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Keldysh approach to periodically driven systems with a fermionic bath:
Nonequilibrium steady state, proximity effect, and dissipation
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We study properties of a periodically driven system coupled to a thermal bath. As a nontrivial example, we
consider a periodically driven metallic system coupled to a superconducting bath. The effect of the superconductor
on the driven system is twofold: it (a) modifies density of states in the metal via the proximity effect and (b)
acts as a thermal bath for light-excited quasiparticles. Using Keldysh formalism, we calculate, nonperturbatively
in the system-bath coupling, the steady-state properties of the system and obtain nonequilibrium distribution
function. The latter allows one to calculate observable quantities which can be spectroscopically measured in

tunneling experiments.
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I. INTRODUCTION

The prospects of engineering exotic quantum states of
matter using time-periodic driving generated recently much
excitement in condensed matter and cold atom communities
[1-19]. The application of these ideas is especially useful in
the context of topological states of matter which are rare in
nature. Thus, the ability of generating various effective time-
dependent Hamiltonians is very intriguing because one could
engineer topological states using, for example, light-matter
interactions.

Periodic driving of isolated noninteracting quantum sys-
tems can be understood within the framework of the Floquet
formalism which is based on the discrete time-translational
invariance of the Hamiltonian, i.e., H(t) = H(t + t) with
being the period of driving. Therefore, it is convenient to define
Floquet operator Hp = H(t) —id, [20,21], the quasienergy
spectrum of which provides key information about the driven
isolated system (see, e.g., Refs. [22,23]). By suitably engineer-
ing time-dependent interaction, the quasienergy spectrum may
be quite different from the energy spectrum of an equilibrium
system [24]. For example, there are current experimental
efforts to realize Floquet topological insulators using the
conventional (non-topological) band insulators [17,25].

The Floquet formalism describes well the short-time dy-
namics of a driven system. However, in order to understand
the steady-state properties, one needs to take into account
system-bath interactions resulting in the relaxation and the
redistribution of the Floquet states. Thus, ultimately one needs
nonequilibrium distribution function in order to understand
physical properties of the driven system in the steady state.
The goal of this paper is to address this issue.

Understanding the statistical properties of periodically
driven systems with dissipation is a long-standing problem.
Previous studies based on Markovian master-equation formal-
ism adapted for Floquet states indicate that the occupation
distribution of Floquet states has rather nontrivial behavior
[26-37]. Most of the aforementioned efforts use Markovian
master-equation formalism, which relies on the presence of
a large time-scale separation (i.e., bath correlation time is
much smaller than system relaxation time, and the time scale
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associated with the driven system dynamics is smaller than the
system relaxation time [38]). Those approximations are valid
for a weak system-bath coupling (i.e., weak thermalization)
[30]. If, however, one is interested in the long-time dynamics
of aFloquet system strongly coupled to the thermal bath, Born-
Markov approximation breaks down and a different approach
is needed. This fact motivates us to look at the problem from a
different perspective and develop a Keldysh formalism which
is well suited for the problem at hand. This method can
be also used for studies of ac-driven semiconductors (e.g.,
zero resistance state phenomenon [39-44]), nonequilibrium
superconductors [45-60], ultrafast spectroscopies in correlated
electron systems [61], as well as dissipative systems [62—67].

In order to demonstrate how this method works, we consider
a “toy problem”: periodically driven metallic system coupled
to a fermionic bath, and calculate steady-state distribution
function for arbitrary strength of the system-bath coupling.
Next, we consider a more complicated example: Floquet
system coupled to a superconducting bath which might be rel-
evant for the realization of Floquet counterpart of topological
superconductivity [68—72]. For simplicity, we do not study this
problem in this work since it is straightforward to generalize
our method to topological insulators and superconductors.
The fermionic bath, unlike the bosonic one, allows for the
quasiparticle exchange (in addition to the energy exchange)
which adds certain interesting aspects to the problem that are
absent in the case of a bosonic bath.

From the technical perspective, we use Keldysh Green’s
function approach for periodically driven systems. We first
integrate out the fermionic bath and incorporate its ef-
fects through the self-energy. This allows one to obtain a
nonequilibrium Green’s function for the driven system as
well as to calculate observable quantities such as linear
differential conductance. The equations for nonequilibrium
Green’s functions now depend on Floquet band indices and
therefore become infinite dimensional. However, analytical
solution can be obtained in the limit of small driving amplitude
K.,ie.,k = K/Q « 1 with Q being the driving frequency. For
practical reasons, this assumption is not very restrictive since
the typical driving frequency 2 ~ 1 eV [17,25].
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The paper is organized as follows. In Sec. II, we introduce
our model consisting of a driven metallic system coupled
to a fermionic bath. In Sec. III, we develop a Keldysh
formalism for periodically driven system with a bath, and
obtain system of equations for the Green’s function equations.
Approximate solution for the Green’s function in the limit of
small driving amplitude is developed in Sec. III. In Secs. IV A
and V, we discuss nonequilibrium distribution function and
physical observables of such differential conductance. Finally,
we summarize our results in Sec. VL.

II. MODEL FOR A PERIODICALLY DRIVEN SYSTEM
WITH THE FERMIONIC BATH

We consider a driven metallic system with time-periodic
chemical potential, which is coupled to a fermionic reservoir
(either normal metal or superconductor). The Hamiltonian of
the whole system can be written as

H(t) = Hp + Hypan + Hr,

Hp =Y €kCly Cho + (110 + ()] > ot (1)
ko ko

Hr =W (¢} a4 +He).

kqo

The Hamiltonian Hp describes the noninteracting driven
system with the chemical potential o + w(t) where u(t) =
p(t +7) and T = 27/ Q [we assume [ dr u(t) = 0]. Hr is
the tunneling Hamiltonian between the driven system and the
bath. The bath Hamiltonian is given by the mean field BCS
Hamiltonian

Hypatnh = qua;(,aqa + Z(Aa;TaT_(N +Hc), (2

qo q

where A is s-wave pairing potential. The results for the normal-
metal bath can be obtained by simply setting A = 0.

It is convenient to study the problem in a rotating frame
by applying a time-dependent unitary transformation Ur(t) =
e~/ lohe with df(1)/dt = —pu(r), and the Hamiltonian
in the rotating frame becomes

Hp (1) = UL(6)(H (1) — i8,)Ur(t)

= (a— Wy ko + Han

ko
+ W (D), a,, +He). 3)
kq

In this rotating frame, the time-periodic part of the chemical
potential vanishes, and the coupling between the driven
system and the fermionic bath becomes time dependent.
Physically, this term represents photon-induced transitions of
quasiparticles between the driven system and the bath. We
will study the interplay between these transitions and the
dissipation due to the fermionic bath.

It is convenient to consider the problem using a Keldysh
path-integral formalism [73], where the action on the Keldysh
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contour can be written as

s=Y / dt / dr U005t — )T (t')
k c c
£y f dr / T (0 ot = 1T s g(®)
q C C
+ 3 [ @@ Lo T g0 +ecr. @
kg v €

—

Here, we introduced Nambu spinors \Ilgk = (c,t?,c_k ;) and
%

\I’Lath’q = (a;T,a_q 1)- The Green’s function for the driven

system in Nambu space reads as

1

o= (7

0 1

wte+in

) = (04@)". &

The matrix M describes the coupling between \_Il)gk and

E;l:ath’q, and is defined as

(6)

9 Wel/® 0
M(1) = < 0 _W*e—if(z)>‘

We can now integrate out the bath degrees of freedom to find
the following effective action:

St =) f dt / AL 00; .Vl ()
k c c

After rewriting the action in terms of the forward and backward
components of the Keldysh contour and performing Larkin-
Ovchinnikov rotation (see Ref. [73]), the Green’s function
acquires the following matrix form:

GR GX
G = ( 0 G A). ¢))
The Dyson’s equation for the dressed Green’s function
becomes

Ou(t,t') = Qoi(t — f/)+/ dtlf dty Qro(t — 1)
X Ti(t1,12) Q(t2.1), ©9)

Si(tnt) = Y M) Oung(ti — )M(1)*,  (10)
q
where X (t1,1,) is the bath self-energy.

III. KELDYSH FORMALISM IN THE FLOQUET
REPRESENTATION

As follows from the discussion in the previous section, the
Green'’s function Q(7,t'), defined in Eqg. (9), has two indepen-
dent time arguments due to the periodic driving encoded in
M(t), which breaks continuous time-translational symmetry
and only has the discrete symmetry. So, the Green’s function
has the following property Q(z,') = Q(t + t,t' + 7). It is
convenient to introduce new variables s =¢ and u =t — ¢’
and define new function Q(¢,t') — Q(s,u), which satisfies the
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relation Q(s,u) = Q(s + t,u) for all u. One can now perform
the following Fourier transformations for u,

0@s,w) = foo du e " Q(s,u), (11)

o0

and Fourier expansion for s,

O(n,w) = % f ds e O (s, ). (12)
0

Using these identities, we will now derive Dyson’s equation
in the frequency domain for the problem at hand. After
applying [ dt'e "¢~ and 1 [ ds e=""* to both side of
Eq. (9), one finds

0i(n,0) = 8,0 Qoi(@) + Y _ Qo + n<)

ni

x Tilny,0 + (n —n)QOk(n — ny,w).  (13)

We now calculate the self-energy due to the coupling to
fermionic bath. The self-energy is

Sit,0) = Y M(1) Quang(ti — )M L), (14)
q

which depends on the tunneling matrix

Welf® 0

Y _ _ inQt p
M(1) = ( 0 —W*eif(’)) = ;el M, (15)

[note df(t)/dt = —u(t)]. In the frequency domain, the self-
energy becomes

Se.0) =Y Y Myin, Oang(@ — mQ)M;,. (16)
q ny

Combining Eqgs. (13) and (16), we obtain a set of coupled
equations

Ox(n,0) = 8,0 Qox(@) + Y Ooile + nQ)M,,

niny
X Grath[@ + (n — ’11)9]1\;1:2 Or(n — ny + ny,w),
(17)
where Gpam(w) is defined as
Goan(@) =Y Ovatn g(®). (18)
q

Having obtained the self-energy due to the bath, we
can calculate the nonequilibrium Green’s function and the
distribution function F(z,t’) for the driven system. In general,
the relation can be written as

of@t) = /dtl OR(t,11)F(t1,1')

—/dle(t,tl)Q,:‘(rl,t’). (19)
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After performing the Fourier transform using Eqs. (11)
and (12), one finds

Of nw) =Y Ofn1,0+ (n = n)QAUF (1 — n1,0)

ni

=Y Fln,o+ (0 —n)RI0}(n —ni0).

(20)

The Green’s function of the driven system [i.e., Egs. (13)

and (20)] can be written in the matrix form (oco— dimension
in the Floquet space)

QO = Qo + Qox * Zi - D, 2D

Qi =0 E-F-0. 22)

where the matrices QZ, %Y, and F have the following
structure:

A0, + Q2) A(l,w) AQ,0— )

A= A-Lo+Q) A0 A(l,o—Q) ,
A(-2,0+ Q) A(—l,0) AQ,0— Q)
(23)
and the matrix form for Qqy is given by
Oulw+Q) 0 0
Q= |- 0 Ooi(®) 0
0 0 Oo(w — Q)
(24

Equations (21) and (22) are the main results of this section.
Using these results we can calculate density of states as
well as occupation distributions for different Floquet bands
by simply solving the matrix equations. This is still a
highly nontrivial problem since these matrices are infinite
dimensional. However, controllable analytical solution can be
obtained perturbatively in the limit of small driving amplitude
K as compared to the driving frequency €2, namely, in the
parameter k = K/ < 1. In this case, one may truncate the
matrix. In the rest of the section, we present our analytical
results up to the second order in «. Higher-order corrections
can be obtained numerically.

For concreteness, we consider specific time-dependent per-
turbation in the form w(t) = —K cos(2t). The corresponding
function f(¢) = (K /<2)sin(f2t), and, thus, the matrix M can
be written as

K
M, = W(z) 0 , 25
0 —WH(=1" 1.(X)

where J,(x) is the Bessel function of the first kind. In the
limit of weak driving amplitude, i.e., k = K/Q « 1, one can
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expand the above equations up to the lowest order in k. One can show that up to O(k?), the nonzero matrix elements are for

n = 0,£1 and the corresponding matrices are

g w
My = 0

0 26
—W*)’ (26)
“,0 27
2* K ’ ( )

0 (28)
— V;* K ’

This simplification allows one to calculate the nonequilibrium Green’s function explicitly. Using Eq. (17), one finds that the
Green’s function up to the leading nonvanishing order in « is given by (see Appendix A for details)

y 1
0;0,0) = < — —, (29)
Qok(@)~! — MoGpam(w) M
o 1 1
Ov(l,w) = - — (MoGvan(@ + QM* | + M Goan(@) M)~ — —, (30)
Oor(® + Q) — MoGvan(@ + Q)M " “ " Qo) — MoGam(w) Mg
o 1 1
Ok(—1l,w) = — —— (MoGoan(@ — QM+ M_ 1 Jpan(@) M)~ —— —. (3D
Qo — ! — Modoan(w — QMg ) Qo)™ — Modan(@) M

To leading order in &, the Green’s function for the zero Floquet band O (0,®) is the same as the one for a system in the absence
of the driving. The corrections to Q4 (0,w) appear in the second order in « and the modified Green’s function Q(0,w) becomes

1 1
Qk(ow) < < o o VN o + = 1 - Ve
Oor(@) ™" — MoGoan(@)M§ — MiGan(w — DM} — M_iGvan(w + QM*,  Qoc(@)™! = MogGoan(w) M
1
X (MoGoan (@M} + M1 Joan(@ + Q)M — - c
" Qo + Q)" — Modsun(e + Q)M
1 1
X (MoGnan(@ + QIM* | + M1nan(@)MG) o— — + < —— -
‘ “ " Qo(w)~! — MoGpam(@)M§  Qor(@)~" — MoGpam(w) M
1
X (MoGban(@)M* | 4 M pam(w — QM) - c
’ ’ Ooc(@ — )~ — Modfnan( — QM
1
X (MoGbam(@ — Q)M + M_1Gvan(@)M) — —, (32)
Oor(@)™! — MoGan(@) M
[
where M. — (W(l 2 » ) includes the second-order relaxation processes. The same technique was later generalized
0=

W*(l )
term in k, while M, only has leading—order term as shown
in Eq. (26). We also compute the distribution matrix F(t,w)
perturbatively (see Appendix A for details).

IV. APPLICATIONS

A. Tunneling spectroscopy

We now discuss the tunneling experiment and calculate the
corresponding current between the driven system at the probe.
Similar experiments were pioneered two decades ago as a
unique tool to reconstruct intrinsic low-energy quasiparticle
relaxation rates in quantum wires. Electron disequilibrium
in the system was induced by applying dc voltage across
the wire [74]. From the bias voltage scaling of the tunnel
current data between the probe and wire, one could infer the
inelastic quasiparticle scattering rate in the system. Thus, such
measurements carry direct information about the microscopic

and applied to study superconducting systems [75-77]. Impor-
tantly, if the density of states in the tunnel probe is completely
characterized, energy-resolved spectroscopic experiments can
directly measure nonequilibrium quasiparticle occupations.

For the problem of our interest the full Hamiltonian
including the tunnel probe can be written as

H(t) = H(r) + Hrp + Hr. (33)

Here, H(t) describes the periodically driven system (1) with
the superconducting bath (2), while Hrp describes the tunnel
probe

Hrp =) () + eV)bl, by (34)

where dc voltage potential eV applied to the tip was included.

Fermion operator b;g creates an electron with spin o and
momentum p in the tunnel probe and Hy describes the tunnel
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coupling between the tip and the system

Hy = > Jpibl,cro + Hee. (35)
kp,o

We assume that the coupling Ji, is very weak, much smaller
than the coupling W between the driven system and the
superconducting bath, so we can treat this additional probing
coupling as a small perturbation.

In the rotating frame with the transformation Ug(¢), the
fermion operators in the system have an extra time-dependent
phase cr, — croe /) as shown in previous section. There-
fore, in the rotating frame, the current through the tunnel probe
is [78]

d(X, Y, bhabpo)
dt

I (t) = —€<

e . i
= 7 D ) (e (@)
kpo
+ T (=i ety (Db (D))
2e — if(t)
= 7 2 _RelV;, Gl mpo (101 (36)
kpo

We perform the leading-order perturbation expansion with
respect to the tunneling Hamiltonian H7 for the Green’s
function G épa, Bro (1,1), and obtain

o0

Gipopro(tst) = / dtyJp [G (1) 87, po(ti = 1)

—00
+ G, (1) g ot — 1))].
Here, the function gr ,,, e.g., defined as g;p(,(t —h) =

i (b;(,(tl)b pa (1)), is the free-fermion Green’s function for the
tunnel probe, and the function Gy, defined as G (¢,1) =

Hel, (e (1)) and GE,(1.11) = —i{cro (1)), (1)), respec-
tively, is the Green’s function for the nonsuperconducting
system including the self-energy contribution from supercon-
ducting bath. After the further Fourier transformation for gr
and assuming J,; independent of k, we obtain

Ir(t) = %Re{/dtl / j—;eﬂ'e(’*“) Zei-f(’)
x [(Z |J,,|2g;,,g<e>) > GE )
p k
+ (Z |Jp|2g?,,,g<e>) > G,;(t,n)] } 37)
p k

where we have

> 11287 po(€) = i Tr(e — V) f(e —eV),
P

2 A i
Z |Jp| gT,po‘(E) - E FT(G — eV),
p

with eV being the constant voltage-energy offset ap-
plied to the tunnel probe; I'r(e) = n Zp |J,,|25(6 —€,) and
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f(€) = 1/(eP€ 4 1). For the leading-order perturbative calcu-
lation in Hr, if we consider constant density of states in the
tip, then the coupling I'r(e — eV) =T'r, and only f(e —eV)
depends on the voltage. Therefore, the differential conductance
is

A1t de _ df(e —eV .
10 _ s irT—f(iWe )Zlm[Gfa(t,e)e’f(’)].
ko

dv 27h
(38)

Next, we apply the Fourier expansion G;~(t,€) =
>, e MG (n,€) and €/ =" € ], (k) and perform
an average of the current over a full period

dlr(t) _ I/Tdt dlr(t)
av [, t o dv
d df(e —eV
e [ ey, e
27h dv

x Y Im[J_ ()G (6] (39)

nko

Accounting for the fact that G(n,€) oc k" + O(k"*?), Jo(k) ~
1 —«?/4+ O@k*), and Jii (k) ~ +«/2, we find analytical
expression for the tunneling density of states of a driven system
with the accuracy up to «? in the form

v(e) = ;—; > (—2Im[Gf 0.0](1 — k*/4)
ko

+xIm(GP (1,e) — G (—1,0))). (40)

B. Nonequilibrium distribution function

Another physically interesting and experimentally mea-
surable quantity is the occupation distribution function in
the energy space, which can be computed by the nonequi-
librium Green’s functions from the Keldysh block of the
matrix Green’s function. In general, the distribution function
characterizes population of excited states and is important
for understanding the statistical mechanics of the dissipative
periodically driven systems. Fermionic occupation in non-
superconducting system can be written as

no(t) = Y (e} ,(cko(0)
k
=iy Gt
k

] d : M
RIS
k n

— G (n,0) + G (n,0))

%/da)[ng(O,w)—(em’na(l,a))—i—c.c.)—i—-~~], A1)
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where we define the occupation distribution that can be
obtained in the form

1 (0.0) = = 3 = (GF,0.0) — G, 0.0) + G141 (0,0)),

— 4m
. (42)
mlw) = o= Xk: (GE (Lo — Q) - GE(1o—9
+Gih(lo — Q). (43)

We have similar expressions for the spin down. Here, we
drop the parts beyond the first Floquet band, and use the re-
lation GX (—1,0 + Q) = —~GK(1,w)* and GR(— 1,0 + Q) =
G,’f(] ,w)*. If the driving is much faster than the system
dynamics, the fast oscillations e/ for n # 0 [i.e., the second
term and beyond in Eq. (41)] will average to zero.

V. ANALYTICAL AND NUMERICAL RESULTS
A. A normal-metal bath

We first consider a normal-metal bath where the density
of states is constant, i.e., p(w) = pp. After setting A = 0, all
the Green’s functions become diagonal in the Nambu space.
Therefore, we restore the conventional fermionic Green’s
function for normal metals. In this case, the bath Green’s
function (in Keldysh space) defined in Eq. (52) can be written

as
3 T () T ()
dbath = 0

qlﬁlth(a))
—ITpPF
L o

where f(w) = 1/(e®/T + 1) is the Fermi distribution function.
After substituting Eq. (44) into Egs. (32), (30), and (31), the
Green’s function (computed with the accuracy up to the second
order in «) can be simplified for n = 0 to

—2impr[l — 2f(w)]>’ )

ITPF

G, 00) = GL00) = ot G9)
G (0,0)
TP flo— D+ flo+2) =2 f(@)]+4f(@)—2)
' + (¢ — w)? ’
(46)
and for n = =1 to
G (£1,w) =0, G} (£l,0)=0, 47)

G,fa(:l:l ) = F2iklN(f(w) — f(w £ Q)). )
M+ (w—e)otQ—¢)Fil'Q

which recovers the Green’s functions for the equilibrium case
for k« — 0 or © — 0. Above we have defined I' = pp W2.
The retarded and advanced parts of the Green’s function matrix
for n # 0 case are vanishing only if the bath density of states
is assumed to be a constant. As shown in the last section, a
normal-metal tunnel probe with dc voltage bias can be used to
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determine the tunneling density of states, which only depends
on zero Floquet band (n = 0) for normal-metal bath

r
V(e) & —;T ;Im[G,fg(n =0,0]( —«2/4). (49

This nonequilibrium Green’s function directly reveals the
information of the occupation of the system

0
ny(t) = %/ dtny(t) = /dwnU(O,w), (50)

and their distribution can be obtained

i y y
ne(0,0) = —ZE(G,{;(O,a))—Gfg(O,w)+Gfg(0,w))
k
1 — tanh (2 h($2) -1
_ an (2T)+[COS () ]tanh o
2 8 2T
-Q Q
X sech(%)sech(wz—; )K2 + 0(/{3)
14+ 0@?) ifo<—-Q,
o 1= +06> if —Q<w0<0,
N ¢ 1)
L+ 003 if0<w<Q,
O(x>) ifw > Q.

We plot this occupation distribution function in Fig. 1. The
interplay between the driving potential and bath dissipation
causes multistep suppressions and shows plateaus between
o =0 and £ in the nonequilibrium stationary occupation
function. This draws some analogies to observed multistep
structure of nonequilibrium steady states as observed in the
energy-resolved tunneling experiments with diffusive quantum
wires [74]. In that case, steps occur due to admixture of Fermi
distributions in the leads by a voltage bias, whereas rounding
of steps is governed by inelastic electron-electron collisions in
the wire. We also notice that in the setup considered here, the
nonequilibrium population can be controlled by tuning driving
amplitude.

c
ie) 1f————————=========2
=
=]
g 2nd Order Perturbation
@ 0.1F  With a normal metal bath
a
c .0 —-—= k=04, T/Q=001
c 1077} \
= TTTT k=04,T/Q=004 I
@ 1
o - -
S 10-3) k=08, T/Q=0.01 1
8 —— k=08, T/Q=004 !
)

107

-20 -15 -10 -05 00 05 1.0
w/Q
FIG. 1. Periodically driven system with a normal-metal bath.
The occupation distribution n4(0,w) + n,(0,w), computed from the
second-order perturbation theory for different driving amplitudes
Kk = K/Q = 0.4,0.8, and different temperatures 7/ 2 = 0.01,0.04,

is plotted for the zeroth Floquet band. In the plot we have chosen
W/ = 0.08.
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1
=

o

o

|9

7}

(%]

? 1E-5 R

< Numerics T ~=~a o \

5

.; ‘

S Se---
3 1E-10 \
O with a normal metal bath \
) \

-0.5 0 0.5 1 1.5 2 25 3
w/Q

FIG. 2. Periodically driven system with a normal-metal bath.
The occupation distribution n4(0,w) + n,(0,w) is plotted for the
zeroth Floquet band using numerically evaluation of Green’s function
equations (21)—(24) for different driving amplitudes « = 0.2 and 0.8.
We have chosen V/Q = 0.08 and 7/ Q2 = 0.04.

Next, we numerically compute the occupation distribution
(for zeroth Floquet band) by evaluating the Matrix equations
(21)—(24). In this calculation, we truncate the matrices and
choose a large enough N, such that the spectrum becomes
unchanged with further increasing N. Here, the driving ampli-
tude « is still smaller than one, we will choose a finite energy
band, i.e., the summation ) | « isreplaced by f PD de;, with finite
D, for the nonsuperconducting system so that the truncation
of the matrices is valid and efficient. We plot numerical
results of v(n = 0,w) in Fig. 2 for different driving amplitudes
x = 0.2 and 0.8. Numerical results show multistep suppression
and multiplateau regimes between w = n<2 and (n + 1)Q2 for
n=0,1,2,.... Similar multistep staircase electron energy
distribution function was predicted to occur in a mesoscopic
ac-driven diffusive wire with the step width controlled by
the field energy quantum [79]. It should be emphasized
that generally such distribution is not characterized by an
effective temperature. This rich structure of the distribution
can be resolved in tunneling experiments. It also has important
consequences for the current shot-noise measurements as the
current power spectrum of fluctuations is determined by a
spectral integral of the product n(w)[1 — n(w)]. In particular,
in the shot-noise limit one expects multistep distribution to
translate into distinct Fano factor.

B. A superconducting bath
1. Tunneling density of states

In this section, we consider the more interesting case of a
superconducting bath, where the bath Green’s function can be
expressed in terms of the quasiclassical Green’s function for a
BCS superconductor [80-82]

Z Qbath q(a))

o oo f 2

Joan (@) =

Qbath q(w)

—inprg?(w).

(52)
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The retarded, advanced, and Keldysh components of the
quasiclassical Green’s functions for an s-wave superconductor
read as

. 1 wxin —A
g M w) = (

— ) (53)
Vxin? — A2\ —A  wxin

1% (w) = g1 (@)h(w) — h(@)g?“ (@),  (54)

where n — 0; the equilibrium distribution function is

h@) = (tanh(%) 0 ) 55)

0 tanh(2)

In order to recover the results for a normal-metal bath, we
can simply set A = 0. For a superconductor, the bath density
of states is not a constant, thus, the retarded and advanced
parts of the Q(n # 0,w) are not vanishing. Consequently, the
tunneling density of states with a dc tip has corrections from
Green'’s function with n # 0, and with the accuracy up to x>
we have to keep the n = %1 contribution in Eq. (40):

v(e) = v(0,€) +v(l,€) + O(k?), (56)
where v(1,€) describes n = £1 contributions.

Let us first look at the tunneling density of states for the
zeroth Floquet band (n = 0), which is defined as

U(O,E)/ FT
2

1
=Y mGL(n= O,e)(l - "—)
T4 4

:_1;%Im:n[(0 C)Z of0.0)(, 2)”

(57)

where C is the charge conjugation operator. In this case, the
analytic result in the @ — 0 limit up to second order in « can
be simplified. We expand the DOS in small «:

1(0,0)/ T7 = v(0,0) + k*v@(0,0) + O(c>). (58)

For finite A, we have v©@(0,0)=0 as expected, which
corresponds to the density of states (DOS) for the equilibrium
system. We focus on the second part v®(0,0). The full analytic
expressions are very involved and not enlightening (we refer
the reader to Appendix B). Here, we only present some limits
that can be simplified for two different regimes 2 < A and
Q > A, respectively:

1 for Q > A,
v®(0,0) = Re[—zmy}fm] forQ — A+0, (59)
VT
RC[WE] for Q - A — 0,

where we take the limit n — 0. Second, we consider con-
tributions from the higher Floquet band (n = £1), which is
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given by
v(l,w) K R R
bl ;Im(GkU(l,w) - Gf (-1Lw))
= LZImTr : 0 Z(QR(I w)
2 £ 0 cr)e= T
. 1 0
- 08 (—-1,w)) (0 C)} (60)
Again, we focus on analytical expressions at w = 0:
v(1,0)/ T = «2v?(1,0) + 0(c>). (61)

The analytical expression for v?(1,0) is also cumbersome and
can be found in Appendix B. This function can be simplified
in certain limits

ZQL; for Q> A,
v@(1,0) = {Re[-LAYIAY] for @ — A+0, (62)
Re[23/4%] for Q - A a 0

For completeness, we numerically evaluate the driving-
induced correction v®(0) = v?(0,0) + v®(1,0) in Fig. 3.
To the leading order in «, this correction for @ = 0 vanishes
when driving frequency is smaller than the superconducting
proximity-induced energy gap 2 < Aj,q. For the arbitrary
relation between I' and A, this gap has a complicated form.
In the case of weak coupling I' <« A, following asymptotic
formula applies Aj,g & I' — I'?/A. Because of the resonant
transitions between the ground state and the gap edges, the
driving-induced correction also exhibits BCS singularities
around 2 ~ Aj,g and A. To obtain the analytic expressions, we
assume finite A and take the limit w = 0, where the procedure
has ambiguity; therefore, we cannot directly take A — 0 limit
for those expressions to compare with the normal-metal bath
results. At w # 0, the boundary of zero DOS regime should be
smaller than Aj,q; for the higher-order corrections, the DOS is
not exactly vanishing for small driving frequency in the regime
Q < Ajng. Physically, those leakage DOS within the induced
gap comes from the processes involving higher Floquet bands,

10 T T . :
s Correction from driving
= 8 2) 2 3
2 v(0) = v®(0) k% + O(x*)
s o ]
S
= gl ]
8 ol induced gap Ajnqg ]
0 . . . ]
0 1 2 3 4

Q/A

FIG. 3. The driving-induced correction to the density of states of
the first Floquet band at zero frequency v® (@ = 0) as a function of the
driving frequency. We have chosen following parameters pr A = 1.0,
W/A =0.4 (mote T' =7 W?pp).
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(a) no driving

6
[%2]
O4‘U
[a]

2

—01.5 -1.0 -05 00 05 10 15 -15-10-05 00 05 10 15
w/A w/A

with driving (b)

DOS
)

N

1 0.15 Q/A=50

0.1 0.2 0.3
k=K/Q

FIG. 4. The density of states v(w) for the zeroth Floquet band
from the perturbative calculation. (a) The result without driving
potential, i.e., the equilibrium result; (b) the result including the
second order in x, where we choose coupling between fermionic
system and bath W/A = 0.4, the driving amplitude K/Q = 0.2,
and Q/A =5.0. The DOS at w/A = 0.15: v(0.15)/T7, (c) as a
function of « for fixed 2/A = 5.0, (d) as a function of /A for fixed
k=K/Q=0.2.

while up to the leading-order correction in «, only the first
lowest bands (both n = 1 and —1) are involved.

The general analytic expressions of the Green’s functions
and finite energy become very complicated, so we will
only show the numerical results for w # 0 and discuss
certain asymptotic limits. Results for the zeroth Floquet band
computed (i) without driving potential, i.e., equilibrium case
and (ii) with driving potential up to second order in x
[Eq. (32)], are shown in Figs. 4(a) and 4(b), respectively.
In equilibrium, the DOS within the induced gap is exactly
zero. When including the second-order correction in «, that
accounts for the processes virtually involving other Floquet
band (£1 band here), one finds leakage of the DOS within the
induced gap (—Aing, Aina), Which is shown in Fig. 4(b). At
smallest energies w < {I', A} < €, the asymptotic expression
reads as v®(0,w) ~ 1+ 22+ 6I'A + 3A2)w2/2F2A2. At
higher energies, there are two power-law singularities in the
DOS at induced w ~ Ajpg and bulk @ ~ A energy gaps. We
also numerically computed the leakage of DOS within the
gap for v # 0, e.g., v(w/A = 0.15), as a function of « for
fixed 2/A = 5.0 [in Fig. 4(c)], and as a function of /A for
fixed k = K/ = 0.2 [as shown in Fig. 4(d)]. As a function
of drive frequency DOS shows sharp peak structure at the
Q = Ajpg £ w and A + w, and saturates to a constant with
further increasing ratio Q2/A.

Following the same procedures as in the case of normal-
metal bath and evaluating the full matrices in Eqgs. (21)-(24),
we can obtain the numerical results for DOS v(n = 0,w)
(see Fig. 5). At small driving amplitude « = 0.2, the full
numerical result shown in Fig. 5(a) is qualitatively similar
to the result of analytical perturbative calculation. Indeed,
one finds leakage of states under the proximity-induced
gap which becomes progressively more pronounced with
increasing amplitude. Gap is completely lifted at driving
exceeding « ~ 0.4, however, DOS remains depleted in the
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4 (@) k=K/Q=02 4| B k=K/Q=04
= Band width: (~3.5 A, 3.5 4) Band width: (-3.5 4, 3.5 A)
o
o
L2
%
o
a

0

-2
w/A w/A

4] © | k=K/Q=06 4| @ | k=K/Q=08
E : Band width: (=3.5 A, 3.5 A) : Band width: (-3.5 A, 3.5 A)
3 | |
o
L 2
%
o
[a]

0
-2 0 2 4 6
w/A w/A

FIG. 5. The density of states v(w) for the zeroth Floquet band
from the numerical solution of Eqs. (21)—(24). We choose /A =
5.0, W/A =0.4, and finite bandwidth for the normal-metal part
(=D, D) with D/A =3.5, and for different driving amplitude
(@) k=02, (b) k=04, (c) «k =0.6, and (d) x =0.8. N =30
(2N + 1 Floquet bands).The Green dashed line indicates the value of
induced gap.

energy window of the order Aj,g. With further increasing
driving energy, states between induced and hard gap tend to
fill completely. All these features are clearly visible in Fig. 5.

It should be noted that in an earlier study [83] of normal-
metal-superconductor systems in the regime, when electrons
in the normal metal were driven out of equilibrium by a dc
voltage bias, it was shown that nonequilibrium fluctuations of
the electron density in the N layer cause the fluctuations of the
phase of the order parameter in the S layer. As a result, the
density of states in the superconductor was shown to deviate
from the standard BCS form; the density of states in the gap
becomes finite. This effect was interpreted as a result of the
time-reversal symmetry breaking due to the nonequilibrium,
and was described in terms of a low-energy collective Schmid-
Schon—type mode of the junction, which couples normal
currents in N layer and supercurrents in the S layer. The
broadening of the singularity of the density of states in the S
layer was found to manifest itself similarly to the broadening
of the distribution function. Our findings here, although
complementary, are different in their physical essence. We
considered a limit when superconductor has nonperturbative
effect on a spectrum of a normal layer itself inducing an
energy gap Ajng. At equilibrium, DOS of that N layer is zero
below the induced gap, however, periodic drive induces finite
occupation of subgap states where superconductor serves as
a bath mediating dissipative processes and thus stabilizing
steady-state distributions.

2. Occupation distribution and nonequilibrium Green’s function

In this section, we study the occupation distribution
and nonequilibrium Green’s function for the system with a
superconducting bath. As discussed in Sec. IV B, fermionic
occupation can be written as

ny(t) ~ /da}[nT(O,a)) — (eiQtnT(l,a)) + c.c)], (63)
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100 ‘
8 ‘ with a superconducting bath
-'g 1f 2nd Order Perturbation
2
=
% -2 A0/ N -

B |
= 10 |
= : K =0.1 MA4
® -4 | - ~ >
S 1077 I o=———— k=02 \\
g; e : V/A=04,T/A=02 ~- \\
nduced Gap
1 O' 6 L \\

-1 0 1 2 3 4 5 6
w/A
FIG. 6. The occupation distribution n4(0,w) + n;(0,w) of the
zeroth Floquet band from the second-order perturbation calculation in
k. We took coupling between fermionic system and bath W/A = 0.4,

the driving amplitudes « = 0.2, 0.1, Q/A =5.0, and T/A = 0.2.
The Green dashed line indicates the value of induced gap.

where the corresponding distribution functions are defined as
n4(0,w)

= =) - (0f4,0.0) - 0f 0.0+ 011, 0.0).
k

(64)
Z (Of o —Q) — 08 (Lo — Q)

k
+ 00 (Lo — Q). (65)

1
nilo) =~

Here, Qk,m is the diagonal part of the Nambu Green’s
function. The spin-down channel has the similar form, and
we drop the parts beyond the first Floquet band. If the driving
is much faster than the system dynamics, we can drop the fast
oscillation (/") parts, i.e., the second term and beyond.

We first consider perturbative expansion. For this case, the
analytic results in the zero frequency w = 0 can be simplified,
and we find the Keldysh component in occupation distribution
(0,0 = 0) is exactly zero, ie., >, Of ;+(0,0 =0)=0.
Therefore, the occupation of the zeroth Floquet band at w = 0
is proportional to the corresponding DOS with a prefactor

%(1 — "4—2). We would expect nontrivial results for w > 0: their
analytic form becomes very complicated and less transparent.
We, therefore, only show numerical results. The nonoscilla-
tory part n(0,w) is shown in Fig. 6 based on the second-
order perturbation calculation. In equilibrium, the small
finite-temperature effects can only induce a small electron
excitation occupation above the induced gap. However, with
periodic driving potential, (i) electrons can be excited above
the induced gap and has large stationary distribution between
the induced gap and the bath bulk gap (w/A ~ 0.2 to 1.0
as shown in Fig. 6), and the population in this regime is
almost independent of the driving amplitude and dissipation.
(ii) Within the induced gap, the occupation will be enhanced by
increasing driving amplitude due to the leakage of states. (iii)
We also notice that the occupation is significantly reduced for
the energy above the bath superconducting gap. The reason
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1.0f
-
'—'—'—'—T-.'_'—'_'_'-'-'_'_'_'-'-'_':"_f" '''''
0.8+ Driving: NE(out) (A, -A+Q) e 4
...... Driving: ng jn) 0,4, ,/,f
0.6 non-Driving g ]

Total Excitation
o
N

o
N

o
o

0.2 0.4 0.6 0.8 1.0

FIG. 7. The integrated occupations n of Eq. (66) of the zeroth
Floquet band above w =0 as a function of temperature obtained
from second-order perturbation calculation. Black solid line: with
the drive; blue dashed line: equilibrium case. For this plot we took
coupling between fermionic system and bath W/A = 0.4, the driving
amplitude k = 0.2, and Q/A = 5.0.

is that the bulk superconductor serves as dissipative bath,
but the bath has no DOS below the bulk gap A, therefore,
dissipation plays little role for w < A in cases (i) and (ii), only
when electrons are excited above A, the bath will interplay
significantly with the excited fermions and cause dissipation.
We can also check this by evaluating the integrated occupa-
tions, i.e., by integrating over the occupation distribution in the
region w € [0,A] and the region w € [A,—A + ] (where we
consider the case A < Q)

A
NEG) = /0 dw(n4(0,0) +n(0,0)),

—A+Q
N Eout) = / do(ny(0,w) + n(0,w)). (66)
A

We plot the integrated occupations for the equilibrium case
and for the driven nonequilibrium steady case as a function
of temperature in Fig. 7. The case without periodic driving
potential follows the standard equilibrium statistical mechan-

10k | with a superconducting bath

Numerical calculations

c
k]
5
Q
o 1E-2
a
c
k]
®
a
g 1E-4
o
I
) ! ~
Induced Gap =~ ~‘l ~a
1E-6 b
) ) M L ) ) ) ) )
-3 -2 -1 0 1 2 3 4 5 6 7
w/A

FIG. 8. The occupation distribution 74(0,w) +n,(0,w) for the
zeroth Floquet band from full numerical solution of Egs. (21)—(24).
The following parameters were used: k = 0.2, 0.4, 0.8, 2/A = 5.0,
W/A = 0.4, temperature 7/A = 0.2, and finite bandwidth for the
normal-metal part (—D, D) with D/A =3.5. N =30 (2N +1
Floquet bands).
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B k=K =02 (a) K=KQ=0.4 (b)
8 (.3| Band width: (-3.5,3.54) 0.3| Band width: (-3.5,3.58)
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8
© 1
0 -2 0 2 4 6 0 -2 0 2 4 6
/A WA
B K= KIQ=0.6 (©) = KI2= 08 )
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FIG. 9. The occupation distribution [n4(1,w)| + |1 (1,w)| for the
first Floquet band from the numerical analysis of Eqgs. (21)-(24).
We choose /A =5.0, W/A = 0.4, temperature 7/A = 0.2, and
finite bandwidth for the normal-metal part (—D, D) with D/A = 3.5.
N = 30 (totally 2N + 1 bands).

ics with vanishing total excitation at 7 = 0. In the presence
of driving potential, the total occupation at 7 = 0 is nonzero
for both nggn and ngeu. With varying temperature, 7 g(in)
only has small changes while 7ngu) has larger change. In
addition, the occupation function shows a plateau between
A and —A + Q, and also shows small occupation in the
regionw € (—A + Q,A + ) with the similar structure tow €
(—=A,A). In fact, the transitions induced by periodic driving
interplay with the dissipation due to the superconducting bath
(especially for energy above the bulk superconducting gap),
and this competition results in small finite occupation in the
nonequilibrium stationary states.

Finally, we consider the occupation distribution for the
zeroth Floquet band from full solution of matrix Egs. (21)—
(24), which is shown in Fig. 8. The occupation distribution
below the positive bulk gap, i.e., w < —A + €, is qualitatively
similar to the perturbative results, namely, there are large
occupation for w € (Ajng, A), and small finite occupation
above the bulk gap A. However, the gap structure appearing in
the region w € (A,—A + Q) of the second-order perturbation
theory is smeared out due to the higher-order processes. With
increasing the driving amplitude, the occupation in the regime
w > A becomes larger and larger. The numerical results for
the fast oscillatory part from the first Floquet band n(1,w) are
shown in Fig. 9.

VI. CONCLUSIONS

In this paper, we developed a nonequilibrium Keldysh
Green’s function approach to study periodically modulated
systems with dissipation. As a practical example, we con-
sidered a periodically driven normal system in contact with
a superconducting bath. After integrating out the fermionic
bath degrees of freedom and incorporating their effects into
the self-energy, we can treat effect of dissipation as well as
superconducting proximity nonperturbatively. We obtained
a set of kinetic equations, which have the same structural
form as in equilibrium, with the important distinction that
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the Green’s functions as well as self-energies are now infinite-
dimensional matrices in the Floquet space. By self-consistently
truncating the matrices for a finite bandwidth or employing
perturbative treatment for the small driving amplitude, we
computed various physical observables such as density of
states and occupation distribution function for the zeroth
Floquet band which can be measured in energy-resolved
tunneling spectroscopy experiments. Perspectives for the
transport measurements of the electron current shot noise
in periodically driven wires are also briefly discussed. Our
new approach and results are useful for understanding the
dissipative driven systems and nonequilibrium systems with
proximity-induced superconductivity.

Our main findings for the specific model considered here
can be summarized as follows. In the case of a nonsuper-
conducting bath, we show that the steady-state distribution
function is nonthermal with characteristic dependence on the
driving frequency. In the case of a superconducting bath, only
quasiparticles with energies above bulk gap can escape into
the bath and thermalize. Below the bulk superconducting
gap but above the induced gap, the steady-state occupation
probability is enhanced because quasiparticles cannot escape
into the superconducting bath. Thus, the steady-state distribu-
tion function exhibits complicated structure which depends
on the induced and bulk superconducting gaps as well as
on the driving frequency and amplitude. We also find that

J

PHYSICAL REVIEW B 95, 115303 (2017)

periodic driving modifies the proximity effect and leads to
a finite density of states below the induced superconducting
gap. This nonequilibrium effect becomes more significant with
increasing the driving amplitude.

ACKNOWLEDGMENTS

We are grateful to X. Li, M. F. Maghrebi, K. I. Seetharam,
and M. Vavilov for discussions. D.E.L. and R.M.L. acknowl-
edge the hospitality of the Aspen Center for Physics supported
by NSF Grant No. PHY 1066293, where part of this work
was done. This work at University of Wisconsin-Madison
was financially supported in part by NSF Grants No. DMR-
1606517 and No. ECCS-1560732, and by the Wisconsin
Alumni Research Foundation. A.L. acknowledge hospitality
of the Kavli Institute for Theoretical Physics, where parts of
this work were completed and supported in part by the NSF
under Grant No. NSF PHY11-25915.

APPENDIX A: DERIVATION OF GREEN’S FUNCTIONS
0(n,w) AND DISTRIBUTION FUNCTION FROM
PERTURBATIVE EXPANSION IN «

In this appendix, we show how to derive the Green’s
functions Q(n,w) for n = 0,%£1 [see Egs. (30)—(32)]. We can
write Eq. (17) in a matrix form

0 0 0 0 0r(2,0) 0

0 —Bixw) T—-Ai(w) —Biow) 0 0 0 Oi(1,0) 0
0 0 —Boi(w) T—Ag(w) —Bo_i(®) 0 0 0r0,0) | =] Ou(@) |. (AD

0 0 0 —B_io(w) I-A(®) —Bi 2@ 0 ||QOu-10) 0

0 0 0 0 Qk(_sz) 0

where the functions are given by

An(@) = Qor(w + nQ)YMoGan(@ + nQ)M;, (A2)
Bui1a(@) = Qolw + (n + DQIMoGbanle + (n + DQIM* | + Qoo + (n + DQIM Gpan(e@ + nQ)M;, (A3)
By—1.4(@) = Qoo + (n — DQIMoGban @ + (n — DQIM; + Qoo + (n — DQIM_ Goam(w + nQ)M;. (A4)

Notice that B+ ,(w) ~ k. Thus, one can simplify the above
equations by performing perturbative expansionin k < 1. Us-
ing the matrix identity (A —«kB) ' = A~ 4+ kA7 'BA"! +
O(x?), we obtain the Green’s function to the leading order of
k [see Egs. (30)—(32)].

Next, we simplify the distribution matrix by noticing that

F(t,0) = Fy(w) + k Fi(t,0) + O(k?), (A5)

where after Fourier expansion
F(0,0) = Fy(w) + k F1(0,0) + O(k>), (A6)
F(n # 0,0) = k Fi(n,0) + O(?). (A7)

(

Therefore, one can show that Oy (£1,) ~ k whereas 0 (0,w)
(equilibrium Green’s function) is order one. Having this in
mind, one can now expand Eq. (17) to find

0f (0.0) = 08(0,0)Fo(w) — Fo() Q7 (0.0),  (A8)
F1(0,w) =0, (A9)
0K (1,w) = OF (0,0 + Qi Fi(1,0) — Fo(w + Q)04 (1,w)
+ 0F(1,w) Fo(w) — k Fi(1,0) Q1 (0,w), (A10)
OK(—1,w) = OF (0,0 — Qi Fi(—1,0)
— Fo(o — Q)0 (—1L.w) + O (—1,0) Fy(w)
— Kk Fi(=1,0)010,w). (Al1)
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One may notice that Fy(w) is, in fact, the equilibrium distribution function. The functions F}(+1,w) can be obtained recursively.
Note that due to the relation F' = F, one can show that F(1,w)* = F(—1,w + Q).

APPENDIX B: PROXIMITY EFFECT AND DOS IN THE CASE OF A SUPERCONDUCTING BATH

In this appendix, we provide details of the derivation of the DOS for energies below the induced gap. Specifically, we derive
the functions v®(0,e = 0) and v®(1,e = 0) defined in Eqs. (58) and (61), respectively. Let us first consider v?(0,w = 0),
defined in Eq. (58). Analytical results can be obtained in two different regimes: 2 < A and Q > A, respectively. Note that in
order to obtain the correct analytical results, we have to carefully take the 7 — O limit at the end of the calculation. For Q <« A
case, one finds

2I2A[Q2(—12T% — A2 + Q%) + (VA2 — Q2 + A)BT? + 12I'A + 6I' (A% — Q%) + A3 — AQ?)]

10,0 = 0) = Re

QVAZT Q2T + /A2 = 92)4\/1"2(—«/A2 — Q%)+ 22 + Q2/AT — Q2

where I' = pr W2. In the opposite limit > A, we obtain

B

V(0,0 = 0) = Re[ Dy + Dyal, (B2)

where

Dpi = 2TA(THA — Q)(A + QIAG(A — Q)(A + Q) + A) — Q7]+ Q2T + AV A2 — Q2 + A) — Q]
x (Av/ A2 — 92\/(92 — T2V A2 — Q2 42I'Q2 — A’Q + PN}/{Q2V(A — (A + Q2T + V(A — Q)(A + Q))?

X [M2(=/(A — Q)(A + Q) +2I'Q% + Q2/(A — Q)(A + Q)]) (B3)
and
2I2A2 + AQQI+A)WQI-AZ  32I°Q20+A) + 8I3(I'+A) + 22 +A)VQ2—A2
oz ATT—A2+ 2 @TI—AZ+ Q272 T ITI—AT4<2 Q
Dy = . (B4)
@2r+ A)
Similarly, one can calculate analytical expression for V31,0 = 0), defined in Eq. (61):
v (1,0 = 0) = Re[vi num/Vi.pEN], (BS)

where

vinum = —TAT*R2A% — @2)(A% + A%/A? — Q2 + Q2/A? — Q2 — AQY) + QX(A2 — Q%))
+4AT3(A2 — QH(BAY +3A2Q% — 2AQ2V/ A2 — Q2 £ 3A3/A2 — Q2 — 304
+T(A? — Q)X (A* + 6A2Q2 — AQHA2 — Q2 + APA2 — Q2 — 6Q%)
FT2A2 - Q)(6A — 11A°Q% + 13427V A2 — @2 — 132/A2 — Q2 + 6A%/A2 — Q2 +5A0QY], (B6)

VIDEN = QV A2 — Q24T + 4TV A2 — Q2 4+ A% — 92)\/1“2(92 — A2) +2TQ2/ A2 — Q2 4+ Q2(A? — Q)

x [[2(29% —4A%) + TV A2 — Q23022 — 4A%) — (A% — Q2)?]. (B7)
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