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Spin liquids are conventionally described by gauge theories with a vector gauge field. However, there exists
a wider class of spin liquids with higher rank tensors as the gauge variable. In this work, we focus on (3+1)-
dimensional spin liquids described by U (1) symmetric tensor gauge theories, which have recently been shown
to be stable gapless spin liquids. We investigate the particle structure of these tensor gauge theories and find
that they have deep connections with the “fracton” models recently discovered by Vijay, Haah, and Fu. Tensor
gauge theories have more conservation laws than the simple charge conservation law of rank 1 theories. These
conservation laws place severe restrictions on the motion of particles. Particles in some models are fully immobile
(fractons), while other models have particles restricted to motion along lower-dimensional subspaces.
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I. INTRODUCTION

Spin liquids are strongly interacting spin systems which ex-
hibit long-range entanglement in the ground state and an exotic
excitation spectrum which is not smoothly connected to the
noninteracting limit. See Ref. [1] for an entanglement-based
review of spin liquids. Theoretically, spin liquids correspond
to the deconfined phases of compact gauge theories, and
we can mostly use the terms spin liquid and gauge theory
interchangeably [2]. In the gapped case, an equivalent concept
is topological order [3]. We use the term spin liquid in a
more general sense, referring to stable phases with long-range
entanglement, either gapped or gapless, all described quite
naturally as deconfined gauge theories. To date, the study of
spin liquids has mostly focused on rank 1 gauge theories, by
which we mean the gauge variable Ai (“vector potential”) is
a vector, i.e., a rank 1 tensor. This gauge variable can take
discrete or continuous values, or even be matrix valued in the
case of non-Abelian gauge theories.

In the present work however, we will investigate a class of
spin liquids going beyond this traditional paradigm. While the
vector potential theory is most familiar, there is in general no
reason why the emergent gauge variable should be a vector,
as opposed to a more complicated geometric object, such as a
higher rank tensor. (The meaning of “tensor” will be discussed
further in the Appendix.) We therefore wish to explore the
consequences of a tensor gauge structure, to see whether or
not we get any exotic new physics. We will briefly discuss
later the prospects of realizing such phases in experiments, but
ultimately the motivation here will not come from a specific
physical system. Rather, we are seeking to expand the bound-
aries of what sorts of emergent behavior can occur in highly
entangled phases of matter. We will find that the phases consid-
ered here represent a drastic departure from the properties of
rank 1 spin liquids and represent an exciting new field of study.

As a first thought on going beyond the vector framework,
one might consider working in the language of differential
forms. For example, while a vector potential Ai naturally
describes a phase of condensed strings ending on pointlike
excitations, the antisymmetric rank 2 tensor Aij (“two form”)
naturally describes a phase of condensed surfaces terminating
on stringlike excitations. However, antisymmetric tensor theo-
ries do not lead to new stable spin liquids in 3+1 dimensions.

In the discrete case, the two form simply leads to a dual
description of the conventional one form, swapping the role
of the electric particles and magnetic loops. In the U (1)
case, the two form (called a Kalb-Ramond field in the string
theory literature) actually is distinct from the one form, but
unfortunately these models are unstable to gapped confined
phases in 3+1 (or fewer) dimensions [4–7], so they do not
correspond to realistic spin liquids in our world [8]. We also
expect non-Abelian generalizations to share this instability
to confinement, so pure antisymmetric tensor gauge theories
seem to contain no new physics in 3+1 dimensions.

On the other hand, the case of symmetric tensor U (1) gauge
theories [9] has recently been analyzed by Rasmussen, You,
and Xu [10], who showed that there are multiple theories of
a given rank, and all such theories are stable gapless phases
in 3+1 dimensions (but unstable in 2+1). Furthermore, there
is reason to be optimistic that these phases can be found in
realistic spin systems, as we shall comment on further in the
conclusion. We shall therefore focus on (3+1)-dimensional
symmetric tensor theories in this work, though a brief mention
will be made of mixed-symmetry tensors, which may or may
not be stable. (Note that a general tensor gauge theory does
not fall into the category of “higher form” gauge theory,
which refers specifically to antisymmetric tensor objects. A
generic tensor does not correspond to a differential form.)
The symmetric tensor gauge theories represent a new class of
stable gapless spin liquids, where the gaplessness is protected
against any microscopic perturbation to the Hamiltonian,
without regards to symmetry. However, important questions
remain. How do we know that these theories are really distinct
from previously understood spin liquids, and are not simply
dual formulations of some rank 1 theory, or perhaps several
rank 1 theories stapled together? Is there some property of
these theories which fundamentally distinguishes them from
the rank 1 case? We shall here answer this question in
the affirmative for the U (1) case by examining the particle
structure of higher rank U (1) spin liquids. It will be found
that, though the gapless gauge modes of these systems are
qualitatively similar to the rank 1 case, the particle structure is
dramatically different.

The particles in these theories have severe restrictions
placed on their motion, in a manifestation of the principles
of the recently discovered “fracton” theories of Vijay, Haah,

2469-9950/2017/95(11)/115139(11) 115139-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.95.115139


MICHAEL PRETKO PHYSICAL REVIEW B 95, 115139 (2017)

and Fu [11,12], which in turn are based on concepts first seen
in Haah’s code [13]. (We also refer the reader to other recent
literature on the fracton phenomenon [14–17].) Depending on
the gauge constraint, particles in tensor gauge theories can
be restricted to motion along lower-dimensional subspaces, or
they can be prevented from moving at all without the creation
of other excitations. Following the conventions of Ref. [11],
the former will be referred to as d-dimensional particles, where
d is the dimension of the subspace, and the latter will be called
fractons. We will use the phrase “subdimensional particles” as
a blanket term for both, since fractons can naturally be viewed
as 0-dimensional particles.

The restriction of charge motion in all of these models
has a very natural interpretation in terms of higher-moment
conservation laws. For example, whereas the rank 1 spin
liquids only had a charge neutrality constraint, we will see
that particle configurations in a rank 2 spin liquid with scalar
charge must have both charge neutrality and vanishing dipole
moment. Other higher rank theories can be understood in terms
of similar conservation laws. These extra conservation laws
lead immediately to subdimensional behavior in these models.

While all of these models are stable against the usual
Polyakov mechanism for confinement [18], where monopoles
proliferate and gap the gauge field, we find that a subset of
these models exhibit a new, milder form of “confinement”,
which we term electrostatic confinement, arising from the large
energy stored in the electric field of a static point charge. This
mechanism involves a large energy cost for widely separated
particles, but it does not gap the gauge field. And in many
cases, surprisingly, it still leaves the particles as well-defined
excitations, so most of the usual properties of deconfined
phases are still present. In other cases, however, electrostatic
confinement does destroy the charge sector of the theory, but
subdimensional neutral bound states are still possible and the
gapless sector remains untouched, so these theories are still
far from trivial. This unconventional confinement mechanism
is closely connected with the restricted motion of fractons.

The models here represent gapless generalizations of the
original discrete fracton models. It seems clear that, by
considering discrete symmetric tensor gauge theories, such as
by breaking the U (1) theories down to a discrete subgroup,
we could generate a large class of gapped models with
subdimensional particles. It seems likely that the “generalized
gauge theory” of R. [12] can be naturally phrased in terms of a
higher rank gauge theory (not necessarily symmetric). It will
be an interesting future project to see if all of the fracton models
can be described in terms of higher rank gauge theories, and
to investigate what the precise relation is between higher rank
gauge theory and the techniques from algebraic geometry used
in the original fracton constructions.

We also note that the higher rank gauge theories described
here might have been called “higher spin” gauge fields by our
high energy colleagues. (We have avoided this terminology,
since we have abused the term spin enough already.) Fields
of spin higher than 2 receive much less attention in the high
energy literature than their lower spin counterparts, since it
is hard to construct consistent interacting theories. For many
years, the only consistently interacting higher spin framework
has been Vasiliev theory [19] and its variants, which involve an
infinite tower of all possible higher spin gauge fields. In light

of the present work, it would seem that individual higher spin
gauge fields actually can be consistently coupled to matter,
as long as the matter particles have subdimensional behavior.
The difficulties which have plagued the development of higher
spin gauge fields in the high energy literature seem to be a
manifestation of the fact that such fields cannot be consistently
coupled to fully mobile matter fields.

II. REVIEW OF THE RANK 1 U(1) SPIN LIQUID

The models that we will consider in this paper are natural
extensions of the conventional rank 1 U (1) spin liquid in three
spatial dimensions. It will therefore be useful to first review
the basic structure of this more familiar theory. In such a
theory, we can take our basic degrees of freedom to be those
of a vector field Ai . We let the theory be compact, so that the
components of Ai are U (1) valued. In other words, we identify
Ai ∼ Ai + 2π , which effectively makes each component a
quantum rotor variable. We will also work with the canonical
conjugate of the gauge field, which is the electric field Ei ,
as is familiar from classical electromagnetism. Ei effectively
serves as the angular momentum of the rotor variable and as
such is quantized to have integer eigenvalues. In a concrete
lattice model, Ai and Ei are most conveniently taken to live on
links of the lattice. The choice of lattice will not be important
for the essential physics, though oftentimes the presence of a
lattice makes issues like compactness easier to deal with.

We now seek a low-energy theory which has the properties
of the familiar Maxwell theory of a U (1) gauge field. Motivated
by this, we often characterize a U (1) spin liquid by demanding
that the low-energy theory be invariant under the gauge
transformation Ai(x) → Ai(x) + ∂iα(x), for a function α(x)
with arbitrary spatial dependence. For our purposes, however,
it is actually more convenient to work in terms of the
canonically conjugate variable Ei . For a state to be invariant
under Ai → Ai + ∂iα, it is easy to show that the state must
obey the constraint ∂iE

i = 0, which is simply the source-free
Gauss’s law. It is also easy to show that the low-energy theory
consistent with this gauge constraint/transformation takes the
form

H = 1

2
g

∑
links

E2 −
∑

plaquettes

cos B, (1)

where Bi = εijk∂
jAk is the magnetic field (conventionally

defined on plaquettes of the lattice), and g is a tuning parameter.
When g is small, the fluctuations of the cosine around its
minimum will be small, and we can write

H →
∫

d3x
1

2
(gE2 + B2), (2)

which should look familiar from electromagnetism. This
Hamiltonian leads to a gapless photon mode with linear
dispersion and two polarizations, as we expect. At large g,
however, the electric term dominates, effectively disordering
the magnetic cosine term, and the system picks up a gap of
order g. All of the properties of Maxwell theory are destroyed,
and the system will no longer be in a spin liquid phase. This
is the phenomenon of confinement.

At low energies we have characterized the U (1) spin liquid
by a gapless photon mode whose field configurations obey the
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constraint ∂iE
i = 0. However, there is another important set

of excitations to consider. While the low-energy sector obeyed
a constraint, there can be states higher up in energy which
violate this constraint, ∂iE

i = ρ �= 0. These violations of the
low-energy constraint correspond precisely to the charges of
the emergent electric field, which must be present on very
general grounds. If we demand that our spin liquid exist within
a tensor product Hilbert space (as any real spin liquid does),
then the existence of emergent charges is guaranteed [20].
Furthermore, this charge represents a conserved quantity, as
no local operator can create a net charge in the system. If we
work on a closed manifold, then we are always guaranteed to
have no net charge in the system:

∫
ρ =

∫
∂iE

i = 0, (3)

since we are integrating a total derivative. In general, these
charges will exist as gapped excitations of the system and
will have a corresponding energy penalty in the Hamiltonian.
While Eq. (1) was valid for the gapless sector, we will more
generally have

H = 1

2
g

∑
links

E2 −
∑
plaq

cos B + U
∑
vert

(∂iE
i)2 + · · ·, (4)

where the U term is defined on each vertex of the lattice.
The “· · ·” represents the terms which do not commute with
the gauge constraint, which are irrelevant to the low-energy
physics. These “· · ·” terms are important, however, as they
will dictate the dynamics of the charges.

There is also one last class of excitations to consider:
magnetic monopoles. The magnetic field Bi = εijk∂

jAk seems
to automatically obey ∂iB

i = 0. However, we must remember
that Ai is only defined modulo 2π , which allows us to more
generally have ∂iB

i = 2πn, for integer n. Such a defect
corresponds to a magnetic charge of strength n. The properties
of these excitations closely mirror those of the analogous
electric particles. This is a manifestation of electromagnetic
duality. By making use of the constraint ∂iE

i = 0, we can
write Ei = εijk∂j Ãk within the low-energy sector, for a dual
gauge potential Ã. In terms of this variable, the electric and
magnetic fields have simply switched places, giving us a useful
dual formulation of the theory.

The most important fact about the magnetic monopoles
in this three-dimensional system is that they are excitations
with a well-defined energy. We can therefore imagine a phase
in which the monopoles are gapped and do not affect the
low-energy physics. This allows the U (1) spin liquid to exist
as a stable phase of matter. This is in sharp contrast to
the two-dimensional case, in which magnetic monopoles are
“instantons” (spacetime defects) corresponding to phase slip
events, not excitations. There is no meaningful sense in which
instantons can be gapped, so there is no guarantee that they
will not affect the low-energy physics. Indeed, it was shown by
Polyakov [18] that the two-dimensional U (1) gauge theory is
totally destroyed by these instantons. There do exist schemes
for stabilizing a two-dimensional U (1) spin liquid against
instantons, such as by coupling to a large number of gapless
charges [21], but this is a more complicated problem. In this

work we will only consider theories which are instanton-free
and are therefore stable.

III. RANK 2 THEORIES

We now proceed to the higher rank theories. We will first
go through the rank 2 case to illustrate the principle, which
is readily generalized. We take our degrees of freedom to be
those of a compact U (1)-valued symmetric tensor Aij , with
canonically conjugate variable Eij , representing a generalized
electric field. Each component Aij is essentially a quantum
rotor, and the momentum variable Eij is quantized to have
integer values. In the simplest lattice models [22], off-diagonal
elements (e.g., Exy) naturally live on faces of a lattice, while
diagonal elements (e.g., Exx) naturally live on vertices, but
the precise choice of lattice system will not be important for
the discussion here. As discussed in Ref. [10], there are three
different sorts of gauge transformations of Aij which can be
considered at rank 2, leading to three different analogs of
Gauss’s law which one can write down: ∂iE

ij = 0, ∂i∂jE
ij =

0, and Ei
i = 0, some of which can be applied on top of each

other. Furthermore, each valid combination of Gauss’s laws
will represent a stable phase, as we will discuss.

To construct Hamiltonians for these theories, the authors of
Ref. [10] considered the natural generalization of the rank 1
compact U (1) Hamiltonian, Eq. (4). The generalized E term
and gauge constraint term can be written down immediately,
whereas the generalized B term requires a bit more cleverness.
The structure of the B term depends on the gauge constraint,
and there can be different numbers of spatial derivatives in B

depending on the theory, leading to different dispersions for
the gauge mode. We will delay discussion of the magnetic
tensor until a later section, since most of our analysis will not
need to make any use of the specifics of these Hamiltonians,
except for the U term enforcing the generalized Gauss’s law.
Almost all of the important physics follows directly from the
Gauss’s law. The other terms in the Hamiltonian only serve
to define the dynamics of the gapless gauge mode and the
structure of the magnetic defects. We will, of course, need to
check later that these magnetic defects are not instantons, so
that the theory is stable. This will indeed be the case, so that
these phases will all have a stable deconfined phase at small
g (and obviously a trivial confined phase at large g). As first
shown in Ref. [10], many of the models considered in this paper
will have an electric-magnetic duality, so the behavior of the
magnetic particles will often be the same as that of the electric
particles, which we focus on first. All we will need for the
present discussion is that the gauge field is not confining [23]
at small g, so that particles exist as well-defined excitations in
this phase.

It is also worth noting that we expect such rank 2 symmetric
tensor theories to have some relationship with the theory of
gravity, which is also described by a symmetric tensor gauge
field. There is actually a deep connection between the models
considered here and emergent gravity, but this relationship
will not be apparent at the level of the analysis we will
conduct here. The emergent gravitational behavior of these
phases is a topic of its own and is being treated in a separate
work [24].
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A. Scalar charge theory

Let us first take the example of imposing only the con-
straint ∂i∂jE

ij = 0, corresponding to the gauge transformation
Aij → Aij + ∂i∂jφ for arbitrary scalar function φ. Of course
the source-free gauge constraint applies only to the low-energy
subspace, achieved for example via a term in the Hamiltonian
of the form U (∂i∂jE

ij )2 for large U . States which violate the
source-free Gauss’s law must appear higher up in energy as
particle states of the theory in order to have a tensor product
Hilbert space, as is the situation in any condensed matter
problem (see Ref. [20] for further discussion of this issue).
For a general state, we can therefore write the generalized
Gauss’s law as ∂i∂jE

ij = ρ, defining ρ as the scalar charge
density.

So what conservation laws do we have in this system?
Obviously we have charge neutrality, just as in the rank 1 case:

∫
ρ =

∫
∂i∂jE

ij = 0, (5)

where the integrals are over three-dimensional space, and we
have integrated a total derivative term. (We choose to work
on a closed manifold for simplicity, so that the integral of
the total derivative vanishes. Everything works similarly on
an open manifold.) This conservation law leads to the usual
constraint that the emergent charges cannot be created or
destroyed unless it is accompanied by the creation/destruction
of other charges in order to preserve neutrality. Naively, one
such allowed neutrality-preserving operation is a local hop: a
particle is destroyed on one site and created on a neighboring
site, in accordance with our usual intuition of particle mobility.

However, interestingly, this rank 2 theory has an additional
dipolar conservation law:

∫
�xρ =

∫
xk∂i∂jE

ij = −
∫

∂jE
kj = 0, (6)

where we have integrated by parts in the middle step [25]. (The
choice of origin for �x is arbitrary, since the system is neutral.)
In this theory, therefore, any creation/annihilation operation
must not only respect the neutrality of the system, but also the
vanishing of its dipole moment. As a concrete example, take
the lattice model discussed in Ref. [22], where the diagonal
components (Exx , Eyy , and Ezz) live on the vertices of a cubic
lattice, and the off-diagonal components (Exy , Exz, and Eyz)
live on the faces, with all components taking integer values.
The basic creation and annihilation operators can be found by
examining the effect of changing one component of E at a
single location by 1 unit. Doing so leads to two distinct types
of creation and annihilation operators, as shown in Figs. 1
and 2.

The uniting feature of all such operators is that they
correspond to quadrupolar configurations of charge, obeying
both charge neutrality and vanishing dipole moment. In fact, it
would seem that this quadrupolar principle is the fundamental
feature of this model which would allow it to be generalized
to other types of lattices besides cubic. Putting rotors on the
vertices and faces of a cubic lattice allowed for the simplest
lattice regularization, since there were effectively six degrees
of freedom at each location, corresponding to the six degrees of
freedom of a 3 × 3 symmetric tensor. Similarly, the simplest

FIG. 1. Increasing an off-diagonal component of Eij by 1 creates
excitations at the four corners of a plaquette, in a quadrupolar
configuration.

lattice regularization of a rank 1 U (1) gauge theory would
be on the links of a cubic lattice, giving us three degrees
of freedom per site. Nevertheless, the rank 1 theory can be
defined on any lattice, with the fundamental feature being that
the electric strings live on links, and these electric strings can
essentially be thought of as tiny dipoles. From this perspective,
the rank 2 generalization is quite natural. Whereas in the rank
1 case microscopic bosonic degrees of freedom were mapped
onto dipole creation operators, in a rank 2 theory they map
onto quadrupolar creation operators. We will see that a similar
story holds for other higher rank gauge theories.

The consequences of this extra conservation law for the
motion of individual charges are quite dramatic. First of all,
let us examine an isolated point charge, well separated from
any other charges in the system. (This situation can indeed
be created, for example by a “membrane” operator, formed
by applying the operator of Fig. 1 on every plaquette of a
two-dimensional surface. Isolated charges will naturally occur
at the corners of this membrane.) We then wish to move such an
isolated charge to an adjacent site by means of a local operator.
Upon examining our toolbox, it is obvious that there is no
local operator that can hop the particle without simultaneously
creating other excitations. This is a simple consequence of
the conservation of dipole moment. Moving the particle
by itself changes the global dipole moment of the system
and must be compensated by the creation/destruction/motion
of other particles. Such a particle excitation, which cannot
move without the creation of extra excitations, was dubbed a
“fracton” in Ref. [11], and we will stick with that convention.

FIG. 2. Increasing a diagonal component of Eij by 1 creates three
excitations in a line, again with vanishing charge and dipole moment.
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The difference between the present case and the previously
studied fracton models is that the models here also possess
gapless gauge modes (which propagate normally).

It should be noted that not all excitations in the system
have this fracton property. Whereas isolated point charges are
fractons, a dipolar bound state of two opposite charges will be
freely hopping. The operators seen in Figs. 1 and 2 represent
the transverse and longitudinal hops of these dipoles, so dipolar
excitations can freely propagate in any direction in space.

B. Vector charge theory

There is another important class of rank 2 symmetric U (1)
spin liquids, which has related properties, but with important
differences. In this theory we take the Gauss’s law constraint
on the ground state to be ∂iE

ij = 0, corresponding to the gauge
transformation Aij → Aij + ∂iλj + ∂jλi for arbitrary vector
λi . As in the previous case, we regard the violations of the
ground state Gauss’s law as the particle states of the theory,
defining a vector-valued charge as

ρj = ∂iE
ij . (7)

Once again we first identify the various conservation laws of
the system. We obviously have the natural analog of charge
neutrality in the system:∫

�ρ =
∫

∂iE
ij = 0. (8)

We can also consider the moment of this vector charge around
an arbitrary origin:∫

�x × �ρ =
∫

εijkx
j ∂nE

nk = −
∫

εijkE
jk = 0, (9)

where we have once again integrated by parts, and the last step
follows since Eij is a symmetric tensor. If we heuristically
regard �ρ as a “momentum density”, then the two conservation
laws here represent the conservation of linear and angular
momentum. And just as any particle creation/annihilation
operator in the scalar case needed to respect the neutrality and
dipolar conservation laws, any creation/annihilation operator
in this theory must respect both linear and angular momentum
conservation.

As a concrete example, let us consider the operators present
in the rank 2 vector charge model considered in Ref. [10]. Once
again diagonal components live on vertices of a cubic lattice
and off-diagonal components live on the faces. The vector
charges live naturally on the links of the lattice. There are two
sorts of local creation/annihilation operators, as depicted in
Figs. 3 and 4. One creates opposite vector charges on adjacent
collinear links. The other creates vector charges in a sort of loop
around a plaquette. However, it is important to note that the
“loop” changes orientation at every vertex, in order to respect
the conservation laws. (A unidirectional loop would violate
angular momentum conservation.) The first of these operators,
acting on collinear links, can be thought of as a longitudinal
hopping operator for the vector charge, allowing each particle
to hop freely along the direction of its charge. However, it
is easy to see that an analogous transverse hopping operator
is disallowed, since it would violate conservation of angular
momentum [26]. We can regard the plaquette operator as

FIG. 3. Increasing a diagonal component of Eij by 1 creates two
oppositely directed vector charges on adjacent collinear links.

generating a transverse hop, but only at the cost of introducing
two new excitations on perpendicular links to compensate
for the change in angular momentum. Therefore, the vector
charges are “one-dimensional particles”. They are restricted
to motion only along their charge vector, being effectively
“confined” in the transverse direction due to the need to create
extra particles. Note that one-dimensional particles are not
unique to the x direction or y direction in Figs. 3 and 4. A
bound state of an x charge and a y charge will be freely
hopping in the (1,1,0) direction, with operators like Fig. 4
generating the hops of bound states.

Once again the principles identified here provide for a
natural way to generalize the model to any lattice, beyond
the cubic models considered in previous work [10,22]. The
principle is to engineer a Gauss’s law which maps the
local bosonic degrees of freedom onto creation/annihilation
operators on links which are consistent with conservation
of linear and angular momentum. Since the vector charges
naturally live on links, the gauge variable will naturally live
either on faces, sites, or both. The vector charges will be able
to freely hop only along one-dimensional subspaces.

C. Traceless rank 2 theories

We have so far discussed two different forms of gauge
constraints, ∂i∂jE

ij = 0 and ∂iE
ij = 0. If we had the second

constraint, then the first is automatic, so there is no sense in
combining these two gauge constraints. The only additional
thing we can add on top is a tracelessness constraint Ei

i = 0.

FIG. 4. Increasing an off-diagonal component of Eij by 1 creates
a “loop” of vector charge around a plaquette, in such a way that both
linear and angular momentum are conserved.
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There is actually a subtle distinction regarding whether we
treat this constraint as being breakable or not. In all previous
Gauss’s law constraints, derivatives were present, and allowing
for gauge charges was necessary to preserve the tensor product
structure of the Hilbert space (see Ref. [20] for further
discussion). However, for a local constraint such as the trace
condition, there are two options. We can allow the constraint
to be broken, in which case there are trace charges in the
theory Ei

i = n, for integer n. Alternatively, we are free to
stipulate that our microscopic variables were traceless and say
that Ei

i = 0 identically in the Hilbert space. We shall focus
on this latter case, since it leads to more novel physics. Trace
charges would only add in extra local scalar degrees of freedom
which could modify the energetics of our system, but otherwise
not do much harm.

The tracelessness condition looks fairly benign at first
glance. Its only effect is to even further constrain the particles
with an additional conservation law. For example, consider the
scalar charge theory, in which case the extra conservation law
is ∫

x2ρ =
∫

xkxk∂i∂jE
ij = 2

∫
Ei

i = 0. (10)

It can readily be checked that this conservation law rules
out linear quadrupole operators such as that in Fig. 2, only
allowing square quadrupoles such as that in Fig. 1 and various
bound states of the linear quadrupoles. The fractons remain
fractonic, so not much changes in the charge sector. However,
the neutral dipolar bound state, which was formerly freely
hopping, now becomes a two-dimensional particle, as its
longitudinal hopping operator has been removed from the
theory.

However, the tracelessness condition has a much more dra-
matic effect on the vector charge theory. Without tracelessness,
the two conservation laws of this theory were conservation of
“linear momentum” and “angular momentum”. In the presence
of the tracelessness constraint, there is yet another conservation
law: ∫

�x · �ρ =
∫

xj∂iE
ij = −

∫
Ei

i = 0. (11)

In the presence of this extra conservation law, the vector
charges become fully fractonic in nature. Longitudinal hops,
formerly allowed in the traceful theory, are now in violation
of the new conservation law. The formerly one-dimensional
particles have been turned into fractons via this extra gauge
condition. As a general principle, adding in additional gauge
constraints can only lead to an increase in the number
of conservation laws of the system, thereby putting extra
constraints on particle motion.

D. “Mixed” gauge constraints

Strictly speaking, there is still one more layer of complica-
tion which can be thrown into these theories, which we shall
mention only in passing. Until now, we have always taken the
gauge transformation to be on A, while the constraint is on E,
as seems usual. One could also think up theories in which A and
E switch roles, which is probably not dramatically different,
resulting in a dual description of the same phases. However, we
could also consider a “mixed” gauge theory, where constraints

are simultaneously imposed on both A and E, so long as care is
taken to ensure that these constraints commute. For example,
the gauge transformations and constraints of the emergent
gravity model in Ref. [27] are effectively

Aij → Aij + ∂iλj + ∂jλi, ∂iE
ij = 0, (12)

Eij → Eij + (δij ∂
2 − ∂i∂j )φ, (δij ∂

2 − ∂i∂j )Aij = 0, (13)

for arbitrary gauge parameters λi and φ. It is easy to verify
that the two constraints commute, simply by examining the
effect of the opposite gauge transformation on each constraint.
We therefore see that mixed gauge constraints are in principle
possible, though it is unclear when such theories are physically
reasonable. For example, in the rank 1 case, we could have
tried to simultaneously impose both the normal Gauss’s law
∂iE

i = 0, and also a curl constraint on A as ∇ × �A = �B = 0.
However, imposing this extra magnetic flux constraint takes
us to a “sick” limit of the U (1) gauge theory, where the speed
of light has gone to infinity, so there is no longer a sensible
gapless gauge mode. As shown in Ref. [27], it is possible
in certain circumstances for such mixed gauge constraints to
lead to reasonable theories. It is unclear under what conditions
these mixed gauge constraints will leave us with a reasonable
theory, as opposed to some sick theory with infinite velocities.

For these theories, we have both an “electric” gauge
constraint and a “magnetic” gauge constraint, both of which
have corresponding particles. It is important to note that these
particles are not the magnetic defects of the theory. On top of
these magnetic gauge constraint particles, the theory can still
have magnetic defects arising from the compact nature of the
gauge variable. These mixed gauge theories therefore have a
particularly complicated particle spectrum.

E. Magnetic defects and stability

Up to this point, we have technically only been speaking in
terms of the electric particles of the theory, i.e., those coming
from violations of the Gauss’s law constraint. However, we
must also consider the magnetic defects of the theory. We
argued earlier that, in the rank 1 U (1) gauge theory, the
magnetic defects have basically the same structure as the
electric charges, as determined by an electric-magnetic duality.
Similar stories hold in many of the higher rank theories. For
example, take the rank 2 vector charge theory, with low-energy
gauge constraint ∂iE

ij = 0. Writing down the gauge invariant
quantity with the fewest number of derivatives, the magnetic
field in this case was shown [10] to also be given by a rank 2
symmetric tensor:

Bij = εiabεjcd∂a∂cAbd, (14)

which appears to obey ∂iB
ij = 0. However, once again, due

to the compactness of A, we can have ∂iB
ij = 2πnj , for

integer valued vector nj . By the definition of nj , we can
apply the same arguments used on the vector electric charge
to show that these vector defects obey conservation of both
linear momentum and angular momentum, so they are also
one-dimensional particles. As in the conventional U (1) spin
liquid, this could have been determined by electric-magnetic
duality. As shown in Ref. [10], one can use the low-energy
gauge constraint to write Eij = εiabεjcd∂a∂cÃbd for a dual
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gauge field Ãij , which effectively swaps the role of E and
B in the theory, so the magnetic charges must have the same
structure as the electric charges. For any theory with such
duality, it is automatically the case that the magnetic charges
have the same subdimensional behavior as the electric charges,
which is a nice result. In particular, this immediately tells
us that the magnetic defects are excitations, not instantons.
This allows us to consider a regime in which the magnetic
excitations are gapped and are irrelevant to the low-energy
physics, providing us with a stable phase of matter.

There are also some phases which are not self-dual. For
example, consider the scalar charge theory, without any trace
conditions. One can show that the lowest order magnetic
field tensor which can be written down has the nonsymmetric
form [28] Bij = εiab∂

aAb
j . Despite the lack of self-duality,

the theory still has magnetic monopole excitations of the
form ∂iB

ij = 2πnj , which one can show are two-dimensional
particles, moving transversely to their charge vector. The
presence of pointlike magnetic monopole excitations seems
to be quite universal to these symmetric tensor phases, which
indicates that they are all stable phases of matter.

We can now say that these phases are stable against
confinement by instanton proliferation, but one might worry
that one deconfined phase could be unstable to a different
deconfined phase. For example, suppose we take the gauge
constraint to be ∂i∂jE

ij = 0. Our ideal Hamiltonian will have
the schematic form

H = E2 + B2 + U (∂i∂jE
ij )2, (15)

where B is the appropriate magnetic tensor. However, one
might complain that we could throw in a term corresponding
to the lower order gauge constraint of the vector charge theory:

H = E2 + B2 + U (∂i∂jE
ij )2 + U ′(∂iE

ij )2. (16)

The U ′ term naively looks more relevant, since it has fewer
derivatives. If this were indeed true, then the scalar charge rank
2 theory would flow towards the vector charge rank 2 theory.
However, this is not the case. We cannot view the last two
terms of Eq. (16) on equal footing, since the particular B here
commutes only with the first gauge constraint, not the second.
The B term and the U ′ term are in competition. At small U ′,
the magnetic term will win out and the U ′ term is irrelevant.
Another way to see this is to note that the addition of the U ′
term only modifies the dispersion relation from ω2 − k4 = 0
to ω2 + U ′ω2k2 − k4 = 0, which is an irrelevant change at
low energies. Of course, at large enough U ′ (far away from
the fixed point), the vector gauge constraint will take over.
But for small perturbations, the scalar charge fixed point is
a locally stable one against the vector perturbation. Similar
arguments hold for the stability of any of the gauge constraint
combinations against any other. The B term for each theory
is constructed specifically for that gauge constraint and will
destroy any other gauge constraint added in perturbatively.

IV. ELECTROSTATIC CONFINEMENT

(Special thanks are due in this section to Senthil Todadri,
who first pointed out that electrostatic energy may be an issue
in these models.)

Before moving ahead with these models, we need to take
a close look at the energy needed to create well-separated
fractons. Besides the energy U representing the mass of the
particles, we must also consider the energy stored in the
“electric field” Eij of a static point charge. (More correctly,
we are looking at the expectation value 〈Eij 〉, but we shall
simply write Eij to avoid clutter.) Suppose we have a static
delta function source for our Gauss’s law, representing an
isolated point charge. In the vector charge theory, which has
one derivative in Gauss’s law, we have

∂iE
ij = vj δ(r), (17)

for some constant vector vj . Fourier transforming gives us

qiẼ
ij = vj . (18)

The scaling of our electric field then behaves as

Ẽij (q) ∼ 1

q
, (19)

Eij (r) ∼
∫

d3q Ẽij (q)ei �q·�r ∼ 1

r2
, (20)

like a normal Coulomb field. The electrostatic energy asso-
ciated with these single-derivative theories is much the same
as in a rank 1 U (1) spin liquid, and no further comments are
necessary.

On the other hand, consider a delta function source for the
scalar charge theory:

∂i∂jE
ij = δ(r). (21)

The scaling of the electric field now behaves as

Ẽij (q) ∼ 1

q2
, (22)

Eij (r) =
∫

d3q Ẽij (q)ei �q·�r ∼ 1

r
, (23)

so the electric field in this case only falls off as 1/r , as opposed
to the 1/r2 behavior of the usual three-dimensional Coulomb
field. This is quite a significant difference, since the energy
stored in the field is given by∫

d3rE2 ∼
∫

dr r2 1

r2
∼ R, (24)

where R is a large-distance cutoff. In the usual Coulomb field
1/r2, the integral converges at large distances, indicating a
finite amount of energy stored in the electric field of a point
particle. (Short-distance divergences are of course cut off at
a finite value in any condensed matter context.) For the rank
2 scalar charge theory, however, the electrostatic energy of a
truly isolated point charge is actually infinite (cut off by the
system size). And if a group of particles with zero net charge
and dipole moment is separated from each other by a distance
of order R, then the natural energy scale of this system is of
order R. We have therefore found that a configuration with
particles separated by distance R requires an energy linear
in the separation. This is the standard metric by which one
normally measures confinement.

However, it is important to note that this is a different
sort of “confinement” which is much milder than the usual
notion. Usually one speaks in terms of the interaction between
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particles. If a linear potential V (R) ∼ R exists between
two particles, then there is an attractive force which is
independent of distance, always seeking to recombine the
particles into the vacuum, indicating that the particles never
truly become independent and are thus confined. However, in
the fracton case, the electric field of a point particle dies off
as 1/r , so at large separation, the particles do not feel each
other’s fields. The linear energy associated with separating
particles does not arise from one particle working against the
field of the other, but rather from the large energy associ-
ated with building up each individual charge’s electrostatic
field.

Normally these two notions are equivalent to each other. For
example, a standard undergraduate electromagnetism problem
[29] is to calculate the electrostatic energy of a uniformly
charged ball. One way to do the problem is to examine the
energy stored in the final electric field configuration. Another
way to do it is to imagine building up the ball incrementally and
calculate the work done in bringing each charge into the ball
against the field of the charges already present. In the present
problem, however, the two descriptions are inequivalent, as
we just found. The resolution to this seeming paradox is that
there simply is no notion of “force” (or even equations of
motion) when dealing with fractons. Since fractons cannot
hop, there is no sense in which one can do work to move a
particle against the field. Any treatment involving incremental
energy changes would need to account for the creation of extra
particles along the way, which seems like a complicated task.
It is much simpler to just look at the final electrostatic energy,
which unambiguously yields the answer.

The fractons in this theory are somewhat “confined”, in
the sense that it requires a macroscopically large energy to
acquire well-separated fractons, but many aspects of traditional
Polyakov confinement do not carry over. First of all, the gauge
field is not gapped out (none of the present issues affect the
stability arguments of Ref. [10]), so this “confinement” does
not destroy the Coulomb phase. Furthermore, once the large
energy cost has been paid to create well-separated fractons,
there will be no “restoring force” on an isolated fracton
which seeks to recombine it with its neutralizing partners into
the vacuum. A fracton cannot move towards its neutralizing
partners without creating extra particles, the cost of which
will energetically outweigh any marginal decrease in the
electrostatic energy.

In this sense, it is still perfectly reasonable to speak of
these fractons as well-defined excitations of the system. The
isolated fracton state is stable, just energetically costly, much
like vortices in a two-dimensional superfluid. A configuration
with well-separated fractons is too energetically costly to
be created via thermal fluctuations, so they will have little
effect on low-energy thermal properties of the system. But
if one prepared a system with well-separated fractons, then
these fractons would continue to exist as stable excitations
of the system. We will give this new milder version of
confinement the name “electrostatic confinement”. For this
rank 2 theory, electrostatic confinement actually has more in
common with a conventional deconfined phase (well-defined
particle excitations and a gapless gauge field) and the main
effect of the confinement is just to inhibit the fractons from
being generated by thermal fluctuations.

Despite its benign behavior in rank 2 theories, we will
later face examples at rank 3 and higher where electrostatic
confinement is more severe. In the traditional Gauss’s law
with one derivative, we had E ∼ 1/r2. In the case with
two derivatives, we have E ∼ 1/r . In a theory with three
derivatives in Gauss’s law, such as ∂i∂j ∂kE

ijk = 0, we would
have E ∼ log(r), which actually increases with distance. For
higher derivatives, the growth is even faster. In such a theory
we face the additional problem that not only is the total
electrostatic energy divergent, but the energy density at large
distances diverges as well. At some critical distance, the energy
density would be large enough to start nucleating new particles
out of the vacuum. This would then place a fundamental
limitation on the isolatability of an individual fracton. Thus,
in theories with three derivatives or more in Gauss’s law,
isolated fractons do not appear as stable excitations at long
distances. Such theories will still have protected gaplessness,
but all particles will only occur in neutral bound states. The
neutral bound states can actually still be subdimensional in
certain cases, so these theories are far from trivial, but the
charge sector will be totally destroyed.

V. GENERALIZATION TO HIGHER RANK

We can very straightforwardly generalize the principles of
the rank 2 theories to higher rank cases. At higher ranks there
are a wider variety of available Gauss’s laws, as discussed
in Ref. [10]. All of these theories can be analyzed from
the same perspective as the rank 2 case: identify all charge
conservation laws, then consider all local creation/annihilation
operators respecting those conservation laws. For one- or
two-derivative Gauss’s laws, we can then immediately identify
all subdimensional behavior in the theory. As noted earlier,
if there are three or more derivatives present in the Gauss’s
law, then the fundamental charge sector will be destroyed
by electrostatic confinement, even though the gapless gauge
mode is still protected. Neutral bound states will still exist
as well-defined excitations, and may still be subdimensional.
Such theories are therefore not uninteresting, but are slightly
less interesting than the one- and two-derivative cases, which
have well-defined charge sectors. We will focus on these two
cases for the sake of brevity. Any other specific case can be
studied via the same principles.

In the first case, we take our Gauss’s law to have two
derivatives ∂i1∂i2E

i1···in = ρi3···in . (We can also allow the other
indices to be contracted with each other in various ways.
Contracting internal indices of E just lowers its effective rank,
which would allow us to study it by previous methods.) Since
there are two derivatives, it is easy to see that the first two
charge moments vanish:

∫
ρi3···in = 0, (25)

∫
xjρi3···in = 0, (26)

after performing an integration by parts in the second equation.
When coupled together, these equations imply that isolated
charges are fully immobile. Such a tensor charge cannot
hop to an adjacent site while preserving both charge and
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first moment. Thus, two-derivative models are all fracton
theories. Just as in the rank 2 case, two-derivative theories
at any rank will have a 1/r electric field for isolated charges.
Electrostatic confinement will then prevent the particles from
being generated via thermal fluctuations, but they will still
exist as stable states. (Higher derivative theories would also
have all charged particles be fractonic, but these charges would
be destabilized by electrostatic confinement.)

The other case occurs when there is one derivative in
Gauss’s law ∂i1E

i1···in = ρi2···in . We obviously have charge
conservation ∫

ρi2···in = 0. (27)

But we no longer have the vanishing of a generic first moment:∫
xjρi2···in =

∫
xj∂i1E

i1···in = −
∫

Eji2...in �= 0. (28)

However, by taking advantage of the symmetry of E, a fully
symmetric tensor, we can easily construct a contracted first
moment which does obey a conservation law:∫

εnji2xjρi2···in = −
∫

εnji2Eji2···in = 0, (29)

by the symmetry of E. In the rank 2 case, the analogous
conservation law was conservation of angular moment, which
still allowed the charges to freely hop along the direction
of their charge vector. However, for rank higher than 2, the
charges have at least two indices. In this case, the conservation
law is more constraining. For a charge ρi2···in to be freely
hopping in direction vj , we require εnji2vjρi2···in = 0 for all
n, so that the moment does not change with hops in the vj

direction. For this to be true for arbitrary n (and considering
the index symmetry of ρ), ρ cannot have components in any
index direction except the vj direction. In other words, a charge
can only propagate in direction vi if the charge tensor has
the specific form ρi2···in = vi2vi3 · · · vin . A generic tensor will
have no directions of free propagation and will therefore be a
fracton. This case therefore has a mix of both one-dimensional
particles and fractons (with most charges being fractons).

VI. CONCLUSION

We have shown that spin liquids described by higher rank
U (1) gauge theories [10] lead naturally to subdimensional
particle excitations, as in fracton models [11,12]. The theories
with scalar charge are fractonic, with particles unable to hop
in any direction without generating additional excitations.
The vector charge theories can be either fractonic or have
one-dimensional excitations. These models provide a natural
gapless generalization of the original discrete fracton models.
Furthermore, it seems like tensor gauge theories may provide
a more general framework for understanding and classifying
phases with subdimensional particles. There is much work
to be done on this front, and exciting new theoretical
questions are waiting to be answered. Do all of the previously
discovered fracton models fit into the tensor gauge theory
framework? How do these formulations relate to previous
work relying on algebraic geometry? How does one obtain
the fractal structure of Haah’s code? Also, recent work has

indicated that discrete fracton models can be obtained from a
layer construction method, where layers of two-dimensional
topologically ordered systems are strongly coupled together
[15,16]. It will be interesting to see if the U (1) fracton models
can be obtained from similar constructions.

There are plenty of even more exotic (and perhaps less well-
defined) questions. Can we get anything new by considering
non-Abelian generalizations of these tensor gauge theories?
What is the nature of transitions to the confined phase?
Can subdimensional particles condense? Can subdimensional
particles exist on curved submanifolds? For example, could
we construct a model in which two-dimensional particles are
restricted to a sphere instead of a plane? There are many new
avenues to explore.

On a more practical level, how and where can we observe
such subdimensional particles in the laboratory? As to how,
we note that the conservation laws of these theories will have
dramatic consequences for thermalization properties of these
phases [17]. Any energy injected into the particle modes of
these systems tends to be localized to a particular subspace (or
to one particular point, in the case of fractons). Thus, these
systems have severe obstructions to thermalization and will
have unusual thermal transport properties. Furthermore, this
localization exists in the clean limit, without the disorder that is
often needed in the context of many-body localization, which
may serve as a way to distinguish subdimensional particles
from more conventional localization effects.

The specific lattice models of Ref. [10] are theoretically
well established to be in the higher rank U (1) spin liquid phase.
These models apply most directly to a system of quantum
rotors, which is essentially equivalent to a large S limit of spins.
Such a quantum rotor system could possibly be engineered
directly in ultracold atom systems, which philosophically is
enough to establish the reality of the phases described here. But
there is every reason to believe that these phases are realizable
in Mott-insulating solid-state systems as well. A finite S

system, even a simple spin-1/2 system, can flow towards a rotor
description under the renormalization group [30]. The precise
choice of microscopics is unimportant. The key ingredient
for these models is the Gauss’s law, which corresponds to
some strong frustrating interaction of the underlying spins.
The precise form of the geometric frustration will necessarily
be more complicated in these models than in the rank 1 case,
since spin flips should create more than just two particles.
But such geometries are definitely accessible, such as the
face-centered cubic geometry of the models in Ref. [10]. It
remains to be seen if any fcc material will have the precise
interaction structure necessary to produce higher rank U (1)
spin liquids, or if a more complicated geometry is needed.
Either way, there is every reason to be optimistic that higher
rank U (1) spin liquids are experimentally accessible.
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FIG. 5. We can regard the spins of this system as living on the
sites of a square lattice, in a scalar representation.

numerous helpful discussions during the early stages of this
project. Thanks are due to Sagar Vijay, Jeongwan Haah, and
Liang Fu for sharing their expertise on fracton models. I would
also like to thank Yahui Zhang, Lucile Savary, and Samuel
Lederer for useful discussions. This work was supported by
NSF DMR-1305741.

APPENDIX: WHAT IS A TENSOR?

In the main text we have considered models in which the
fundamental bosonic degrees of freedom map onto a “tensor”
structure. This is essentially just a rewriting of our Hilbert
space. For example, consider spins on the square lattice in
Fig. 5. Under a π/2 rotation, the lattice returns to itself, and
every spin ends up at an equivalent location. The fundamental
variables are not endowed with any extra sense of directionality
(not counting any internal spin direction), so this is effectively
a “scalar” representation of the spin model, as would be
appropriate to describe a ferromagnet, for example. On the
other hand, let us now take the exact same spin system, but
represent the spins as living on the links of a tilted square
lattice, as seen in Fig. 6. An excitation of the spin can then
be represented by a string on this link, which can be directed
or undirected, depending on the microscopic details. When
we perform a π/2 rotation, the system still returns to itself.
However, spins which formerly lived on links in the (1,1)
direction now live on links in the (−1,1) direction, so the
spin variables transform as a vector in this representation,

FIG. 6. We could regard the same system of spins as living on the
links of a tilted square lattice, in a vector representation.

which is the correct representation for conventional vector
gauge theories. Similarly, in a three-dimensional system, one
could view the spins as living on plaquettes, leading naturally
to an antisymmetric tensor representation. One can also get a
symmetric tensor representation by allowing some spins to live
on vertices and others to live on plaquettes, as discussed in the
main text. We therefore see that we can always map any given
spin system back and forth between various representations of
the lattice symmetry group. However, obviously the system is
not well described by all of these tensors at the same time. The
question is which representation is convenient for describing
the spectrum of the theory. Depending on the Hamiltonian of
the system in question, one representation may be more useful
than any other. Or sometimes there are multiple useful tensor
representations, such as a three-dimensional Z2 spin liquid,
which can be described either as a vector or antisymmetric
tensor theory. Typically, such a tensor rewriting of the theory
is only useful when there is some local energetic constraint
which forces loops to be closed, or surfaces to be closed, or
some other convenient geometric constraint. This will give a
“Gauss’s law” for the system, which means the system can be
described by a gauge theory.

Tensors are usually defined in terms of their behavior under
spatial rotations. A generic tensor can be decomposed in terms
of certain simpler tensors. For example, a rank 2 tensor can
be written as a sum of an antisymmetric tensor, a traceless
symmetric tensor, and a scalar trace. Studying these irreducible
tensor theories should then allow us to describe arbitrary tensor
gauge theories. But throughout the present work, and in any
typical condensed matter system, we are always working on
a lattice, so there is no full rotational symmetry. However,
on any crystalline lattice there still exists some subgroup of
the full rotation group which is a symmetry of the system.
We should then technically switch to speaking in terms of
irreducible representations of the discrete rotational group,
instead of the full rotational group, but the situation should not
be dramatically different, just a bit more tedious to classify.
Plus, it is often the case that full rotational symmetry is restored
in the low-energy theory, since anisotropy terms are often
irrelevant under the renormalization group.

On this basis, we have focused on tensor representations of
the full rotation group in this paper. However, we would like
to emphasize, as was noted in Ref. [10], that this rotational
symmetry is not needed to protect the gaplessness of the gauge
mode. This gaplessness is enforced by the gauge invariance
(i.e., by the source-free Gauss’s law of the ground state), which
is enforced by the gapped nature of the particles. Essentially,
the particle gap protects the gauge mode gaplessness. In turn,
the gauge constraint requires a certain structure for the particle
sector of the theory, which in the models considered here
turns out to be subdimensional. In this sense, these phases
are stable against microscopic perturbations, without having
to worry about symmetry protection. We also note that our
rewriting of the fundamental bosonic degrees of freedom in
tensor representations did not assume rotational symmetry of
the phase. It merely took advantage of the symmetry of the
underlying Hilbert space. These tensor representations could
be used just as well to describe a phase with broken rotational
symmetry.
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