
PHYSICAL REVIEW B 95, 115143 (2017)

Magnetic-field-induced criticality in superconducting two-leg ladders
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We study magnetic-field-induced critical singularities in the superconducting phase of the hole-doped Hubbard
model of repulsively interacting electrons, defined on a two-leg ladder. We argue that, provided the low-energy
spin excitations in doped ladders carry electric charge, the low-temperature thermodynamic quantities, such as the
specific-heat coefficient and magnetic susceptibility, will show logarithmic singularities in the quantum critical
regime. This behavior is in drastic contrast to the magnetic-field-induced criticality in undoped Mott insulator
ladders, which is governed by the zero-scale-factor universality with its hallmark square-root singularities.
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I. INTRODUCTION

Ladderlike geometries are a minimal step from a purely
one-dimensional (1D) structure towards two dimensions, yet
electron systems on ladders are amenable to being studied
by powerful analytical and numerical methods available
in one dimension. In addition, these systems share some
similarities with two-dimensional (2D) behavior; for example,
upon doping, the Hubbard model of repulsively interacting
electrons on a two-leg ladder develops pairing and dominant
superconducting tendencies [1–10]. Superconductivity (that
is, the leading quasi-long-range order) in hole-doped ladders
involves singlet pairing with an unconventional modified
d-wave nature [2–4,8–10], reminiscent of behavior observed
in high-Tc superconductors [11]. The fact that superconducting
instability wins in purely repulsive system of electrons,
without the phonon-mediated attraction, may be suggesting
the common origin of superconductivity in doped ladders and
2D high-Tc systems, with the magnetic fluctuations playing an
important role [12].

Two-leg ladder materials which show superconducting
properties with doping, such as (La,Ca,Sr)14Cu24O41, are
synthesized, both as powder and as single crystals [13,14],
fueling further interest in studying ladder systems.

Even though the spin gap is maintained with (not too large)
doping δ [4], it does not evolve continuously with δ [9,15,16],
an effect which is beyond the mean-field approximation [2].
Two scenarios have been suggested to explain this effect.
In the first picture, in addition to conventional magnons,
which evolve continuously with δ, there are lower-energy spin
excitations: A hole pair breaks up into two holes, each of which
forms a bound state with an up-spin electron on the same rung,
producing spinon-holon quasiparticles (carrying spin-1/2 and
charge |e|) [15], as illustrated in Fig. 1(a). Another candidate
for the lowest-energy spin excitation in the superconducting
ladder is a bound state of a magnon and hole pair [9,16]. In this
scenario the hole pair does not break up; rather, it gets dressed
with the magnon [17]. It was argued that when a single hole
pair is present, the singlet-triplet spin gap of the system �tr

will experience a jump limδ→0 �tr (δ) = (
√

3 − 1)�tr due to
magnon-hole-pair bound-state formation and that this gap will
further diminish with increasing δ [16]. A gain in the kinetic
energy of holes in the local ferromagnetic environment of
magnons was suggested as an intuitive mechanism for binding
the magnon to the hole pair [9]. Numerical studies indicate

that, generically, a hole pair is not a tightly localized object
on a rung, but rather, it is spread over a few rungs, and in
particular, for isotropic hoppings, the maximum probability of
the two-hole configuration (participating in the bound state)
is when they are located on adjacent rungs and different legs
[15,18], as depicted in Fig. 1. A magnon-hole-pair bound state
(carrying spin 1 and charge 2|e|) corresponding to this case
is sketched in Fig. 1(b), which should be interpreted as more
depleted rungs being more polarized in the direction of the
field.

II. EFFECTS OF INPLANE MAGNETIC FIELD ON
SUPERCONDUCTING LADDERS

Provided that the nature of the low-energy spin excitations
changes with doping, although the ground state continues to
be a spin singlet and a gap in the spin excitation spectrum
is maintained, a natural question arises about what happens
to the magnetic-field-induced quantum critical point with
δ when a magnetic field applied parallel to the ladder
plane suppresses the singlet-triplet spin gap. The purpose
of this work is to unveil universal singular properties of the
magnetic-field-induced quantum critical point in hole-doped
ladders of repulsively interacting electrons with dominant
superconducting instabilities.

Without doping, for half filling, and for strong on-site
repulsion, the Hubbard model, at energies lower than the Mott
gap, reduces to the Heisenberg spin-1/2 antiferromagnetic
ladder. The lowest-energy spin excitations in the absence of
magnetic field are degenerate triplets of magnons at wave
vector (π,π ) and are separated from the singlet ground state by
an energy gap of �tr , which is roughly half of the Heisenberg
exchange for the isotropic exchanges. The magnetic field splits
the threefold degeneracy of the triplet bands linearly, and at
the critical value of magnetic field h = �tr a phase transition
is induced, and the ground-state magnetization changes with
magnetic field as mh ∼ √

h − �tr�(h − �tr ) [19], where �

is the Heaviside step function. The phase transition induced
by the critical magnetic field in undoped ladders shows the
zero-scale-factor universality [20], which in particular implies
that both the low-temperature specific-heat coefficient and the
magnetic susceptibility behave as ∼T − 1

2 .
Perhaps the simplest nontrivial model of 1D electrons that

shows gap in the spin excitation spectrum is the Hubbard
model of attractively interacting electrons defined on a single
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FIG. 1. Cartoon of the lowest-energy spin excitations in the doped
Hubbard ladders with on-site interaction U and hopping amplitudes t .
Open circles denote lattice sites, and solid circles represent electrons.
In-plane magnetic field h couples only to electron spins. On the last
plaquette there is a hole-pair depicted, and in (a) spinon-holons are
depicted on first and third rungs, while in (b) the bound state of the
magnon and hole pair is located on the second plaquette.

chain, which is integrable, and hence, one can obtain exact
results, such as the critical properties of magnetic-field-
induced quantum phase transition. For the attractive Hubbard
model, using the Bethe ansatz method, it was shown that away
from half filling the critical ground-state response of the system
changes drastically compared to that of the half-filled case [21].
Similar results were obtained using a “nonlinear” bosonization
approach [22], where the crucial role played by the spin-charge
coupling, induced by the curvature of the Fermi surface, was
unveiled. Using the Bethe ansatz basis of electron pairs and
up-spin electrons, the leading low-temperature behavior of
the attractive Hubbard chain at the magnetic-field-induced
quantum critical point in the dilute limit was obtained in [23].

In the ladder problem that we consider, pairing originates
from repulsive interelectron interactions and is hence a truly
many-body effect with umklapp lattice processes playing an
important role [3], as opposed to pairing in the attractive
Hubbard chain. In addition, Hubbard ladders are not exactly
solvable, and in the weak-coupling bosonization description
one has to start with four bosonic fields [24], compared to just
the spin and charge modes of the Hubbard chain.

III. EFFECTIVE DESCRIPTION

To address the nature of the magnetic-field-induced phase
transition in doped superconducting ladders, we will need two
assumptions for a starting point: (i) in the absence of magnetic
field there is a finite energy gap in the spin excitations of these
systems, while there is only one gapless mode, the charge
mode corresponding to the motion of hole pairs, and (ii) the
lowest-energy spin excitations are not conventional magnons,
i.e., excitations involving only the spin degree of freedom
(which continuously evolve from the undoped ladder case),
but they involve charge degrees of freedom as well, similar
to spinon-holon quasiparticles and magnon-hole-pair bound
states. Consequently, such composite objects (which carry both
spin and charge quantum numbers) will start to populate the
ground state once magnetic field overcomes the singlet-triple
spin excitation gap of the doped ladders.

The bosonization approach [16], supported by numerical
simulations [9,15,18], indicates that these ingredients are
indeed met in lightly doped electron ladders, which maintain

the spin gap and show dominant superconducting correlations.
It has been estimated numerically that the spin gap survives
at least until δ = 0.25 [4]. In particular, it was suggested
[7,10,15,18] that lightly doped ladders at low energies realize
a Luther-Emery liquid [25], and consequently, the hydro-
dynamic approach [26] was applied, producing an accurate
low-energy description of the system, in agreement with
numerical simulations [15,18].

We adopt such a hydrodynamic description of hole pairs
in doped spin ladders, and as a new ingredient we add
magnetic field via the Zeeman coupling, which is close to the
critical value equal to singlet-triplet spin gap h � �tr (δ). The
magnetic field does not couple to hole pairs since hole pairs
do not carry spin. Rather, the magnetic field acts as a chemical
potential for the particles that represent low-energy magnetic
excitations that we will describe in the effective continuous
model by field ψ . As our aim is to describe the leading
low-temperature behavior of the superconducting ladder in
the vicinity of the critical magnetic field, for the effective
model we may retain only those modes which are gapless (hole
pairs) and which will become gapless after the magnetic field
exceeds the critical value (ψ particles). With these ingredients
the effective theory governing the low-energy properties of the
superconducting ladder in near-critical magnetic field reads

H = vp

2

∫
dx

(
[np(x) − n̄p]2

Kpπ
+ Kpπ (∂xθp(x))2

)

+
∫

dxψ†(x)

(
− h̄2∂2

x

2Mψ

− (
h − h0

c

)
sψ

)
ψ(x)

+
∫

dx{gψ†(x)ψ(x)[np(x) − n̄] + gψ |ψ†(x)ψ(x)|2}.
(1)

We have fixed units h̄ = 1 and introduced notation for the spin
value carried by the lowest-energy spin excitation sψ = 1 or
1/2 depending on whether ψ describes spin-1 magnon-hole
pairs or spin-1/2 spinon-holons. Hole pairs are described by
hydrodynamic variables, conjugate Gaussian fields (np,θp)
corresponding to density and phase fluctuations, respectively,
with the canonical commutation relation [np(x),θ (y)] =
iδ(x − y). The Luttinger liquid constant Kp and the sound
velocity vp can be estimated numerically [15,18]. In particular,
the Luttinger liquid parameter of pairs assumes the universal
value Kp = 1 [10,15,18] for the lightly doped case, meaning
that hole pairs behave as hard-core bosons and vp ∼ Jδ, where
J = 4t2/U is the spin-exchange constant in the Hubbard
ladder. In the following we will set Kp = 1 for simplicity.

The low-energy spin excitations, which are either spinon-
holon fermionic quasiparticles or bosonic magnon-hole-pair
particles, experience vacuum to a finite-density transition
when magnetic field is swept across the critical value and
are described by either fermionic or bosonic field ψ . For the
latter case, the last term in Eq. (1) is important, with gψ > 0
[27]. Since the dilute limit is a strong-coupling limit in one
dimension, governed by the Tonks gas fixed point, in the
vicinity of the critical value of magnetic field, effectively,
gψ → ∞, and hence we can treat magnon-hole pairs as
hard-core bosons.

115143-2



MAGNETIC-FIELD-INDUCED CRITICALITY IN . . . PHYSICAL REVIEW B 95, 115143 (2017)

The density-density interaction (∼ g) between the low-
energy modes in Eq. (1) can shift the critical value of magnetic
field h0

c → �tr (δ); however, it cannot influence the nature of
the underlying quantum critical point [28], and in particular
g → 0 under renormalization. Equation (1) includes all terms
up to quartic in fields allowed by the symmetry of the micro-
scopic problem. This is so in particular due to the U (1) rotation
symmetry in the spin space around the axes set by the magnetic
field, and hence there cannot be terms that contain an odd
number in the ψ field. For the very same reason, we retained
only terms which contain an equal number of ψ and ψ†

operators in the effective Hamiltonian (1), hence disregarding
the so-called pair-hopping processes between ψ particles and
hole pairs, which can strongly influence the nature of phase
transition [29]. Here a note is in order. In the spin-ladder model
that we consider, which is derived from the Hubbard model,
there is an exact SU (2) symmetry in spin space in the absence
of magnetic field and an exact U (1) symmetry when magnetic
field is present. Hence magnetization is a conserved quantity in
our model. In reality, however, in condensed-matter systems,
magnetization is controlled by the external magnetic field since
there are inevitably processes which break conservation of
magnetization [30]. Despite the fact that these processes are
crucial to relax system magnetization, we assume they are
much weaker than the terms retained in Eq. (1), an assumption
which will break down for δ → 0 when vp → 0. However,
even down to dopings of 5%, vp ∼ 0.1J , and hence terms in
Hamiltonian (1) are expected to be much larger than those
inducing relaxation of magnetization (e.g., the typical scale of
magnetic dipolar interactions between electrons, assuming the
average distance between them, ∼5 Å, is ∼10−2 K, whereas
the spin exchange energy scale ranges from ∼10 K for organic
ladders to ∼103 K for nonorganic ladders).

At critical magnetic field, h = �tr (δ), the low-energy
dispersion of ψ particles is quadratic, Eψ (k) = k2/Mψ ,
invalidating their hydrodynamic description. From now on we
will set Mψ = 1/2. The leading low-energy dispersion of hole
pairs, however, is linear in momentum, Ep(k) � vp||k| − k

p

F |
for |k| → k

p

F , where the Fermi wave vector of hole pairs is
related to the linear density of pairs n̄p by the standard 1D
relation k

p

F = n̄pπ [31].

A. Ground state properties

For h < �tr (δ), the number of ψ particles in the ground
state is zero. Once magnetic field exceeds �tr (δ), ψ particles
start to populate the ground state by breaking up hole pairs
or dressing hole pairs by magnons. Hence, even though the
magnetic field does not couple directly to hole pairs, it alters
the quantum numbers of the ground state; in particular the
mean ground-state density of hole pairs changes with magnetic
field for h > �tr (δ) [32] as

n̄p = δ/2 − 0〈h|ψ†ψ |h〉0 sψ, (2)

where |h〉0 is the ground state for a given value of magnetic
field h, which is a global spin-singlet state and independent
of field for h < �tr (δ). For sψ = 1 one hole pair is converted
to one magnon-hole pair, whereas for s = 1/2 when one hole
pair breaks up, two spinon-holon quasiparticles are produced.

In both cases Eq. (2) can be written in a unified manner,

n̄p = δ/2 − mh. (3)

By minimizing the ground-state energy, the expectation
value of the effective Hamiltonian (1) with respect to n̄p, and
expressing n̄p with the help of Eq. (3), we obtain for the
ground-state magnetization,

mh =
√

4[h − �tr (δ)]/π2 + v2
p − vp

2
�[h − �tr (δ)]. (4)

In particular, for 0 < h − �tr (δ) 	 vp we obtain from Eq. (4)
mh = χcr [h − �tr (δ)] + O{[h − �tr (δ)]2/v2

p}, where χcr =
1/(π2vp) ∼ 1/δ is the ground-state critical magnetic suscep-
tibility. Note that for δ = 0 (vp = 0) we find that χcr diverges
and we recover from Eq. (4) the conventional square-root
behavior mh ∼ √

h − �tr .

B. Leading low-temperature properties

Even though at zero temperature, for h � �tr (δ), the
ground-state density of ψ particles is zero, temperature
fluctuations create spin excitations from different sources. For
very low temperatures, only gapless excitation sources, which
stem from the hole pairs, will be important. Hence thermally
induced magnetization, for h � �tr (δ), is

mh(T ) = δ/2 − n̄p(T ), (5)

where n̄p(T ) is the mean density of hole pairs at temperature T .
As already mentioned, hole pairs behave as hard-core bosons,
at least in the lightly doped case. Similarly, ψ particles, in the
case when they are bosonic, behave as hard-core bosons at the
onset of magnetization due to gψ > 0 and the inherent strong-
coupling nature of the critical point. In one dimension, the
thermodynamic properties of hard-core bosons are identical
to those of fermions; hence we can use Fermi-Dirac statistics
to describe the finite-temperature distribution of both types of
particles: hole pairs and ψ particles. We can rewrite Eq. (5)
with the help of the Lagrange multiplier chemical potential
μh(T ), which is a solution of the following equation:∫ ∞

0

dk/π

e
Eψ (k)−h+�tr (δ)−μh (T )

kB T +1
+

∫ ∞

0

dk/π

e
Ep (k)−μh (T )

kB T +1
= δ

2
. (6)

The solution for μh(T ) from Eq. (6) at T → 0 is given in terms
of the Lambert W function,

μh(T )

kBT
= −W

(
vpe

h−�tr (δ)
kB T

2
√

kBT /π

)
. (7)

Once μh(T ) is known, within the grand-canonical formalism,
we easily obtain all interesting thermodynamic quantities of
the system.

At critical field h = �tr (δ), μh(T ) picks up logarithmic
dependence on temperature, which follows from Eq. (7), a
dependence that extends to various thermodynamic quantities.
In particular, the leading low-temperature behavior of the
critical specific-heat coefficient is

γcr (T ) = Ccr (T )/T ∼ ln2 T /vp, (8)
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and the leading low-temperature dependence of the critical
magnetic susceptibility is

χcr (T ) − χcr ∼ 1/ ln T . (9)

Hence, the critical properties of doped spin ladders in the
magnetic field that is equal to the singlet-triplet spin gap differ
drastically from those of the undoped case.

IV. SUMMARY

In summary, we studied magnetic-field-induced critical
singularities in the superconducting phase of the hole-doped
repulsive Hubbard model of electrons, defined on a two-leg
ladder. The crucial role is played by the occurrence of a new
type of low-energy spin excitations with doping which are
composite in nature, carrying both spin and charge quantum
numbers. When these objects start to populate the ground
state, at the corresponding critical value of the magnetic field,
the magnetic susceptibility stays finite at T = 0. The low-
temperature critical magnetic susceptibility and the specific-
heat coefficient show logarithmic singularities, as opposed to
the celebrated square-root singularity of undoped ladders.

The magnetization curve (and thermodynamic properties)
of the undoped ladders of organic compounds, with a relatively
small spin gap, has been measured in experiments [33].
Similar studies have not been reported for the doped ladders
because of the difficulties of doping the organic materials. In
a doped nonorganic ladder, in the superconducting phase, a
spin gap of 80 K has been reported [14], compared to the
spin gap of the undoped system, which is several hundreds
of kelvins. This gap is still too large to be suppressed by the
constant magnetic field available at present. However, progress
in achieving high magnetic fields and/or the possibility (as
suggested by theory) of further reducing the spin gap of doped
ladders by adjusting doping make experimental access of the
character of the magnetic-field-induced quantum critical point
in superconducting ladders feasible.
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