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Charge ordering and correlation effects in the extended Hubbard model
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We study the half-filled extended Hubbard model on a two-dimensional square lattice using cluster dynamical
mean-field theory on clusters of size 8–20. We show that the model exhibits metallic, Mott-insulating, and
charge-ordered phases, and determine the location of the charge-ordering phase-transition line and the properties
of the phases as a function of temperature, local interaction, and nearest-neighbor interaction. We find strong
nonlocal correlations outside the charge-ordered phase and a pronounced screening effect in the vicinity of the
phase transition, where nonlocal interactions push the system towards metallic behavior. In contrast, correlations
in the charge-ordered phase are mostly local to the unit cell. Finally, we demonstrate how strong nonlocal
electron-electron interactions can increase electron mobility by turning a charge-ordered insulator into a metal.
We analyze finite-size effects and the convergence of our data to the thermodynamic limit. Control of all sources
of errors allows us to assess the regime of applicability of simpler approximation schemes for systems with
nonlocal interactions.
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I. INTRODUCTION

The energetic competition between electron repulsion
due to local Coulomb interactions, which tends to localize
electrons, and kinetic effects, which favor electron itineracy,
leads to a rich interplay of competing phases in strongly cor-
related systems, where both contributions are of comparable
magnitude [1].

While kinetic- and local potential-energy contributions
are often dominant, the Coulomb interaction always gen-
erates nonlocal intersite interaction terms in real materials.
In practice, lattice model calculations often absorb weak
nonlocal interactions in appropriately modified (“screened”)
local interactions, so that the physics of a system with general
Coulomb interactions is approximated by the physics of an
“effective” Hamiltonian with only local terms [2].

However, as the strength of nonlocal interactions increases,
their contribution to the energetics becomes important enough
to markedly change the physics of interacting systems, to
the point that it is energetically advantageous for a system
to condense in a symmetry-broken charge-ordered pattern.
This pattern, at the cost of raising the local interaction energy,
minimizes nonlocal electron repulsion.

Charge-ordered states are ubiquitous in nature. Since
their early observation by Verwey [3] in magnetites, they
have been found in Wigner crystals [4,5], high-Tc cuprate
superconductors [6–10], manganites [11–14], cobaltates
[15], nickelates [16–19], two-dimensional organic materials
[20–23], La1−xSrxFeO3 [24,25], layered dichalcogenides [26],
and many other, including quasi-one-dimensional [27,28]
systems.

Screening and charge-order effects can be studied theoret-
ically on model systems which are both simple enough that
different physical phenomena can be disentangled and com-
plex enough that they exhibit the salient aspects of correlation
physics in the presence of nonlocal interactions. The extended
Hubbard model, which includes nearest-neighbor effects in
addition to the local Coulomb repulsion, is such a minimal
model.

Early studies in two dimensions with lattice Monte Carlo
[29], exact-diagonalization [30,31], weak-coupling [32] and
strong-coupling [33] perturbation theory, as well as high-
temperature series expansion [34] mainly focused on the
interplay of spin, charge, and superconducting degrees of
freedom. Later calculations, some of them performed with
nonperturbative embedding methods, were primarily moti-
vated by four aspects: applications to the physics of the organic
superconductors [35,36], aspects of which are believed to
be described by a quarter-filled extended Hubbard model;
exploration of superconducting properties in the presence of
nonlocal interactions [37–45]; methodological development
[46–49]; and the fundamental question of the “screening”
effect that nonlocal interactions have on the normal-state
physics of models with large local interactions [48–52].

However, a systematic study of the properties of the
ordered and disordered phase at finite temperature within
nonperturbative methods and on systems large enough that
finite-size effects can be controlled has so far been absent. In
this work, we study the finite-temperature phase transitions
of the half-filled model in two dimensions (2D) using the
dynamical cluster approximation [53,54] with a continuous-
time quantum Monte Carlo impurity solver [55,56]. We focus
on the finite-temperature regime and study the charge order
to metal and metal to Mott-insulator phase transitions as a
function of temperature, local interaction U , and intersite
Coulomb repulsion V . Our clusters are large enough that
finite-size effects can be assessed.

Our results show that the increase of the intersite inter-
actions V at fixed U leads to the formation of a charge-
ordered (CO) phase which is characterized by a checkerboard
arrangement of electrons with nonzero staggered density. The
charge-ordered phase persists up to a critical temperature TCO

that depends strongly on the strength of V and U . We also
demonstrate that charge order can be destroyed by the increase
of the interaction strength U . In particular, we find that at
fixed V , the system transitions from a charge-ordered insulator
to a metal upon increase of U at moderate U , and to a
Mott-insulating phase upon further increase of U . We also
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find that the presence of intersite interactions causes noticeable
screening effects. Finally, analyzing the low-temperature data,
we address discrepancies between existing dual-boson [48]
and extended dynamical mean-field theory (EDMFT)+GW

[50] results.
The remainder of the paper is organized as follows. In

Sec. II, we introduce the model and give a brief overview
of the numerical methods used in this work. In Sec. III,
we present the phase diagram in the space of temperature
and nearest-neighbor interaction. In Sec. IV, we examine the
phase diagram in temperature and on-site interaction, and in
Sec. V, we study the competition between local and nonlocal
interactions. Section VI contains a summary and conclusions.

II. MODEL AND METHOD

A. Model

The extended Hubbard model on a two-dimensional square
lattice is given by the Hamiltonian

H = −t
∑
〈ij〉,σ

(c†iσ cjσ + c
†
jσ ciσ ) + U

∑
i

ni↑ni↓

+ V

2

∑
〈ij〉,σσ ′

niσ njσ ′ − μ
∑
iσ

niσ , (1)

where t is the nearest-neighbor hopping amplitude, U and
V are the on-site and nearest-neighbor Coulomb interactions,
respectively, and μ denotes the chemical potential. c

†
iσ (ciσ ) is

the creation (annihilation) operator with spin σ on lattice site
i, and niσ = c

†
iσ ciσ is the number operator on site i. To enforce

half filling, we fix the chemical potential at μ = U
2 + zV (z is

the coordination number). Following the convention of much
of the recent literature, we set t = 0.25.

To explicitly study the effect of charge ordering, we extend
our Hamiltonian with a symmetry-breaking term by adding a
staggered chemical potential μi = μ0e

iQri with Q = (π,π ) to
Eq. (1),

Hμ0 = H +
∑
iσ

μiniσ . (2)

This term breaks the original bipartite lattice into two sublat-
tices A and B with μi = ±μ0 for A(B) sublattice, respectively,
thereby doubling the unit cell. Typically, we are interested in
the solution with μ0 → 0. The doubling of the unit cell in real
space translates into a reduction of the first Brillouin zone, so
that we can rewrite the Hamiltonian (2) as

Hμ0 =
∑

k∈RBZ

(ξkc
†
kσ ckσ + ξk+Qc

†
k+Qσ ck+Qσ )

−μ0

∑
kσ

(c†kσ ck+Qσ + c
†
k+Qσ ckσ )

+U
∑

i

ni↑ni↓ + V

2

∑
<i,j>,σ,σ ′

niσ njσ ′ . (3)

Here, ξk = εk − μ, εk = −2t[cos(kx) + cos(ky)] is the 2D
square-lattice dispersion, and the momentum k runs over the
reduced Brillouin zone (RBZ).

The doubling of the unit cell leads to the appearance of
the off-diagonal elements in momentum-dependent quantities

such as the Green’s function and the self-energy. We will adopt
the following notation [57] for the Fourier transform:

Gσ (k1,k2,iωn) = 1

N

∑
ij

ei(k1ri−k2rj )Gσij (iωn). (4)

Translational invariance of the Green’s function in the reduced
Brillouin zone then implies that Green’s functions and self-
energies can be written in a 2 × 2 block-matrix form [54],
where

Gσ (k,iωn)

=
(

Gσ (k,k; iωn) Gσ (k,k + Q; iωn)
Gσ (k + Q,k; iωn) Gσ (k + Q,k + Q; iωn)

)
, (5)

and Q = (π,π ) for checkerboard order. The off-diagonal
components Gσ (k,k + Q; iωn) and Gσ (k + Q,k; iωn) are
zero in the uniform phase, but become nonzero once the
sublattice symmetry is broken (i.e., in the CO phase). In
the half-filled case, they satisfy the symmetry relations
Gσ (k,k; iωn) = −[Gσ (k + Q,k + Q; iωn)]∗ and Gσ (k,k +
Q; iωn) = Gσ (k + Q,k; iωn) [57].

B. Dynamical cluster approximation

The isotropic phase of the extended Hubbard model has
been studied extensively in the extended dynamical mean-
field-theory [58–61] (EDMFT) approximation, which is an
extension of the single-site dynamical mean-field theory
[62–65] to nonlocal interactions, which treats local self-energy
contributions nonperturbatively, while nonlocal self-energy
effects are neglected. It has also been studied in a combination
of EDMFT with the GW approximation [50,66,67], which
includes nonlocal self-energy contributions perturbatively,
and within the dual-boson method, which is formulated
as a perturbative expansion in corrections to the EDMFT
[48,68,69].

In contrast to these methods, cluster methods such as
the dynamical cluster approximation (DCA) [53,54], the
cellular dynamical mean-field [65,70,71] approximation, or
the variational cluster approximation (VCA) [47,72] capture
short-range spatial correlations nonperturbatively, while all
correlations outside the cluster are neglected, and can enter
the symmetry-broken state. The methods are controlled, in the
sense that the inverse 1/Nc of the cluster size Nc is a small
parameter, and they become exact in the limit of Nc → ∞.
Results obtained within the dynamical cluster approximation
on the Hubbard model with only local interactions are now
regularly extrapolated to the thermodynamic limit [57,73–78],
where they provide unbiased solutions of interacting fermionic
lattice models that have been validated against other numerical
methods [78]. They are also used as reference data to
calibrate and cross validate ultracold-atomic gas experiments
[79].

Results for the extended Hubbard model have been obtained
in one dimension within Monte Carlo [80], VCA [47],
and cellular DMFT [46]. For the two-dimensional extended
Hubbard model, ground-state phase diagrams and spectral
functions have been obtained within VCA on clusters up to
size 12 [47]. Cellular DMFT results are available on 2 × 2
clusters [36,45], but cluster DMFT results on systems large
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enough to assess finite-size effects have so far not been
obtained.

The dynamical cluster approximation [53,54] is ideally
suited to access larger system sizes. It is based on a partitioning
of the Brillouin zone into Nc patches, each centered around a
momentum K , with the lattice momenta k = k̃ + K , where
k̃ denotes momenta within each cluster patch [54]. In the
DCA, the many-body self-energy �(k,ω) is expanded into
basis functions φK (k), K = 1, . . . ,Nc, which are chosen to
be 1 for k inside “patch” K and zero otherwise, so that the
self-energy is approximated as �(k,ω) ≈ ∑Nc

K φK (k)�(K,ω)
[81]. Self-energies of this form can then be obtained from the
self-consistent solution of a cluster quantum impurity problem
formulated in the reduced BZ.

An extensive derivation of the symmetry-broken formalism
is presented in Refs. [54,57]. While the model may also exhibit
other long-range ordered phases, including antiferromag-
netism, our version of the DCA only accounts for long-range
charge order. We leave the investigation of the interplay of
charge order with other orders to a future investigation.

C. Quantum impurity solver

The main numerical work in solving the dynamical mean-
field equations consists of solving the quantum impurity
problem, i.e., obtaining an approximate self-energy �(K,iωn)
for a given noninteracting Green’s function. We use the
continuous-time auxiliary field quantum Monte Carlo algo-
rithm (CTAUX) as a cluster solver [55]. CTAUX is based on the
combination of an interaction expansion [82] combined with
an auxiliary field decomposition of the interaction vertices. A
detailed description of the algorithm is given in Refs. [75,83]
and we limit our discussion here to the decoupling of the
density-density interactions term only.

To decouple the quartic interaction terms in the Hamiltonian
Hint , with

Hint = 1

2

∑
ij,σσ ′

Uσσ ′
ij

(
niσ njσ ′ − niσ + njσ ′

2

)
− K

β
, (6)

following Ref. [55], we add and subtract a constant K/β to the
Hamiltonian and rewrite the interaction as

Uσσ ′
ij =

⎧⎨
⎩

U for i = j and σ = −σ ′
V̄ for |Ri − Rj | = 1
0 otherwise.

(7)

Note that a chemical potential shift dependent on U and V has
been added to the interaction term in Eq. (6) [55].

In order to construct a generalized transformation in the
spirit of Rombouts’ decoupling [84–86], we first rewrite
Eq. (6) as

−Hint = K
β(2Nc)2

∑
ij,σσ ′

[
1 − (2Nc)2β

2K

×Uσσ ′
ij

(
niσ njσ ′ − niσ + njσ ′

2

)]
. (8)
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FIG. 1. Nc = 8 DCA phase diagram for the half-filled extended
Hubbard model in the plane of temperature TCO and intersite inter-
action V for three values of local interaction strength U = 0.0 (left
panel), U/4t = 0.5 (middle panel), and U/4t = 1.0 (right panel).
CO and M denote charge-order and metallic phases, respectively
(energies are shown in units of 4t = 1).

In the next step, for each term under the sum, we construct a
transformation with

1 − (2Nc)2β

2K Uσσ ′
ij

(
niσ njσ ′ − niσ + njσ ′

2

)

= 1

2

∑
s=±1

eγ σσ ′
ij s(niσ −njσ ′ ), (9)

where s is an auxiliary spin and

cosh

(
γ σσ ′

ij

)
= 1 + βN2

c Uσσ ′
ij

K . (10)

Since the numerical procedure used in this extended scheme
is identical to the original CTAUX algorithm, we refer the
reader to Ref. [55] for further details.

The explicit inclusion of the nonlocal interaction into the
quantum impurity model avoids treatment of nonlocal terms
in a perturbative fashion, so that nonlocal cluster correlation
effects to all orders can be considered. An explicit frequency
dependence of “effective” “screened” interactions, as required
in methods based on the single-site dynamical mean-field
theory [48,50,58–60], does not arise in this formalism.

III. T -V PHASE DIAGRAM

A. Phase boundary

The half-filled extended Hubbard model in two dimensions
shows a phase transition between an isotropic (metallic or
Mott-insulating) phase at high temperature and weak V , and
a charge-ordered phase at low T and large V . In this section,
we analyze the location of the charge-order phase boundary
as a function of V and T at fixed U . Figure 1 shows the
phase boundary on an eight-site cluster for temperatures
down to T/4t ∼ 0.02 (an assessment of finite-size effects on
the phase boundary is given in Sec. III C). The left panel
shows the phase boundary for U = 0, the middle panel for
U/4t = 0.5, and the right panel for U/4t = 1. Within the
eight-site DCA approximation, the V = 0 system undergoes
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0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
V

0

0.5

1

1.5

δn
 =

 n
A

-n
B

U=0.0 U=0.5 U=1.0

T=0.08

T=0.04
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(b) 

FIG. 2. (a) Order parameter of the charge-order phase δn = nA −
nB as a function of intersite interaction V for U = 0.0, U/4t = 0.5,

and U/4t = 1.0 at two temperatures T/4t = 0.04 (open symbols)
and T/4t = 0.08 (filled symbols) obtained for clusters of size Nc = 8.
We use 4t = 1 as the energy unit. (b) Snapshots of ni at U/4t = 0.5
and T/4t = 0.04 obtained on clusters of size Nc = 20, for nonlocal
interaction strengths indicated. The size of the dots is proportional to
the local density.

a partial Mott transition to a pseudogap state at a higher U

of approximately U/4t ∼ 1.4, and becomes fully gapped at
U/4t ∼ 1.625 [56,87], so that all values in Fig. 1 are chosen
below the Mott transition. A fit to our data (dashed black line in
Fig. 1) is consistent with a linear slope over the range of data we
show and an extrapolation to T = 0 intersects at V/4t = 0.03
at U = 0, V/4t = 0.125 at U/4t = 0.5, and V/4t = 0.24 at
U/4t = 1.0.

B. Order parameter

The location of the charge-order line in Fig. 1 is determined
from the behavior of the charge-order parameter δn = nA −
nB , i.e., the difference between the particle densities at the two
sublattice sites. This staggered density δn is a natural choice for
the order parameter of the CO phase, as δn = 0 in the isotropic
phase and δn = 0 in the CO phase. Figure 2 shows the order
parameter δn as a function of V at two temperatures T/4t =
0.04 (open symbols) and T/4t = 0.08 (filled symbols) for
three values of U = 0.0 (red), U/4t = 0.5 (blue), and U/4t =
1.0 (green). A nonzero δn at large V decreases very rapidly as
V is reduced and intersects the x axis almost vertically, making
a precise identification of the charge-order boundary possible.
While the behavior for U = 0 clearly indicates continuous
behavior, the U/4t = 1.0 curve shows a fast enough change
as a function of V to be consistent with first order. However, we
could not detect a hysteresis region, meaning that the transition
either is very weakly first order [47,88] (i.e., with a coexistence
regime smaller than 0.01/4t) or remains continuous.

0 0.05 0.1 0.15 0.2 0.25 0.3

V

0

0.2

0.4

0.6

0.8

1

D

D
A

D
B

U=0.0 U=0.5 U=1.0

FIG. 3. Double occupancy on sublattice A (filled symbols) and
sublattice B (open symbols) as a function of V at T/4t = 0.04 for
three values of the local interaction: U/4t = 0 (red), U/4t = 0.5
(blue), and U/4t = 1.0 (green) obtained on a cluster of size Nc = 8.
Energies are shown in units of 4t = 1.

The double occupancy, shown in Fig. 3, can similarly be
used as an order parameter to identify the location of the
CO phase transition. In Fig. 3, we plot it at U = 0.0 (red),
U/4t = 0.5 (blue), and U/4t = 1.0 (green) as a function of
nonlocal interactions V at T/4t = 0.04. The double occupancy
of noninteracting electrons at U = 0 and V = 0 is 0.25.
As U is increased at constant V , the double occupancy
gradually decreases. At V < VCO , the double occupancy DA

on sublattice A (filled symbols) is identical to DB on sublattice
B (open symbols). Once CO is established at V > VCO , DA

and DB become different, with one of the double occupancies
rising far above the noninteracting value.

C. Cluster-size dependence

The DCA is exact in the limit of infinite cluster size
Nc. For any finite Nc, the method is approximate, and local
quantities converge ∼1/Nc in two dimensions for Nc → ∞
[54,57,75,76,78]. In order to assess the effect of these finite-
size effects, we illustrate in Fig. 4 the behavior of the order
parameter for several finite-size clusters Nc = 4,8,16,20. We
observe a noticeable difference between clusters of size 4
(green curve, inset) and larger clusters. This is an artifact of
the dynamical cluster approximation, where periodic boundary
conditions for Nc = 4 imply that two pairs of nearest neighbors
are identical, whereas larger clusters have four independent
neighbors, and consistent with results from early theories
[89–91] where the critical nonlocal interaction strength is
given by Vc = U/z for coordination number z.

Remarkably, finite-size effects for the location of the phase
boundary on larger clusters are small for the parameters shown
here: the change in critical Vc between clusters of size 8,16,

and 20 is less than 0.01/4t , leading us to hypothesize that
they are mostly converged at these temperatures. Similarly, the
magnitude of the order parameter and the size of the critical
region seems converged to within a few percent.

Figure 5 shows the behavior of the critical V , the order
parameter δn, and the double occupancy D at select points in
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FIG. 4. Order parameter at temperature (a) T/4t = 0.04 and
(b) T/4t = 0.08 as a function of V for clusters of size Nc = 4
(green squares), Nc = 8 (black circles), Nc = 16 (red triangles), and
Nc = 20 (blue diamonds) at U/4t = 0.5. We set 4t = 1 as the energy
unit.

the phase space. Shown are values for clusters of size 4, 8,
16, and 20 for Vc and 8, 12, 16, 18, and 20 for D and δn.
Also shown is a linear extrapolation using the scaling valid at
large cluster size, N−1

c , and the value of the quantity in the
thermodynamic limit. The fit residuals give an indication of
the reliability of the extrapolation, and the deviation of the
values in the thermodynamic limit from the Nc = 8 data gives
an assessment of the accuracy to which Nc = 8 captures the
physics of the infinite system. For instance, at V = 0.16, we
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FIG. 5. (a) VCO (above which a nonzero staggered density δn is
observed), (b) δn at T = 0.04, V = 0.16,0.17,0.18, and (c) double
occupancy DA and DB at T = 0.04, V = 0.16,0.17,0.18 plotted as
a function of inverse cluster size 1/Nc for (a) clusters of size 4, 8, 16
and (b),(c) clusters of size 8, 12, 16, 18, and 20.

find δn = 0.77818 ± 0.033857 in the thermodynamic limit,
whereas δnNc=8 = 0.8998, indicating a smaller polarization in
the extended system than on the smaller finite cluster, and a
systematic reduction of the order parameter and the potential
energy as cluster size is increased. Sequences of larger clusters
could systematically reduce this uncertainty and converge to
the thermodynamic limit, but are currently outside of our
computational capabilities. In general, we find that the Nc = 8
system tends to slightly overestimate the order parameter, but
that the location of the phase transition (left panel and Fig. 4)
is captured much more accurately.

D. Energetics

Similar to Mott-insulating systems, where the local inter-
action suppresses the electron mobility [1], and Anderson
localized systems [92], where disorder leads to electron
localization, a strong enough nonlocal interaction can lead
to electron localization via charge ordering. This is visible
in the (cluster) kinetic HK , local potential HU , and nonlocal
potential HV energy contributions per lattice site, which are
given by

HK = 1

Nc

∑
K,σ

|ε(K)Gσ (K,τ → 0−)|, (11)

HU = 1

Nc

∑
i

U 〈ni↑ni↓〉, (12)

HV = 1

Nc

(K − 〈k〉
β

−
∑

i

U 〈ni↑ni↓〉 + μ
∑
iσ

niσ

)
, (13)

where 〈k〉 is the average perturbation expansion order of the
continuous-time auxiliary field impurity solver [83,93] and the
total energy is H = HK + HU + HV [94].

Figure 6 shows these contributions for two values of the
on-site interaction, U/4t = 0.5 [Fig. 6(a)] and U/4t = 1.0
[Fig. 6(b)], at temperature T/4t = 0.08. Left panels show the
evolution of the kinetic-energy contribution as a function of
V , and right panels show the evolution of the two interaction
energy contributions. Below the onset of the charge-ordered
state, V < VCO , the magnitude of the intersite interaction
energy HV increases rapidly as a function of V , while the
on-site interaction energy HU and the kinetic energy HK

change only moderately.
If the nearest-neighbor interaction strength is further raised

to V > VCO but isotropic symmetry is enforced, the kinetic-
energy contribution of the resulting metastable state (open
symbols, top panel for U/4t = 0.5) shows a decrease, while
the local potential energy shows an increase and the nonlocal
interaction energy shows a decrease.

This behavior is drastically modified in the symmetry-
broken state (filled symbols), where the establishment of a
charge-ordered phase leads to a rapid decrease of HV and a
corresponding rapid decrease of HK , at the cost of an increased
local energy contribution HU . This implies that the breaking of
the symmetry and the associated cost of higher on-site energy
is compensated by lowering the nearest-neighbor repulsion
energy. Note that because of the different axis scales for
kinetic and potential energy, the effects on the potential energy
are substantially larger than those on the kinetic energy. The
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FIG. 6. Nc = 8 DCA energy contributions for (a) U/4t = 0.5 and
(b) U/4t = 1.0 at T/4t = 0.08 as a function of nonlocal interaction
V . Red lines (left panels): kinetic-energy contribution. Black and blue
lines (right panels): nonlocal and local energy contributions. Vertical
dashed lines: location of the charge-order transition. Open symbols
for U/4t = 0.5 denote the (metastable for V > VCO ) normal-state
(NS) solution; filled symbols denote the symmetry-broken charge-
ordered (CO) state. Energies are shown in units of 4t = 1.

suppression of the kinetic energy in the charge-ordered phase
suggests that the electron mobility in that phase is limited,
leading to electron localization.

E. Self-energy in the presence of nonlocal interactions

In the DCA approximation, the self-energy is chosen to
be constant within the “patch” centered around Nc distinct K

points in the Brillouin zone. For an Nc = 8 cluster at half
filling, three distinct patches exist: K = (0,0) [degenerate
with K = (π,π ) up to particle-hole transformation], K =
(π/2,π/2) [degenerate with K = (±π/2,±π/2)], and K =
(π,0) [degenerate with K = (0,π )]. The local self-energy
�loc(iωn) is given by the K-space average of these patch
self-energies, with �loc(iωn) = 1

Nc
�(K,iωn).

In Fig. 7, we show the evolution with V of the real
[Fig. 7(a)] and imaginary [Fig. 7(b)] parts of the cluster
self-energies at the lowest Matsubara frequency, ω0 = πT ,
obtained on sublattice A. In the half-filled charge-ordered
case, �A(K,iωn) = −�∗

B(K,iωn). Here [57], �A/B(K) =
�(K,K)+�(K+Q,K+Q)

2 ± �(K,K + Q), where we use + (−)
for the A (B) sublattice, respectively, and �(K,K + Q) =
�(K + Q,K). As seen from Fig. 7(a), in the isotropic phase
(V < VCO) at half-filling, Re�A = 0. At the same time, as
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FIG. 7. Momentum-resolved Nc = 8 DCA self-energy at the
lowest Matsubara frequency as a function of V at U/4t =
1.0 and T/4t = 0.04. (a) The real part of self-energy
Re�A(K,iω0) = −Re�B (K,iω0); (b) the imaginary part of self-
energy Im�A(K,iω0) = Im�B (K,iω0). Energies are shown in units
of 4t = 1.

seen from Fig. 7(b), there is a variation of more that 50% of
the imaginary part of the self-energy on momentum K for
V < VCO , indicating that nonlocal correlations are important
in the presence of intersite interactions, casting doubt on
the quantitative accuracy of methods that approximate the
self-energy as k independent, such as methods based on
the (extended) single-site DMFT [58–60], in this parameter
regime.

As soon as charge order is established (V � VCO), the
real part of �A(K,iωn) becomes finite due to the lattice
symmetry breaking, whereas the imaginary part becomes
small. All momentum contributions are approximately equal
in magnitude, indicating that nonlocal correlations are not
significant in this regime. We conjecture that this is the reason
for the cluster-size independence of the location of the phase
transition observed in Fig. 4.

F. Effect of nonlocal interactions on local physics

To further examine the effect of nonlocal interactions on
local electron correlation, we show the imaginary part of the
local Green’s function in the left panel, and the imaginary
part of the local self-energy in the right panel of Fig. 8. Filled
symbols denote values for V < VCO , and open symbols denote
values for V > VCO .

For values of V/4t � 0.256, i.e., for values below the CO
phase transition, we observe that as V grows, |ImGloc(iωn)| in-
creases while |Im�loc(iωn)| decreases. This behavior indicates
a “screening” effect where charge fluctuations induced by the
V term lead to a reduction of the local effective interaction
[48,50,52].

This screening effect due to nonlocal interactions is dif-
ferent from the frequency-dependent screening caused by the
exclusion of higher-lying bands [95] and implies that in an
effective model with only on-site interactions U , the effective
interaction would need to be reduced from its bare value to
mimic the physics of the system with nonlocal interactions
[96–98].

To further highlight this screening behavior, we show the
finite-temperature approximation of the quasiparticle weight
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FIG. 8. Imaginary frequency data for (a) the local Green’s
function ImGloc(iωn) and (b) the local self-energy Im�loc(iωn) as a
function of intersite interaction V at U/4t = 1.0 and T/4t = 0.04
obtained on clusters of size Nc = 8. The inset of (b) shows the
finite-temperature approximation of the quasiparticle weight ζ as
a function of intersite interactions for V < VCO . Energies are shown
in units of 4t = 1.

[64] ζ = [1 − Im�loc(iω0)
ω0

]−1 for V < VCO . Since the quasipar-
ticle weight is inversely proportional to the effective mass of
quasiparticles [64], the increase of ζ with V indicates that the
system is less correlated at larger V .

For values of V above the CO transition, i.e., V/4t > 0.256,
the imaginary part of the local Green’s function ImGloc(iωn)
turns towards zero, indicating insulating behavior (consistent
with the energetics shown in Sec. III D). In contrast, the
imaginary part of local self-energy |Im�loc(iωn)| decreases
rapidly, but, as seen from Fig. 7, the real part of the self-
energy and Green’s function are nonzero in this regime. This
indicates that the insulating behavior observed in the CO
phase corresponds to the establishment of a band-insulating
state in the reduced Brillouin zone. Note that similar V -
induced screening effects have also been demonstrated with
the EDMFT+GW [66] and dual-boson [48] approximations,
indicating that nonperturbative nonlocal self-energies are not
necessary to observe this behavior.

IV. T -U PHASE DIAGRAM

In this section, we discuss the effect of temperature T and
on-site Coulomb repulsion U at fixed V on the properties of
the charge-ordered phase.

Figure 9 shows results for the order parameter δn as a func-
tion of temperature at U/4t = 0.0,0.1,0.2,0.3 and V/4t =
0.125, calculated for clusters of size Nc = 8. Figure 9(a)
demonstrates that increasing thermal fluctuations decreases
the staggered density δn and finally destroys the CO phase,
so that δn = 0 above TCO . Outside the CO phase [Fig. 9(b)],
the system exhibits metallic behavior with ImGloc(iωn) being
finite at all calculated values of U at a temperature just above
the transition where δn = 0 [indicated by crosses in Fig. 9(a)].

Figure 10 shows the T -U phase diagram obtained from
the point at which the order parameter vanishes. Our results
demonstrate that the critical temperature TCO below which
the CO phase is stabilized is gradually suppressed with an
increase of on-site interaction U . The CO phase vanishes with
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FIG. 9. (a) Order parameter δn vs temperature T for V/4t =
0.125 at U/4t = 0.0, U/4t = 0.1, U/4t = 0.2, and U/4t = 0.3
calculated on a cluster of size Nc = 8. Energies are shown in units of
4t = 1. (b) Metallic behavior as evidenced by the imaginary part of
the Green’s function as a function of frequency for T just above TCO

for a range of interaction strengths U as indicated in the legend.

an increase of U and the system turns from a CO band insulator
to a metal.

These results demonstrate how a system can be driven to a
metallic behavior by increasing a local on-site repulsion, and
are in stark contrast to the Mott-insulating behavior induced by
the same strong electron-electron interactions in the absence
of nonlocal interactions, which has been extensively studied
in the V = 0 model [64]. Such interaction-induced metallic
behavior is reminiscent of the physics of the ionic Hubbard
model [99–101], where a band-insulator to metal transition is
induced by strong electron-electron interactions. However, in
contrast to the extended Hubbard model, the band-insulating
behavior of the ionic model is generated by a periodic
external potential, rather than by nonlocal electron-electron
interactions.

While small local interactions U may destroy a CO phase,
stronger local on-site interaction U drive the system into
a Mott-insulating state [64]. In order to demonstrate these
transitions, we show the double occupancy D, an estimate
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FIG. 10. T -U phase diagram of the 2D extended Hubbard model
obtained on clusters of size Nc = 8 at half filling for V/4t = 0.125.
Energies are shown in units of 4t = 1.
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FIG. 11. Data at T/4t = 0.04, V/4t = 0.125 as a function of
U : (a) double occupancy D, (b) local self-energy �(iω0 = πT ) at
the lowest Matsubara frequency, (c) imaginary-time local Green’s
function with Gloc(τ = β/2), and (d) imaginary part of the local self-
energy Im�(iωn). Dashed vertical line: location of the charge-order
transition. Dash-dotted red line: location of the Mott transition. All
data were obtained on clusters of size Nc = 8. Energies are shown in
units of 4t = 1.

of the spectral function from the imaginary-time Green’s
function A(ω = 0) ∼ βG(τ = β/2), and the local self-energy
�loc(iω0) as a function of the on-site interaction U in Fig. 11.

The transition from the charge-ordered to the metallic state
is clearly identified from the double occupancy D of Fig. 11(a)
and the finite real part of the self-energy of Fig. 11(b). For
U < UCO , the double occupancy of two sublattices is different,
indicating the occupancy imbalance of the two sublattices
and the presence of charge order. For U > UCO , the double
occupancy of the two sublattices equalizes and decreases with
increasing U . The inset of Fig. 11(a) shows the ∂D/∂U as
a function of U , with the minimum identifying the metal to
the Mott-insulator crossover. In Fig. 11(b), we plot the local
self-energy �loc(iw0) at the lowest Matsubara frequency as a
function of U . Here the CO phase is identified by the finite
real part of Re�(iω0) for U < UCO , indicating that the CO
phase is band insulating in the reduced Brillouin zone. As U

increases, the real component remains zero, but the imaginary
part increases, implying the presence of a pole at zero and the
increase of the scattering rate at larger U , characteristic of the
Mott-insulating phase.

To further examine the physics at the metal to Mott-
insulator crossover, we also plot −βG(τ = β/2) in Fig. 11(c)
and the self-energy �loc(iωn) in Fig. 11(d). Note that
−βG(τ = β/2) ≈ A(ω = 0) is approximately equal to the
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FIG. 12. The density of states A(ω) obtained with Padé plotted as
a function of ω for V/4t = 0.125 and T/4t = 0.04. Solid and dashed
lines represent sublattice A and B, respectively. Left panel: U = 0.
Middle panel: U/4t = 0.5. Right panel: U/4t = 2.0. As U increases,
the system transforms from a gapped, charge-ordered band insulator
at U = 0 to a metal at U/4t = 0.5 and a gapped Mott insulator at
U/4t = 2.0.

density of states at the Fermi level, and hence can be used
to identify the metallic or insulating nature of the phase.

The behavior of −βG(τ = β/2) from Fig. 11(c) suggests
that as we increase U , the gap at the Fermi level closes at
UCO , indicating the CO band-insulator to metal transition, and
as we increase U further, the DOS (ω = 0) gets suppressed,
suggesting the metal to Mott-insulator crossover. The Mott-
insulating behavior is identified further from Im�loc(iωn) in
Fig. 11(d) where, for U/4t � 1.725, we observe Im�loc(iωn)
turning towards −∞, indicating the Mott-insulating character.

Finally, in order to further illustrate the CO band-insulator
to metal and metal to Mott-insulator transition, we calculate
the density of states A(ω) via analytical continuation of
ImGloc(iω)/π using a Padé approximation [102]. Similar to
the maximum entropy analytic continuation curves, these data
are consistent with the Matsubara axis input data within the
precision of our Monte Carlo procedure. While a rigorous error
assessment is not available, global and low-energy features
are expected to be reliable, while more detailed analyses
of continued data should occur on the imaginary Matsubara
frequency axis.

Figure 12 shows how A(ω) evolves as a function of U at
fixed V/4t = 0.125 and T/4t = 0.04. At U = 0, there is a
gap in the A(ω) and the system is a CO band insulator (with a
nonzero real part of the local Green’s function and self-energy).
The sublattice A and B densities of state are not individually
symmetric, but AA(ω) = AB(−ω). At U/4t = 0.5, we find a
metallic phase with no gap at the Fermi energy. The density
of states A(ω) of the two sublattices is symmetric. At larger
U/4t = 2.0, the A(ω) again shows a gap, indicative of a Mott
insulator.

V. V -U PHASE DIAGRAM

In this section, we present our results for the V -U phase
diagram shown in Fig. 13 and compare it to the phase
boundaries obtained by EDMFT [50], EDMFT+GW , and
dual-boson (DB) theory [48]. We limit ourselves to interaction
strengths below the Mott limit. Our Nc = 8, T/4t = 0.04
phase boundary is obtained directly from the order parameter
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FIG. 13. V -U phase diagram of the 2D extended Hubbard model
at half filling. Nc = 8 DCA data obtained from the dependence of the
order parameter δn on V are shown for T/4t = 0.04 and T/4t = 0.02
(see Sec. III C and Fig. 5 for cluster-size dependence). The DCA phase
boundary at T/4t = 0.02 is obtained from the linear extrapolation
of the T -V phase boundary of Fig. 1. For comparison, we present
T/4t = 0.02 dual-boson data of Ref. [48] along with T/4t = 0.01
EDMFT and EDMFT+GW (in the V -decoupling scheme) data of
Ref. [50]. The dashed line corresponds to the U/4 phase boundary of
early analytic theories [89–91]. Energies are shown in units of 4t = 1.

δ(n). As shown in Fig. 13, there are two phases for this
parameter regime: a metallic regime at smaller V and a charge-
ordered phase at sufficiently large nearest-neighbor interaction
V . To compare to the existing literature, we also present the
T/4t = 0.02, Nc = 8 phase boundary obtained from a linear
extrapolation of the data shown in Fig. 1. Comparing it with
the T/4t = 0.02 ladder dual-boson phase boundary, we find
reasonably good agreement. However, both the DCA and the
DB phase boundary are different from the EDMFT result,
indicating that a treatment of nonlocal correlations is indeed
important for the proper description of the extended Hubbard
model, and very different from the results obtained within a
combination of EDMFT and GW . We also find a noticeable
deviation from the U/z phase-transition line obtained from
early analytic theories [89–91], especially at small U , also in
agreement with dual-boson findings.

The level of disagreement of our results with EDMFT+GW

[50] is remarkable in light of the fact that much of modern
material science plans to use extensions of DMFT coupled
to perturbative methods such as the GW method for more
accurate real materials simulations, and indicates that even in
the weak-coupling limit, a method that includes at least second-
order terms in the bare interaction is needed for reasonable
phase boundaries. The breakdown of these methods for
nonlocal interactions mimics challenges that were encountered
in systems with purely local interactions [103].

VI. CONCLUSIONS

In this paper, we have employed the cluster dynamical
mean-field theory to examine the physics of the half-filled

extended Hubbard model in two dimensions. This model
features metallic, Mott-insulating, and charge-order phases.
The charge-ordered phase, which breaks lattice translation
symmetry, is observed for large nonlocal interaction, low
temperature, and small local interaction. At small nonlocal
interaction, we find a metallic regime for small local interaction
and a Mott-insulating regime for large local interaction. In our
analysis, we have mainly employed clusters of size Nc = 8,
but have shown that the location of the phase boundary was
nearly independent of cluster size for up to Nc = 20 in the
temperature and interaction regime we studied, enabling us to
make statements about the location of the finite-temperature
phase boundary to a precision of about V/4t ∼ 0.01.

In our analysis, we have used the DCA formalism based
on a doubling of the unit cell which allowed us to enter the
charge-ordered phase and examine properties of the system
directly in the symmetry-broken phase. As a result, we were
able to show the behavior of the order parameter as a function
of temperature, local, and nonlocal interaction, and analyze the
energetics of the system, as well as construct the T -U , T -V ,
and V -U phase diagrams. The establishment of the charge-
ordered phase is accompanied by a sharp reduction of the
kinetic energy and a corresponding increase of the potential
energy.

We observed that nonlocal interactions, in addition to
causing charge ordering, introduce a noticeable screening
effect in the isotropic phase: as nonlocal interactions are
increased, the system gradually becomes more metallic and its
local properties mimic the behavior of a system with reduced
effective local on-site interactions.

We found the location of the V -U phase boundary to
be consistent with results from dual-boson calculations, but
found strong disagreement with simple mean-field and more
advanced EDMFT and EDMFT+GW calculations. How those
methods can be improved to give reliable answers for nonlocal
interactions is an important open question.

The dynamical cluster approximation combined with the
ability of present-day continuous-time quantum impurity
solvers to numerically exactly simulate large clusters provides
a powerful tool for studying interacting quantum systems.
Algorithms are now at the point where finite-size effects can
routinely be controlled, allowing us to generate reliable bench-
mark results of a simple two-dimensional system with nonlocal
interaction at finite temperature to which other methods can
be compared—and thereby providing an important stepping
stone towards simulating systems with realistic Coulomb
interactions.
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in Theoretical Physics, edited by G. A. Baker and J. L. Gammel
(Academic, New York, 1970).

[103] J. Gukelberger, L. Huang, and P. Werner, Phys. Rev. B 91,
235114 (2015).

[104] A. Gaenko, A. E. Antipov, G. Carcassi, T. Chen, X. Chen,
Q. Dong, L. Gamper, J. Gukelberger, R. Igarashi, S. Iskakov,
M. Könz, J. P. F. LeBlanc, R. Levy, P. N. Ma, J. E. Paki, H.
Shinaoka, S. Todo, M. Troyer, and E. Gull, Comput. Phys.
Commun. 213, 235 (2017).

115149-11

https://doi.org/10.1103/PhysRevB.93.155162
https://doi.org/10.1103/PhysRevB.93.155162
https://doi.org/10.1103/PhysRevB.93.155162
https://doi.org/10.1103/PhysRevB.93.155162
https://doi.org/10.1103/PhysRevB.62.R9283
https://doi.org/10.1103/PhysRevB.62.R9283
https://doi.org/10.1103/PhysRevB.62.R9283
https://doi.org/10.1103/PhysRevB.62.R9283
https://doi.org/10.1103/PhysRevLett.87.186401
https://doi.org/10.1103/PhysRevLett.87.186401
https://doi.org/10.1103/PhysRevLett.87.186401
https://doi.org/10.1103/PhysRevLett.87.186401
https://doi.org/10.1103/PhysRevLett.91.206402
https://doi.org/10.1103/PhysRevLett.91.206402
https://doi.org/10.1103/PhysRevLett.91.206402
https://doi.org/10.1103/PhysRevLett.91.206402
https://doi.org/10.1103/PhysRevLett.95.237001
https://doi.org/10.1103/PhysRevLett.95.237001
https://doi.org/10.1103/PhysRevLett.95.237001
https://doi.org/10.1103/PhysRevLett.95.237001
https://doi.org/10.1103/PhysRevB.72.060411
https://doi.org/10.1103/PhysRevB.72.060411
https://doi.org/10.1103/PhysRevB.72.060411
https://doi.org/10.1103/PhysRevB.72.060411
https://doi.org/10.1103/PhysRevB.83.075122
https://doi.org/10.1103/PhysRevB.83.075122
https://doi.org/10.1103/PhysRevB.83.075122
https://doi.org/10.1103/PhysRevB.83.075122
https://doi.org/10.1209/0295-5075/90/10004
https://doi.org/10.1209/0295-5075/90/10004
https://doi.org/10.1209/0295-5075/90/10004
https://doi.org/10.1209/0295-5075/90/10004
https://doi.org/10.1103/PhysRevB.88.155108
https://doi.org/10.1103/PhysRevB.88.155108
https://doi.org/10.1103/PhysRevB.88.155108
https://doi.org/10.1103/PhysRevB.88.155108
https://doi.org/10.1103/PhysRevX.5.041041
https://doi.org/10.1103/PhysRevX.5.041041
https://doi.org/10.1103/PhysRevX.5.041041
https://doi.org/10.1103/PhysRevX.5.041041
https://doi.org/10.1103/PhysRevLett.112.115301
https://doi.org/10.1103/PhysRevLett.112.115301
https://doi.org/10.1103/PhysRevLett.112.115301
https://doi.org/10.1103/PhysRevLett.112.115301
https://doi.org/10.1103/PhysRevLett.53.2327
https://doi.org/10.1103/PhysRevLett.53.2327
https://doi.org/10.1103/PhysRevLett.53.2327
https://doi.org/10.1103/PhysRevLett.53.2327
https://doi.org/10.1103/PhysRevB.75.205118
https://doi.org/10.1103/PhysRevB.75.205118
https://doi.org/10.1103/PhysRevB.75.205118
https://doi.org/10.1103/PhysRevB.75.205118
https://doi.org/10.1103/PhysRevB.72.035122
https://doi.org/10.1103/PhysRevB.72.035122
https://doi.org/10.1103/PhysRevB.72.035122
https://doi.org/10.1103/PhysRevB.72.035122
https://doi.org/10.1103/RevModPhys.83.349
https://doi.org/10.1103/RevModPhys.83.349
https://doi.org/10.1103/RevModPhys.83.349
https://doi.org/10.1103/RevModPhys.83.349
https://doi.org/10.1016/S0375-9601(98)00197-2
https://doi.org/10.1016/S0375-9601(98)00197-2
https://doi.org/10.1016/S0375-9601(98)00197-2
https://doi.org/10.1016/S0375-9601(98)00197-2
https://doi.org/10.1103/PhysRevLett.82.4155
https://doi.org/10.1103/PhysRevLett.82.4155
https://doi.org/10.1103/PhysRevLett.82.4155
https://doi.org/10.1103/PhysRevLett.82.4155
https://doi.org/10.1103/PhysRevB.80.045120
https://doi.org/10.1103/PhysRevB.80.045120
https://doi.org/10.1103/PhysRevB.80.045120
https://doi.org/10.1103/PhysRevB.80.045120
https://doi.org/10.1103/PhysRevB.82.155102
https://doi.org/10.1103/PhysRevB.82.155102
https://doi.org/10.1103/PhysRevB.82.155102
https://doi.org/10.1103/PhysRevB.82.155102
https://doi.org/10.1103/PhysRevB.3.2662
https://doi.org/10.1103/PhysRevB.3.2662
https://doi.org/10.1103/PhysRevB.3.2662
https://doi.org/10.1103/PhysRevB.3.2662
https://doi.org/10.1016/0550-3213(83)90418-2
https://doi.org/10.1016/0550-3213(83)90418-2
https://doi.org/10.1016/0550-3213(83)90418-2
https://doi.org/10.1016/0550-3213(83)90418-2
https://doi.org/10.1103/PhysRevB.48.7140
https://doi.org/10.1103/PhysRevB.48.7140
https://doi.org/10.1103/PhysRevB.48.7140
https://doi.org/10.1103/PhysRevB.48.7140
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRevB.75.155113
https://doi.org/10.1103/PhysRevB.75.155113
https://doi.org/10.1103/PhysRevB.75.155113
https://doi.org/10.1103/PhysRevB.75.155113
https://doi.org/10.1088/1367-2630/aa5d34
https://doi.org/10.1088/1367-2630/aa5d34
https://doi.org/10.1088/1367-2630/aa5d34
https://doi.org/10.1088/1367-2630/aa5d34
https://doi.org/10.1063/1.4901432
https://doi.org/10.1063/1.4901432
https://doi.org/10.1063/1.4901432
https://doi.org/10.1063/1.4901432
https://doi.org/10.1103/PhysRevB.91.121111
https://doi.org/10.1103/PhysRevB.91.121111
https://doi.org/10.1103/PhysRevB.91.121111
https://doi.org/10.1103/PhysRevB.91.121111
https://doi.org/10.1021/acs.jctc.6b00638
https://doi.org/10.1021/acs.jctc.6b00638
https://doi.org/10.1021/acs.jctc.6b00638
https://doi.org/10.1021/acs.jctc.6b00638
https://doi.org/10.1103/PhysRevLett.97.046403
https://doi.org/10.1103/PhysRevLett.97.046403
https://doi.org/10.1103/PhysRevLett.97.046403
https://doi.org/10.1103/PhysRevLett.97.046403
https://doi.org/10.1103/PhysRevLett.98.046403
https://doi.org/10.1103/PhysRevLett.98.046403
https://doi.org/10.1103/PhysRevLett.98.046403
https://doi.org/10.1103/PhysRevLett.98.046403
https://doi.org/10.1103/PhysRevB.93.224203
https://doi.org/10.1103/PhysRevB.93.224203
https://doi.org/10.1103/PhysRevB.93.224203
https://doi.org/10.1103/PhysRevB.93.224203
https://doi.org/10.1103/PhysRevB.91.235114
https://doi.org/10.1103/PhysRevB.91.235114
https://doi.org/10.1103/PhysRevB.91.235114
https://doi.org/10.1103/PhysRevB.91.235114
https://doi.org/10.1016/j.cpc.2016.12.009
https://doi.org/10.1016/j.cpc.2016.12.009
https://doi.org/10.1016/j.cpc.2016.12.009
https://doi.org/10.1016/j.cpc.2016.12.009



