
PHYSICAL REVIEW B 95, 115153 (2017)

Jellium-with-gap model applied to semilocal kinetic functionals
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We investigate a highly nonlocal generalization of the Lindhard function, given by the jellium-with-gap
model. We find a band-gap-dependent gradient expansion of the kinetic energy, which performs noticeably well
for large atoms. Using the static linear response theory and the simplest semilocal model for the local band
gap, we derive a nonempirical generalized gradient approximation (GGA) of the kinetic energy. This GGA
kinetic-energy functional is remarkably accurate for the description of weakly interacting molecular systems
within the subsystem formulation of density functional theory.

DOI: 10.1103/PhysRevB.95.115153

I. INTRODUCTION

Density functional theory (DFT) [1,2] is the most used
computational method for electronic structure calculations
of molecular and extended systems, providing the highest
accuracy–computational-cost ratio. In the conventional DFT
formalism, the Kohn-Sham (KS) scheme [3], the ground-state
electronic density n(r) is determined from a set of auxiliary
KS orbitals [φi(r)]: the KS-DFT method is exact but for the
approximations of the exchange-correlation (XC) functional.
However, for large scale calculations, the computational cost
of KS-DFT becomes unaffordable, as one needs to compute
all the occupied KS orbitals in order to construct the density
as n(r) = ∑occ.

i fi |φi(r)|2, where fi is the occupation number
(2, for closed-shell systems).

Among other linear scaling methods [4–7], two DFT
methods are attracting strong interest: (i) in the orbital-free
version of DFT [8–12], n(r) can be computed directly via
the Euler equation [1], without the need of KS orbitals; (ii)
in the subsystem version of DFT (Sub-DFT) [13–16], also
known as frozen-density embedding (FDE), n(r) is computed
as the sum of the electronic densities of several (smaller)
subsystems in which the total system is partitioned, which
can be computed simultaneously. Both approaches allow in
principle calculations of large systems, but the final accuracy
depends directly on the approximations of the noninteracting
kinetic-energy (KE) functional Ts (which are definitely more
important than the ones for the XC energy, that are also present
in standard KS calculations). We recall that the exact KS KE
is

T exact
s = 1

2

occ.∑
i

∫
fi |∇φi(r)|2d3r. (1)

Thus the KE is explicitly known only as a function of φi but
not as a functional of n.

On the other hand, in Sub-DFT the interaction between the
subsystems is taken into account via the so-called embedding
potentials [14–16], which depends on the nonadditive KE: in
the case of just two subsystems (A and B) it is T nadd

s [nA; nB] =
Ts[nA + nB] − Ts[nA] − Ts[nB].

The development of an accurate approximation of Ts[n]
(and/or T nadd

s [nA; nB]) is one of the biggest DFT challenges

[17–19]. Nowadays, the most sophisticated KE approxima-
tions have been constructed to be exact for the linear response
of the jellium model, by incorporating the Lindhard function
in their fully nonlocal expressions [9,20–24]. We recall that
the Lindhard function [9,25]

F Lind =
(

1

2
+ 1 − η2

4η
ln

∣∣∣∣1 + η

1 − η

∣∣∣∣
)−1

, (2)

where η = k/(2kF ) is the dimensionless momentum [kF =
(3π2n)1/3 being the Fermi wave vector of the jellium model
with the constant density n], is related to the Jellium density
response χ Jell via [9]

− 1

χ Jell
= π2

kF

F Lind. (3)

The nonlocal KE functionals based on the Lindhard
function are accurate for simple metals where the nearly free
electron gas is an excellent model but they cannot describe well
semiconductors and insulators, where the density response
function behaves as [26,27]

− 1

χSemicond(k)
−→
k→0

b

k2
, (4)

with b being positive and material dependent. Several KE
functionals have been constructed to improve the description
of semiconductors [27,28], but Eq. (4) has not been explicitly
used in their expressions due to the lack of a sophisticated
analytical form that can recover both the Lindhard function
and Eq. (4).

In this paper, we will investigate the generalization of
the Lindhard function for the jellium-with-gap model which
satisfies Eq. (4).

The jellium-with-gap model [29] was developed outside the
KS framework, using perturbation theory to take into account
the band-gap energy. This model was used to have quali-
tative and quantitative insight for semiconductors [30–34],
to develop an XC kernel for the optical properties of
materials [35], and to construct accurate correlation energy
functionals for the ground-state DFT [29,36–40]. We will show
that the Lindhard function for the jellium-with-gap model
(F GAP), previously introduced by Levine and Louie [33] in
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a different context (dielectric constant and XC potential), may
be seen as a sophisticated analytical form suitable for KE
approximations.

The paper is organized as follows. In Sec. II we discuss the
properties of F GAP, we derive its (band-gap-dependent) KE
gradient expansion, and we assess it for large atoms. By using
a local gap model, we propose a simple KE gradient expansion
that is very accurate for the semiclassical atom theory.

In Sec. III we discuss the implications of this result in DFT
by constructing a simple KE functional at the generalized
gradient approximation (GGA) level of theory based on the
gradient expansion of the jellium-with-gap model. GGA KE
functionals are computationally very efficient and play a key
role for the simulation of large systems. We mention that
the development of semilocal KE functionals is nowadays an
active field [41–50].

Finally, in Sec. IV we summarize our results.

II. THEORY

A. Properties and gradient expansions for the jellium model

For the conventional infinite jellium model, the Lindhard
function behaves as

F Lind → 1 + 1

3
η2 + 8

45
η4 + O(η6), for η → 0, (5)

F Lind → 3η2 − 3

5
− 24

175

1

η2
+ O(η−4), for η → ∞. (6)

Equation (5) contains important physics that has been used
in the construction of semilocal KE density functionals [9].
Thus, the KE gradient expansion which recovers the first three
terms in the right-hand side of Eq. (5) can be easily derived [9]
[see also Eqs. (15) and (16) in Sec. II C and the corresponding
discussion]. It is

T Lind4
s [n] =

∫
dr τTF

(
1 + 5

27
s2 + 8

81
q2

)
, (7)

where τTF = 3
10 (3π2)2/3n5/3 is the Thomas-Fermi KE den-

sity [51,52], which is exact for the jellium model, and s =
|∇n|/[2kF n] and q = ∇n2/[4(3π2)2/3n5/3] are the reduced
gradient and Laplacian, respectively. Equation (7) resembles
the second-order gradient expansion [53] (GE2)

T GE2
s [n] =

∫
drτTF

(
1 + 5

27
s2

)

(derived also within the linear response of the jellium model),
as well as the fourth-order gradient expansion [44,54,55] of
the KE

T GE4
s [n] =

∫
drτTF

(
1 + 5

27
s2 + 8

81
q2 − 1

9
s2q + 8

243
s4

)
,

with the exception of the terms ∝ s2q, ∝ s4, which are beyond
the linear response.

Note that F Lind(η = 0) = 1 is the leading term in the
expansion of Eq. (5) and it corresponds to the Thomas-
Fermi local-density approximation, the linear response in the
wave-vector space of which is just the Fourier transform
of the second-functional derivative, i.e., δ2T TF

s /δn(r)δn(r′) ∼
k−1
F δ(r − r′). We recall that the limit η = 0 is very powerful,

being also used in the construction of the adiabatic local-
density approximation XC kernel of the linear response time-
dependent DFT [56,57].

B. Properties of the Lindhard function
for the jellium-with-gap model

Levine and Louie [33] proposed the density-response
function χGAP(k,ω) of the jellium-with-gap model, and the
corresponding [i.e., from Eq. (3)] Lindhard function for the
jellium-with-gap model is

1/F GAP = 1

2
− 	

[
arctan

( 4η+4η2

	

) + arctan
( 4η−4η2

	

)]
8η

+

+
(

	2

128η3
+ 1

8η
− η

8

)
ln

(
	2 + (4η + 4η2)2

	2 + (4η − 4η2)2

)
,

(8)

where 	 = 2Eg/k2
F and Eg is the gap.

For a given 	, a series expansion of F GAP for η → 0 gives

F GAP → 3	2

16η2
+ 9

5
+ 3

175

175	2 − 192

	2
η2

− 64

875

525	2 − 368

	4
η4 + O(η6) when η → 0.

(9)

Thus, for any system with 	 > 0 we have that F GAP ∝ 	2η−2.
This term is correct [see Eq. (4)] and it has been also used in the
jellium-with-gap XC kernel [35], which gives accurate optical
absorption spectra of semiconductors and insulators. On the
other hand, if we first perform a series expansion for 	 → 0,
and then a series expansion for η → 0 we obtain

F GAP →
[

1 + 1

3
η2 + 8

45
η4 + · · ·

]

+	

[
π

8

1

η
+ π

12
η + 7π

120
η3 + · · ·

]

+	2

[
π2 − 4

64

1

η2
+3π2 − 16

192
+

(−17

180
+13π2

960

)
η2

+
(−383

3780
+ 683π2

60480

)
η4 + · · ·

]
+ · · · . (10)

Equation (10) confirms that, by construction, we have

F GAP = F Lind, when 	 = 0. (11)

Inspection of Eqs. (9) and (10) clearly shows that

lim
	→0

lim
η→0

F GAP = ∞, (12)

lim
η→0

lim
	→0

F GAP = 1, (13)

meaning that F GAP has an “order of limits problem.” Such a sit-
uation is common in DFT. For example, we recall that several
meta-GGA XC functionals (e.g., TPSS [58], revTPSS [59,60],
BLOC [61,62], SA-TPSS [63], VT{8,4} [64]) suffer from such
an order of limits problem. Nonetheless, they are accurate
for many systems and properties, showing realistic system-
averaged XC hole models [62].
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FIG. 1. Upper panel: 1/F GAP vs η for various values of 	. Also
shown is the small-η expansion of Eq. (5). Lower panel: Comparison
between F GAP (solid lines) and the expansion (dashed lines) of
Eq. (10), for 	 = 0.1, 0.5, and 1, respectively.

In the opposite limit, i.e., for η → ∞, we have

F GAP → 3η2 − 3

5
+

(
− 24

175
+ 3

16
	2

)
1

η2
+ O

(
1

η4

)
.

(14)

Therefore, in this limit, F GAP always behaves as F Lind for
	 = 0.

In the upper panel of Fig. 1, we show 1/F GAP for several
values of 	. The plots are all smooth. At large η, F GAP recovers
the Lindhard function [see Eq. (14)], while at small η it is
driven by the term ∝ η−2. The plot of the linear response of
T Lind4

s [n] [Eq. (5)] is also given for comparison. In the lower
panel of Fig. 1 we report the accuracy of Eq. (10), considering
only the terms explicitly indicated in the equation, for 	 =
0.1,0.5, and 1. Even for the case 	 = 1, this expansion is still
very accurate for η � 1.

C. Kinetic-energy gradient expansions from the linear
response of the jellium-with-gap model

Next we proceed to build the linear response jellium-with-
gap KE gradient expansion, that should recover Eq. (7) when
	 = 0. To this purpose, we consider the GAP4 expansion, with
the general form of the KE fourth-order gradient expansion:

T GAP4
s [n] =

∫
drτTF

(
a1

s2
+ a2

s
+ a3 + a4s + a5q + a6s

2

+ a7sq + a8s
3 + a9s

4 + a10q
2 + a11s

2q

)
. (15)

Performing the linear response of such a functional

F (η) = kF

π2
F

(
δ2Ts[n]

δn(r)δn(r′)

∣∣∣∣
n0

)
, (16)

where F represents the Fourier transform, we can find the
coefficients ai , by comparing term by term with Eq. (10).
Nevertheless, the straightforward calculation of Eq. (15)
requires a tedious and long algebra [65,66]. Instead, a more
elegant and simpler way to obtain the linear response of a given
semilocal functional has been proposed in Ref. [67]: consider
a small perturbation in density at r = 0, of the form n =
n0 + nke

ikr, such that ∇n = nkikeikr, and ∇2n = −nkk
2eikr,

with nk � n0. Thus, at r = 0, these expressions are simply
n = n0 + nk , ∇n = nkik, and ∇2n = −nkk

2. Inserting them
in the functional expression, the linear response is obtained
as twice the second-order coefficient of the series expansion
with respect to nk/n0. After some algebra, the KE gradient
expansion which gives the linear response of Eq. (10) is found
to be

T GAP4
s [n]

=
∫

drτTF

{
	2 27

91

π2 − 4

64

1

s2
+ 	

5π

72

1

s
+ 1

+	2

(
π2

64
− 1

12

)
+ 	

5π

36
s

+
[

5

27
+ 	2

(−17

324
+ 13π2

1728

)]
s2

+	
−7π

216
sq+

[
8

81
+	2

(−383

6804
+ 683π2

108864

)]
q2

}
.

(17)

The terms ∝ s−2 and ∝ s−1 account for the terms ∝ η−2 and
∝ η−1 of Eq. (10). These terms contribute only for a nonzero
gap, i.e., in semiconductors and insulators, but not in metals.
At 	 = 0, T GAP4

s [n] correctly recovers T Lind4
s [n].

To test T GAP4
s [n], we perform calculations for noble atoms,

up to Z = 290 electrons, using LDA orbitals and densities,
in the Engel code [68,69]. We consider 	 = 2Eg/k2

F (r) with
Eg being the KS band gap of the atoms. Because the gradient
expansion is well defined only at small gradients and small 	,
we perform all the integrations over the volume V defined by
the conditions −1 � q � 1 and 	 � 1, in a similar manner
as in Ref. [70]. The results are reported in Table I. For small
atoms (Ne and Ar), the GE2 is more accurate than T Lind4

s [n]
and T GAP4

s [n]. However, we recall that in the case of a small
number of electrons, the semiclassical and statistical concepts
beyond the gradient expansions do not hold. In fact, for larger
atoms (Kr to the noble atom with 290 electrons), both T GAP4

s

and T Lind4
s outperform GE2. In particular, T GAP4

s shows the best
performance, improving over T Lind4

s [n] and proving that, due
to the inclusion of the gap, F GAP4 contains important physics
beyond F Lind4.

D. Local band gap

In order to use Eq. (17) in semilocal DFT, we need to
replace the true band gap Eg , with a density dependent
local band gap. There are several models for the local band
gap [36,40], constructed from the exponentially decaying
density behavior [36] or from conditions of the correlation
energy [40]. In the slowly varying density limit, they behave
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TABLE I. Comparison of several linear-response KE gradient
expansions. All integrations are performed over the volume V ,
defined by −1 � q � 1 and 	 � 1. We show the exact KE (T exact

s )
and the errors Eapprox

s = T approx
s − T exact

s (in hartree). The GAP4 and
LGAP functionals are defined in Eqs. (17) and (20), respectively. The
best result of each line is shown in bold style. We use LDA orbitals
and densities.

Atom T exact
s EGE2

s ELind4
s EGAP4

s ELGAP-GE
s

Ne 125.8 −0.2 1.2 4.0 1.9
Ar 512.2 4.3 8.1 12.0 11.4
Kr 2742.3 −21.1 −6.7 1.0 10.3
Xe 7214.4 −50.7 −19.6 −8.9 23.2
Rn 21829.6 −146.5 −72.4 −56.8 48.9
Uuo 46259.6 −298.4 −162.3 −139.6 81.1
168 e− 106907.1 −636.4 −369.8 −336.9 158.9
218 e− 198077.5 −1065.9 −622.5 −579.7 318.9
290 e− 389072.0 −1888.9 −1114.7 −1056.4 630.1

as Eg ∼ |∇n|m, with m � 2. However, none of them can be
considered accurate in this density regime.

On the other hand, under a uniform density scaling nλ(r) =
λ3n(λr), the local band gap should behave as Eg ∼ λ2. This
condition is fulfilled by the general formula

Eg(r) = a|∇n(r)|m/n(r)2(2m−1)/3, m � 0, a � 0. (18)

Because other exact conditions of the local gap in the slowly
varying density limit are not known, we use Eq. (18) in the
expression of T GAP4

s , considering the case with m = 2. We fix
the parameter a requiring that the gradient expansion should
recover the first two terms of the kinetic-energy asymptotic
expansion for the large, neutral atom [51,52,71–78]:

Ts = c0Z
7/3 + c1Z

2 + c2Z
5/3 + · · · , (19)

where Z is the number of electrons. The first term in Eq. (19)
is the Thomas-Fermi one [51,52], the second is the Scott
correction due to the atomic inner core [71], and the last
term accounts for quantum oscillations [72–75]. The exact
coefficients are shown in the first line of Table II. As in
Ref. [77], we assume that any gradient expansion that is
exact for the uniform electron gas should have the exact c0

coefficient. The calculation of c1 and c2 has been done using the
method proposed in Ref. [77]. We recall that the semiclassical
atom theory has been often used in the development of
exchange functionals [41,70,79–82] and occasionally also for
kinetic-energy functionals [42]. Finally, we mention that these
gradient expansions are models for the total KE, and not for
the KE density, where the use of the reduced Laplacian q

TABLE II. The coefficients c0, c1, and c2 of the large-Z expansion
of the kinetic energy [see Eq. (19)].

c0 c1 c2

Exact 0.768745 −0.500 0.270
GE2 0.768745 −0.536 0.336
LGAP-GE 0.768745 −0.500 0.283

(which is not present in linear response of the jellium model)
is essential [47,49,83,84].

Using the procedure described above, we find a = 0.0075,
and we obtain the following gradient expansion (denoted as
LGAP-GE):

T LGAP-GE
s =

∫
drτTF

[
1 + a

5π

72
s +

(
5

27
+ a2 27

91

π2 − 4

64

)
s2

+ a
5π

36
s3 + O(|∇n|4)

]

=
∫

drτTF[1 + 0.0131s + 0.18528s2 + 0.0262s3].

(20)

Note that in Eq. (20) only terms up to s3 are considered [terms
in Eq. (17) proportional to q or q2 are neglected, as these terms
will correspond to s4].

As shown in Table II, LGAP-GE gives a very accurate
large-Z expansion, having the c2 coefficient close to exact.
The results for noble atoms are reported in Table I. LGAP-GE
is reasonably accurate for all atoms and, as expected due to
the inclusion of the semiclassical atom theory, the accuracy
increases with the number of electrons.

One additional observation is that LGAP-GE contains
odd powers of the reduced gradient, in contrast with F Lind4.
Nevertheless, Ou-Yang and Levy have already shown that,
using nonuniform coordinates scaling requirements [85], the
GE4 terms in the KE gradient expansion can be replaced by
an s-only dependent term [86], the coefficient of which must
be positive (and was fitted to the Xe atom). The resulting
simple KE functional, that behaves better than GE4 for the
nonuniform density scaling, has the following enhancement
factor (Fs = τ approx/τTF):

F OL1
s = 1 + 5

27
s2 + cs, (21)

with c = 0.01459 being slightly bigger than its LGAP-GE
counterpart. Anyway, we need to acknowledge that, since the
kinetic potential of a GGA functional (with the enhancement
factor Fs) has the general form

δTs

δn
= ∂τTF

∂n
Fs(s) + τTF ∂Fs

∂s

∂s

∂n
− ∇ ·

[
1

s

∂Fs

∂s
· ∇n

n8/3

]
, (22)

a necessary condition for it to be well defined is | 1
s

∂Fs

∂s
|<∞.

This is not satisfied by the LGAP-GE (and OL1). Thus, the
term ∝ s gives a diverging kinetic potential (δTs/δn → ∞)
at s = 0. This is due to the high nonlocality of Eq. (17),
which was not fully suppressed by the local gap model of
Eq. (18) with m = 2. Note that this divergence is a direct
consequence of the jellium-with-gap theory. Nevertheless, for
molecular systems s = 0 only at the middle of bonds, and it
has been found that this divergence is not important in real
calculations of weakly bounded molecular systems [87]. In
fact, the same problem is shared by other well-known KE
functionals [45,86,88].
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III. KINETIC-ENERGY FUNCTIONAL CONSTRUCTED
FROM THE LGAP GRADIENT EXPANSION

A. The LGAP GGA

To show the importance of the LGAP-GE, we construct
a simple GGA functional (named LGAP-GGA or simply
LGAP) that recovers the LGAP-GE in the slowly varying
density regime. We consider the RPBE exchange enhance-
ment factor form [89], F RPBE

x = 1 + κ(1 − e−μs2/κ ), and we
fix κ = 0.8 from the Lieb-Oxford bound [90], using the
approximate link between the kinetic and exchange energies
(i.e., the conjointness conjecture [41,91,92]). Note that, to our
knowledge, the RPBE functional form has not been yet used
in the development of kinetic functionals. The LGAP kinetic
enhancement factor is therefore defined as

F LGAP
s = 1 + κ(1 − e−μ1s−μ2s

2−μ3s
3
), (23)

where μ1 = b1/κ , μ2 = b2/κ + μ2
1/2, and μ3 = b3/κ +

μ1μ2 − μ3
1/6, such that it recovers the LGAP-GE in the slowly

varying density limit. Here b1 = 0.0131, b2 = 0.18528, and
b3 = 0.0262 [see Eq. (20)].

B. The kinetic-energy benchmark

In order to assess the LGAP KE functional, we consider
several known tests.

For total KE, we have the following.
(1) The benchmark set of atoms and ions [42,44,93].

All calculations employed analytic Hartree-Fock orbitals and
densities [94].

(2) The Na jellium clusters (rs = 3.93) set with magic
electron numbers 2, 8, 18, 20, 34, 40, 58, 92, and 106, used in
Refs. [42,44,93]. We use exact exchange orbitals and densities.

(3) The set of two interacting jellium slabs at different
distances [44]. Each jellium slab has rs = 3 and a thickness
of 2λF . Here λF = 2π/kF is the Fermi wavelength. The
calculations were performed using the orbitals and densities
resulting from numerical Kohn-Sham calculations within the
local-density approximation [3] for the XC functional.

(4) The set of molecules (H2, HF, H2O, CH4, NH3, CO,
F2, HCN, N2, CN, NO, and O2) used in Refs. [44,93,95].
The noninteracting kinetic energies of test molecules were
calculated using the PROAIMV code [96]. The required Kohn-
Sham orbitals were obtained by Kohn-Sham calculations
performed with the uncontracted 6-311 + G(3df,2p) basis
set, the Becke 1988 exchange functional [81], and the Perdew-
Wang correlation functional [97].

For KE differences, we have (1) the disintegration kinetic
energy (DKE) of a jellium cluster [44,98]; (2) the jellium
surfaces test with bulk parameter rs = 2, 4, and 6 into the
liquid drop model (LDM), as in Refs. [42,44,93]; (3) the
dissociation KE (dKE) of a jellium slab into two pieces
(as in Ref. [44]); and (4) the atomization KE (AKE) of
molecules [44,93,95].

For nonadditive KE, we employ the LGAP functional
in subsystem DFT calculations, using the TURBOMOLE
[99] program, together with FDE script [100]. The FDE
calculations have been performed with a supermolecular
def2-TZVPPD [101,102] basis set and the Perdew-Burke-
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FIG. 2. Comparison of kinetic enhancement factors.

Ernzerhof [103] XC functional. Five weakly interacting groups
of molecular complexes are considered as a benchmark
[42,44,84,104–107]: WI, weak interaction [He-Ne, He-Ar,
Ne2, Ne-Ar, CH4-Ne, C6H6-Ne, (CH4)2]; DI, dipole-
dipole interaction [(H2S)2, (HCl)2, H2S-HCl, CH3Cl-HCl,
CH3SH-HCN, CH3SH-HCl]; HB, hydrogen bond [(NH3)2,

(HF)2, (H2O)2, HF-HCN, (HCONH2)2, (HCOOH)2]; DHB,
double hydrogen bond (AlH-HCl, AlH-HF, LiH-HCl, LiH-HF,
MgH2-HCl, MgH2-HF, BeH2-HCl, BeH2-HF); CT, charge
transfer (NF3-HCN,C2H4-F2,NF3-HCN, C2H4-Cl2, NH3-F2,

NH3-ClF, NF3-HF, C2H2-ClF, HCN-ClF, NH3-Cl2, H2O-ClF,
NH3-ClF).

C. Results

We compare our results with revAPBEk [41] and
LC94 [108] GGAs, which are considered state-of-the-art KE
functionals for FDE [42], as well as with GE2 [53,55] and
OL1 [86]. The KE enhancement factors of the considered
functionals are reported in Fig. 2. In the inset of Fig. 2, we show
that LGAP and LGAP-GE are identical (by construction) at
relatively small values of the reduced gradient (0 � s � 0.5),
both differing significantly from the GE2 behavior. Conse-
quently, LGAP shows a bigger enhancement factor than both
LC94 and revAPBEk (i.e., F LGAP

s �∼ F revAPBEk
s �∼ F LC94

s )
when s � 2.5. Such a feature has been proved to be essential
for jellium surfaces [109]. On the other hand, the LGAP
enhancement factor recovers its maximum value Fs → 1 + κ

at s ≈ 3, faster than revAPBEk.
In Table III we report the numerical results of all the

tests. For total KE tests, LGAP gives the best overall
performance, among the considered functionals, being the
best for jellium clusters, jellium slabs, and molecules. For
KE differences LGAP is the most accurate for jellium surfaces
and dissociation KE of jellium slabs. We also mention that
LGAP performs reasonably well for all the other tests, being
in line with revAPBEk.

Finally, LGAP outperforms the other functionals for the
FDE theory, being especially accurate for dipole-dipole,
dihydrogen bond, and charge-transfer interactions. These latter
results show that, in agreement with the finding of Ref. [87],
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TABLE III. Mean absolute relative errors (MARE) of the non-
self-consistent benchmark tests, and mean absolute errors (MAE
in millihartree) of FDE self-consistent tests, given by several KE
functionals. The best result of each group is highlighted in bold
style.

GE2 revAPBEk OL1 LC94 LGAP

Total KE (non-self-consistent calculations)
Atoms and ions 1.1 1.2 1.1 0.8 1.1
Jellium clusters 1.0 0.8 1.0 0.9 0.8
Jellium slabs 0.6 0.5 0.5 0.5 0.4
Molecules 0.9 0.4 0.7 0.5 0.2

KE differences (non-self-consistent calculations)
Jellium cluster DKE 27.2 23.1 28.9 21.3 22.6
Jellium surfaces 3.3 3.6 3.4 3.8 3.1
Jellium slabs dKE 5.0 3.5 4.7 4.1 3.4
Molecules AKE 184 155 185 154 159

FDE results for molecular systemsa (self-consistent calculations)
Weak interactions (WI) 2.46 0.13 2.49 0.36 0.21
Dipole interactions (DI) 6.48 0.48 6.59 0.67 0.45
Hydrogen bonds (HB) 10.68 1.27 10.90 1.34 1.69
Dihydrogen bonds (DHB) 4.39 3.08 4.50 2.92 2.58
Charge transfer (CT) 5.05 2.61 6.94 2.79 1.95
MAE FDE 5.66 1.72 6.31 1.82 1.50

aEmbedding energy errors 	E = EFDE − EKS (in millihartree) for
different KE functionals and complexes. In the last line, the mean
absolute error (MAE) is reported.

the divergence at s = 0 of the LGAP kinetic potential is
not important for calculations of weakly bounded molecular
systems. Moreover, results indicate that the LGAP-GE gradi-
ent expansion can be successfully used in the kinetic-energy
functional construction, which performs relatively well in FDE
theory.

IV. CONCLUSIONS

In conclusion, we have investigated the linear response of
the jellium-with-gap model, in the context of semilocal kinetic
functionals. We have shown that the Levine and Louie [33]
analytical generalization of the Lindhard function (F GAP)
contains important physics beyond the jellium model, and in
particular we mention the following properties:

(i) F GAP recovers the Lindhard function when the band gap
is zero (i.e., Eg = 0).

(ii) F GAP has the correct behavior [see Eq. (4)] at small
wave vectors, expressing the material-dependent constant b in
terms of the band gap.

(iii) In the regime of small band-gap energy (i.e., Eg �
EF , with EF being the Fermi energy), F GAP gives the GAP4
gradient expansion of the kinetic energy [see Eq. (17)], which
is band-gap dependent, and performs remarkably well in the
atomic regions where the density varies slowly, improving over
T Lind4

s of Eq. (7) (see Table I).
These features show that F GAP should be further in-

vestigated and exploited in the field of nonlocal kinetic
functionals [9,20–24,27,28,110–116], and we would like to
address this important issue in further work.

Finally, by considering a local band-gap model, and a
simple enhancement factor form, we have constructed the
nonempirical LGAP GGA kinetic-energy functional, derived
from the linear response of the jellium-with-gap model (i.e.,
the GAP4 gradient expansion). This functional showed the
best performance in the context of FDE theory. Thus, it can be
further used in real applications.
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