negative as well as positive
real numbers, we find that the quotient of K1(R2) by the image
of the first map is therefore

K0(ϕ) = (d + 1).Z/2. (54)

The results for d = 0, 1 agree with the topological K group
for this class, which is KR−2(T d ) [12]; in this case, there was
no continuous part to divide out on passing from the algebraic
group for Real functions to the topological K-theory group.

The calculation for class DIII is similar. The exact
sequence is

K1(R3) → K1(R1) → K0(ϕ) → K0(R3) → K0(R1). (55)

Again, the pullback from matrices with Quaternion polynomial
entries to matrices with complex entries doubles the rank
of a free module (over the respective rings), and maps
of determinants behave similarly as before. The sequence
becomes

R×
>0 ⊕ d.Z

|.|2⊕d.×2→ C× ⊕ d.Z → K0(ϕ)
0→ Z

×2→ Z. (56)

Hence the relative K0 group for class DIII is

K0(ϕ) = U (1) ⊕ d.Z/2, (57)

and contains a continuous summand U (1) (the analog of the
additional Z/2 in the class D case). Since U (1) is connected,
it disappears in π0K0(ϕ), the quotient by the connected
component of the identity, which we will compare with the
topological K group KR−3(T d ) (in particular, these agree for
d = 0 and d = 1).

The case of class C involves the pullback from a matrix
ring S = M2(R1) to R3. Algebraic K-theory always exhibits
invariance under Morita equivalence of rings, which means in
particular that the K groups of a matrix ring are the same as
those of the ring, that is Kj (Mn(R)) ∼= Kj (R) for any j and
any ring R. We therefore have a functor from modules over
R1 to modules over R3, and we note the inclusion R1 ⊆ R3.
In K-theory, the original pullback functor is in fact Morita
equivalent to the change-of-rings functor corresponding to this
inclusion. That is, for class C, we simply “extend rings” from
R1 to R3 in a natural way; this functor leaves the rank of a
free module unchanged. The exact sequence of the pullback is
(Morita) equivalent to

K1(R1) → K1(R3) → K0(ϕ) → K0(R1) → K0(R3). (58)

Working through the maps gives the sequence

C× ⊕ d.Z
|.|⊕d.id→ R×

>0 ⊕ d.Z
0→ K0(ϕ)

0→ Z
id→ Z (59)

(id : Z → Z is the identity map on the integers), which gives,
for class C,

K0(ϕ) = 0. (60)

For d = 0, 1, this agrees with the topological K group for class
C, KR−6(T d ).

Similarly for class CI, by Morita invariance the exact
sequence is

K1(R2) → K1(R1) → K0(ϕ) → K0(R2) → K0(R1), (61)

and the functor becomes the change-of-rings functor for R2 ⊆
R1, which again leaves the rank of a free module invariant.
The details of the maps give

R× ⊕ d.Z
i∗⊕d.id→ C× ⊕ d.Z → K0(ϕ)

0→ Z
id→ Z, (62)

where i∗ : R× → C× is the map induced from the inclusion
i : R → C of the rings of real into complex numbers. This
then implies that, for class CI,

K0(ϕ) = U (1). (63)
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[This U (1) is the multiplicative group of complex numbers
of absolute value 1, modulo the subgroup Z/2 = {±1}.] The
homotopy group is π0K0(ϕ) = 0, and for d = 0 and 1 this is
the same as the topological K group KR−7(T d ).

So far, we discussed and calculated the relative K0 groups,
which are defined using the categories of f.g. projective
modules over our rings. As in the earlier sections for other
classes, what we actually need for full generality is an analysis
for more general modules, and it may be helpful to have a
corresponding result for relative G0 groups, defined using the
categories of all f.g. modules, as an “upper bound” on the
classification of the modules of interest, even though in fact we
do not strictly need the bound, as we will see in the following
paragraph. A full discussion for these relative G0 groups is
harder to find than for K0 groups, however, the condition
for the underlying pullback functor to be exact has already
been given, and leads to maps Gj (S) → Gj (R) (see Ref. [34],
page 350). A high-level argument for the definition of the
relative group G0(ϕ) and the exact sequence can be obtained
in higher algebraic K-theory from Quillen’s Q construction,
in which the absolute Kj (R) [Gj (R)] groups are defined
as homotopy groups of certain spaces constructed from the
categories of f.g. projective modules (f.g. modules), and for
any exact functor between such categories (say, for two rings
R and S) there is a corresponding map of the spaces (see
again Ref. [34], page 350). Then an exact sequence containing
relative groups K0(ϕ) [G0(ϕ)] groups follows from the exact
homotopy sequence associated to the map. Finally, because
we know that Gj (R) ∼= Kj (R),Gj (S) ∼= Kj (S), and also the
transfer maps induced from the pullback agree (Ref. [34], page
425), it follows that G0(ϕ) ∼= K0(ϕ) for the pullback functors
ϕ, by using the exact sequence again, and so the results for
G0(ϕ) are the same as those already calculated above as K0(ϕ).

Finally, we need to consider the relation of the modules over
polynomial rings with the topological classification in terms
of vector bundles. This is much like the analysis in earlier
sections, especially the case of chiral symmetry classes that
involved K1. We carry it out here in a form that avoids any use
of G0(ϕ) for the polynomial rings. We will use the change of
rings to the inclusions R′ ⊆ S ′, and the corresponding pullback
functors ϕ′, as already defined. First, an example in one of
these symmetry classes means a set of polynomial sections
that generate a module M over the ring S [see the inclusions
R ⊆ S in (50)], with the overcompleteness property that, after
the change of rings to S ′, we obtain an S ′ module M ′ with
generators that span the fibre of the bundle (i.e., the space
of states of the tight-binding model) at all k; by applying ϕ′,
we obtain a set of generators for an R′ module which is free
(because it is the trivial bundle in the tight-binding model
viewed as an R′ module) and of the form ϕ′(S ′n) for some n

(for the same reason); of course the generators span the fibres
of the corresponding bundle.

By the syzygy theorem, M has a projective resolution of
finite length, and applying the pullback functor produces a
projective resolution of the pullback R module ϕ(M) also.
Now we change rings to R′ ⊆ S ′ using the change-of-rings
functor, and apply it to the projective resolution as in earlier
sections. Because we assume that our polynomial sections
have the overcompleteness property, the resulting sequence
is an exact sequence of projective S ′ modules (indeed, free

modules except possibly for M ′ and at the dth place), that is
a projective resolution of the projective S ′ module M ′, and
we also obtain another resolution of the projective R′ module,
the pullback ϕ′(M ′). The pullback ϕ′(M ′) is isomorphic to
a free module (trivial bundle) ϕ′(S ′n) as already mentioned,
via an isomorphism we call α′. In addition, we can assume
that there are compatible maps α′

i making the pullbacks of the
free S ′ modules in the resolution isomorphic to free modules
ϕ′(S ′ni ). These structures allow us to apply K0(ϕ′) to these
exact sequences of triples, and we take it as given that K0(ϕ′)
classifies the physically relevant structure of the bundles in
these symmetry classes [i.e., equivalence classes of triples
consisting of a pair of projective modules (i.e., bundles) and an
isomorphism]; see the discussion above. As we have an exact
sequence (projective resolution), the K0(ϕ′) class for our triple
(M ′,α′,S ′n) containing our polynomially generated bundle M ′
is an alternating sum of those for the triples in the resolution.
Those classes lie in the image of K0(ϕ) in K0(ϕ′) under the
injective homomorphism induced from the change of rings.
Hence (passing finally to homotopy sets), the polynomially
generated bundles in these symmetry classes are classified
by elements of the π0K0(ϕ) groups of the polynomial rings
which have already been described. Again, these polynomially
generated bundles (which are nontrivial only for classes D
and DIII) can all be found in rank-one examples, by lifting
the one-dimensional constructions to higher dimensions by
choosing some winding number in Z/2 for each direction (for
class D in one dimension, the example is essentially the Kitaev
chain [9]). This concludes the constructions.

VI. DISCUSSION

In this section, we discuss the general features of the
results of this article. We have seen that, in every one of the
ten symmetry classes, the (stable) topological classification
of vector bundles (or band structures) that are polynomially
generated (i.e., can be constructed from compactly supported
Wannier-type functions; see Sec. II B) has a similar form: it
can always be described as the classification (a group 0, Z,
or Z/2) that arises for zero-dimensional systems (where the
problem just reduces to matrices, essentially), plus d copies
of the group (again 0, Z, or Z/2) that classifies what can
further arise in that symmetry class in one space dimension
within the general topological classification. (The result for
class A is the no-go theorem of DR [1].) Thus all equivalence
classes that can arise in zero or one dimension can be
obtained (of course, restricting functions in zero variables
to be polynomials has no effect, but should be included
in the mathematical analysis). In higher dimensions, the
winding that can occur in one dimension can still occur in each
of the d directions, giving the d copies mentioned; these are
described as “weak” topological insulators or superconductors.
But the other invariants, including weak ones associated with
dimensions < d but > 1, do not occur within polynomials.
This then constitutes the extension of the no-go theorem to
other symmetry classes.

The results are tabulated in Table I. In this table we have
labeled the classes by an integer p for both the real and
complex classes, as well as with the Cartan symmetric space
labels A, AI, etc., used so far. The algebraic K groups of the
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TABLE I. Table of results for topological phases that can be
realized using compactly supported Wannier functions (polynomial
sections) or TNSs. First three columns: labels for symmetry classes
of topological phases. Fourth column: results of the analysis of the
present paper for what can be realized with polynomial sections
in dimension d , up to homotopy. Fifth through seventh columns:
topological phases in general noninteracting systems in dimensions
d = 0, 1, and 2, classified by K−p(T d ) (for C) or KR−p(T d ) (for R),
for comparison with the fourth column.

Field p Class π0K0(ϕ(d)
p ) d = 0 d = 1 d = 2

C 0 A Z Z Z 2.Z
1 AIII d.Z 0 Z 2.Z

R 0 AI Z Z Z Z
1 BDI Z/2 ⊕ d.Z Z/2 Z/2 ⊕ Z Z/2 ⊕ 2.Z
2 D (d + 1).Z/2 Z/2 2.Z/2 3.Z/2 ⊕ Z
3 DIII d.Z/2 0 Z/2 3.Z/2
4 AII Z Z Z Z/2 ⊕ Z
5 CII d.Z 0 Z 2.Z
6 C 0 0 0 Z
7 CI 0 0 0 0

polynomial rings, modulo the connected component of the
identity, calculated earlier in this paper have been denoted by
π0K0(ϕ(d)

p ) in the table. For us, this is essentially only a unified
notation (explained further below). With this notation, the
general result which was described in the previous paragraph,
including both the complex and real cases, can be expressed as
the following theorem which encapsulates the results proved
in this paper.

Theorem. Polynomially generated vector bundles are clas-
sified by the algebraic K-theory groups

K0
(
ϕ(d)

p

) ∼= K0
(
ϕ(0)

p

) ⊕ d.
[
K0

(
ϕ(1)

p

)/
K0

(
ϕ(0)

p

)]
, (64)

for the symmetry classes labeled by p = 0, 1 (for C),
p = 0, . . . ,7 (for R), and for all dimensions d � 0. The
classification up to homotopy takes the same form, with K0

replaced by π0K0 in each place; for these, the results coincide
with the topological K-theory groups K−p(T d ) (for C) and
KR−p(T d ) (for R) for d = 0, 1 and all p.

The mathematics behind this result is largely contained in
the so-called fundamental theorem of algebraic K-theory that
we have mentioned, as well as the Hilbert syzygy theorem
(or the fact that the polynomial rings are regular) which was
used repeatedly. We point out that the zero-dimensional result
K0(ϕ(0)

p ) is always present as a summand here.
In Table I, the columns labeled d = 0 through d = 2

contain the results of the topological K-theory groups for
the same symmetry classes in dimension d, that is K−p(T d )
for C and KR−p(T d ) for R. These columns are included
for comparison with the results for polynomial rings. Again,
the zero-dimensional result, which is the same as K0(ϕ(0)

p ),
is always present as a summand here. This summand can
be viewed as classifying the structure present at one point
in the Brillouin torus (analogous to the other images of
low-dimensional groups, or weak invariants; the point should
be one with k ≡ −k in the real cases), or as a “global”
invariant. In the literature, this part is frequently divided out or
omitted from the tabulated results, corresponding to the use of

“reduced” K groups, generically denoted K̃ . We believe that
it is physically meaningful for the topological classification
of band structures to retain it, that is to use unreduced K

groups, as it is the group of classes of a “strong” invariant
for d = 0, and a “weak” invariant for d > 0, which are on the
same footing as the other invariants for d > 0.

One sees in Table I that for five of the ten symmetry classes,
namely, A, D, DIII, AII, and C, there are topological phases
that can occur in d = 2 dimensions but cannot be realized
with polynomials or TNSs; these are the “strong” topological
insulator or superconductor phases in two dimensions. The
difference becomes even larger in d > 2 dimensions. In terms
of the results in Kitaev’s paper [12], our results are obtained by
truncating the formula in his Eq. (26) to the terms s = 0, 1 only.

There is a unified way of describing results of topological
K-theory for all symmetry classes simultaneously, which can
also be applied algebraically for modules over the rings of
continuous functions, as well as for rings of polynomials as
used here. It extends the approach used for the AZ classes here,
viewing all of them as involving the extension of a Clifford
algebra with p generators into another with p + 1 generators,
as shown in Karoubi’s book, Ref. [32], page 141. Then all
the K groups can be interpreted as relative K0 groups for the
appropriate pullback functor ϕp (hence the notation used in
Table I). This viewpoint was used by Kitaev [12], and has been
popular in the physics literature. (While algebraic K-theory in
general does not exhibit Bott periodicity, that is, periodicity in
p, the piece of it obtained by this method does, just like the
topological version.) We did not use this approach here because
it requires use of relative K0 groups from the beginning.
The more direct approach used here (which requires no overt
reference to a Hamiltonian) can also be employed for the K-
theory of the rings of continuous functions; that is essentially
Karoubi’s approach, except that, from the beginning, he uses
equivalence up to homotopy rather than up to isomorphism.
We want to point out that the use of Clifford algebras requires
use of vector spaces whose dimension (or the dimension of a
tensor factor) is a sufficiently high power of 2 (even higher
if Dirac matrices are employed, so that the Clifford algebra
has a further d generators). While this is not a problem when
the goal is to calculate K groups of a given space B, or to
construct examples in a given topological class, it does not in
general reflect the dimensions of the vector bundles that arise
“naturally” or in band theory. For our purposes, we wanted to
consider the most general vector bundles we could, and so the
approach used herein seemed the most direct.

Finally, we want to speculate on how an aspect of the
results could generalize to interacting TNSs. Certainly, the
approach used here cannot be easily generalized to interacting
systems. But the form of the results may extend. There is
an argument [41] that for lattice systems, topological phases
that possess protected gapless edge excitations (like the free-
fermion topological phases considered in this paper) cannot
be realized by a TNS with a gapped parent Hamiltonian. The
idea is that for a gapped TNS, correlations are short ranged,
and then the entanglement spectrum [42] (when the system is
cut into two parts in position space) is expected to be that of a
short-range entanglement Hamiltonian acting in some suitable
Hilbert space of states confined close to the entanglement cut,
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and similar to that of a real edge. However, for a TNS, the rank
of the entanglement Hamiltonian is bounded by the “area” of
the cut times a constant related to the rank of the tensors used in
the construction. It is then impossible for, say, a chiral spectrum
to be obtained without the Hamiltonian being nonanalytic
in k space and therefore not short-ranged in position space.
(Examples for free-fermions can be seen, e.g., in the figures in
DR [1].) For a generic ground state (not a TNS), this issue is
avoided because the low-lying entanglement spectrum that re-
sembles the edge merges at higher pseudoenergies with a con-
tinuum coming from the bulk, which obviates the argument.

This argument does seem reasonable, but there is an addi-
tional point we wish to mention here: first, the argument does
not apply in one dimension; in that case, gapless edge modes
are simply zero modes, and there is no objection to them in a
TNS on grounds of nonanalyticity. Indeed, many examples are
known of one-dimensional topological phases that are TNSs
(or MPSs) with gapped parent Hamiltonians: the Kitaev chain
is of this type. Then as for “weak” topological insulators and
superconductors, there are phases in higher dimensions that re-
flect (wholly or in part) topological phases from lower dimen-
sions. (For example, there can be higher-dimensional quantum
Hall phases that are essentially two dimensional quantum Hall
states occurring in layers that are stacked, and without signifi-
cant interaction between them.) For behavior that results from
a one-dimensional topological phase, the entanglement spec-
trum should contain a large number of degenerate zero modes
coming from the one-dimensional systems making it up. It is
possible for these to mix (that is, it is sometimes allowed by
symmetries), which in some cases can split the degeneracy of
the modes (so they become non-zero-pseudo-energy modes).
Such an entanglement spectrum, for a phase that is derived
from one-dimensional phases in each direction of space, is
not forbidden by the argument mentioned just now. This is
reflected in the form of the generalized no-go theorem obtained
in this paper, and we expect that it is a general feature that
occurs in interacting phases also. Likewise, we have viewed
the zero-dimensional system as a single site, and there is
no edge, and hence no gapless edge modes. It makes sense
that the corresponding weak invariants can appear in higher-
dimensional polynomially generated bundles, as we found.

VII. CONCLUSION

The problem of compactly supported Wannier functions,
or polynomially generated vector bundles, and the results
have been described both in Introduction and in the preceding
Discussion section, so we will be brief here. The generalized
form of the DR no-go theorem, proved in this paper, states
that, apart from the classification of zero-dimensional (or
global) aspects of the band structures, for each of the
symmetry classes in the “tenfold way” classification for
lattice models with only translational symmetry, the only

topological (stable) equivalence classes of vector bundles that
can be obtained as polynomially generated bundles are those
that have a “winding number” of a one-dimensional system
in the same symmetry class in each of the d directions of
space, and nothing else. The allowed possibilities were listed
explicitly in Table I. These results imply similar statements
for free-fermion TNSs: any free-fermion TNS that gives
rise to a bundle not in the list will have only gapless parent
Hamiltonians. They also apply to flat-band Hamiltonians: for a
strictly short-range flat-band Hamiltonian for a band structure
(with the symmetries assumed in this discussion) in any of
the ten symmetry classes, and if the flat band is separated by
a gap from the remainder of the spectrum at all k, then the
vector bundle of the flat band must be one of those in the list.

The classification used here was in terms of algebraic
K-theory, because of the rings of polynomial functions that
appeared in place of the more generic rings of continuous
functions that appear in connection with topological K-theory.
It might be thought that the results can be described simply
as using the former in place of the latter, which results in the
contrasting K groups. There is a little more to it, however, as
in order to obtain full generality in the sets of Wannier-type
functions, or polynomial sections generating the bundle, it was
necessary to venture beyond the projective modules, which are
classified directly by these groups. The syzygy theorem came
to our rescue, allowing the bundles in these more general cases
nonetheless to be related to the classification by the K groups.

It might now be interesting to extend the results to tight-
binding models with additional crystallographic symmetries,
by using equivariant algebraic K-theory. The extension to
TNSs of interacting systems of fermions would also be
interesting, but it is not clear what techniques could be used to
do this.

Finally, we want to emphasize that our results do not neces-
sarily mean that other tensor-network constructions, different
from those considered here, for topologically nontrivial states
cannot work. As a concrete example, the scheme of Ref. [43]
uses a tensor network to produce approximate values for expec-
tations of products of local operators in (non-TNS) trial topo-
logical states, rather than using a TNS as a trial ground state
as discussed here for free fermions. This alternative approach
does not appear to be affected by the results presented herein.
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