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The search for symmetry-protected two-dimensional (2D) Dirac semimetals analogous to graphene is important
both for fundamental and practical interest. The 2D Dirac cones are protected by crystalline symmetries and
magnetic ordering may destroy their robustness. Here we propose a general framework to classify stable 2D
Dirac semimetals in spin-orbit coupled systems having the combined time-reversal and inversion symmetries,
and show the existence of the stable Dirac points in 2D antiferromagnetic semimetals. Compared to 3D Dirac
semimetals which fall into two distinct classes, Dirac semimetals in 2D with combined time-reversal and inversion
symmetries belong to a single class which is closely related to the nonsymmorphic space-group symmetries. We
further provide a concrete model in antiferromagnetic semimetals which supports symmetry-protected 2D Dirac
points. The symmetry breaking in such systems leads to 2D chiral topological states such as quantum anomalous
Hall insulator and chiral topological superconductor phases.
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I. INTRODUCTION

The discovery of the time-reversal invariant topological in-
sulators [1,2] greatly inspired the study of symmetry-protected
Dirac semimetals (DSMs) [3–14]. In a DSM, the low-energy
physics is well described by pseudorelativistic Dirac fermions
with linear energy dispersions along all momentum directions
around Dirac points (DPs) in the Brillouin zone (BZ). To
guarantee the robustness of three-dimensional (3D) DPs, the
crystalline symmetry protection is a necessity [7], similar to the
2D DPs in graphene [15]. The 3D DSM materials [3–11] have
both the time-reversal symmetry T and inversion symmetry
P . The T or P breaking, in general, leads to Weyl semimetals
[16–27], where the DPs split into Weyl points. However, under
certain conditions, such 3D DPs still remain stable with T
broken [28]. This motivates us to ask whether stable DPs
could exist in 2D in the absence of T and P . The positive
answer to this question will lead to many interesting physical
phenomena and novel topological states, as expected from the
great success in the field of graphene.

Recently, the concept of 2D DSMs in the presence of
spin-orbit coupling (SOC) has been introduced by Young and
Kane [29], where the nonsymmorphic space-group symmetries
play a key role [29–33]. In this paper, we study the 2D Dirac
fermions in antiferromagnetic (AFM) semimetals. A general
framework is proposed to classify stable 2D DSMs in SOC
systems with PT symmetry. In sharp contrast to T -invariant
3D DSMs which fall into two distinct classes [7], DSMs in
2D with PT symmetry only have one class. The DPs of 2D
DSMs reside at the BZ boundary which are protected by the
nonsymmorphic space-group symmetries. We further provide
a tight-binding model in AFM semimetals which supports
symmetry-protected 2D DPs and symmetry breaking in such
systems leads to exotic chiral topological states in 2D. We
conclude with a brief discussion on the possible material
venues for such phases.

The 2D DP with fourfold degeneracy is generated when
two doubly degenerate energy bands avoidably cross. The
most common symmetry for crystalline solids to have double
degeneracy of bands isPT symmetry satisfying (PT )2 = −1,

which includes two cases with both T , P conserved and T , P
broken. Under this condition, the low-energy physics can be
described by the minimal four-band effective Hamiltonian,

H(k) = ε0(k) +
5∑

a=1

da(k)�a, (1)

where �a are 4 × 4 Dirac � matrices satisfying {�a,�b} =
2δab, and the specific representation of �a depends on the
crystalline symmetry. The particle-hole asymmetry term ε0(k)
is neglected for simplicity, da(k) (a = 1, . . . ,5) are real
functions of k, and k = (kx,ky). The energy spectrum is

E±(k) = ±
√√√√ 5∑

a=1

d2
a (k). (2)

The DPs can be generated only when all da(k) = 0 for certain k
in the BZ. A simple case for this condition exists at the quantum
critical point of the phase transition between a quantum spin
Hall (QSH) and a normal insulator (NI) in the presence of T
and P [16,34]. Such DPs are accidental degeneracies and not
robust against perturbations. Therefore, crystalline symmetry
is needed to protect the 2D DPs.

The organization of this paper is as follows. Section II
describes the general framework to classify stable 2D DSM
with PT symmetry. Section III presents a magnetic tight-
binding model which supports symmetry-protected 2D DPs,
and the symmetry-breaking phases. Section IV presents a
discussion of the possible material venues for 2D AFM
DSMs and concludes this paper. Some auxiliary materials are
relegated to the appendices.

II. GENERAL THEORY

The basic mechanism for the avoidable crossing of energy
bands is to let the bands have different symmetry repre-
sentations [7,29,35]. We start with classifying stable DSMs
of 2D SOC systems in the presence of PT and crystalline
symmetry such as rotational and mirror symmetries. The
generic Hamiltonian has the form H(k) = ∑3

i,j=0 dij (k)σi ⊗
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τj , where σi and τi (i = 1,2,3) are Pauli matrices acting on
the spin and orbital, respectively. σ0 and τ0 are 2 × 2 identity
matrices. dij (k) are real functions of k. The invariance of the
system will set many terms to be zero or nonindependent,
which reduces to the effective Hamiltonian in Eq. (1).

A. Case A: T , P conserved

The T operator is T = iσ2K, where K is the complex
conjugation; H(−k) = T H(k)T −1. P is independent of the
spin rotation, where its specific form is determined by P†P =
1, [T ,P] = 0, and (PT )2 = −1. Thus, P = ±τ0, ±τ3, or
±τ1; H(−k) = PH(k)P−1. If P = ±τ1, �(1,2,3,4,5) = (σ3 ⊗
τ3,τ2,σ1 ⊗ τ3,σ2 ⊗ τ3,τ1), and da(k) = −da(−k) for a =
1, . . . ,4, d5(k) = d5(−k). All da(k) = 0 satisfied simultane-
ously leads to DPs; however, the number of equations is larger
than the number of variables kx , ky and the external parameter
m. Therefore, the band crossing will not happen at generic k.
The crystalline symmetry will further set constraints on da(k).
In 2D, the relevant symmetries are C2x̂ , C2ŷ , Mẑ, and Cnẑ.

C2x̂ symmetry. The invariance of the system under π rota-
tion along the x axis requires C2x̂H(kx,ky)C−1

2x̂ = H(kx,−ky).
ky = 0 along the kx axis, [C2x̂ ,H(kx,0)] = 0. Therefore, we
can choose a basis to make both C2x̂ and H(kx) diagonal.
In such a basis, the explicit forms of C2x̂ are obtained by the
constraint [T ,C2x̂] = 0. Therefore, C2x̂ = diag[αp,αq,α

∗
p,α∗

q ],
where αp = exp[iπ (p + 1

2 )] with p = 0,1. Thus we have
C2x̂ = iσ3, or iσ3 ⊗ τ3. With the explicit representations of
C2x̂ and P operators, we can get the symmetry-allowed forms
of da(k). Take P = ±τ1 for example; when C2x̂ = iσ3 ⊗ τ3,
to the leading order in k, the symmetry constraints lead
to d1,2,3,4,5(k) = (v1kx,v2ky,v3ky,v4ky,v5kxky), where vi are
coefficients. This is simply the 2D DSM with anisotropic
linear dispersions. Considering the full periodic structure
of the BZ, the time-reversal invariant momentum (TRIM)
(π,0), (0,π ) and (π,π ) are possible locations of the 2D DPs.
The (0,0) point is simply excluded because the symmetry-
protected DPs are not compatible with threefold rotation,
while the space groups admit the 4D representations at (0,0)
contain C3ẑ [3,36]. Similarly, when C2x̂ = iσ3, d1,2,3,4,5(k) =
(v1kx,v2kx,v3ky,v4ky,m + u1k

2
x + u2k

2
y), where vi , ui , and m

are constants. This is not a DSM Hamiltonian. However, it is
worthwhile to mention that critical DPs indeed exist at TRIM at
the transition between QSH and NI [16] as shown in Fig. 4(b).
At the TRIM point, k and −k are equivalent and all odd func-
tions in H(k) vanish. By tuning m, d5(k,m) = 0 is satisfied.

The classification of 2D DSMs for case A is shown
in Table I. The details of 2D DPs protected by Mẑ and

TABLE I. The classification table of 2D DSMs for case A with
both T and P symmetries; 	 = 2,4,6. The DPs are induced by the
topological band crossing at the BZ boundary.

Symmetry P T Dispersion

C2x̂ = iσ3 ⊗ τ3 ±τ1 iσ2K Linear
Mẑ = σ3 ⊗ τ2 ±τ1 iσ2K Linear
C	ẑ = ei π

	
σ3 ⊗ τ3 ±τ1 iσ2K Linear

C6ẑ = ei π
2 σ3 ⊗ τ3 ±τ1 iσ2K Cubic

Cnẑ are discussed in Appendix A. The stable DPs exist at
the TRIM of the BZ boundary and are protected by the
lattice symmetry, including symmorphic and nonsymmorphic
symmetries [29]. In nonsymmorphic symmetric systems with
two sublattices, P = ±τ1 is the inversion operator with
sublattices interchanged [7], which is realized by the inversion
with respect to a lattice site followed by a fraction translation.

B. Case B: T , P broken

The antiunitary PT symmetry reverses spins and keeps
k invariant. Without loss of generality, in this section we
set PT = iσ2K. With [PT ,H(k)] = 0, one has H(k) =
d1τ1 + d2σ3 ⊗ τ2 + d3σ1 ⊗ τ2 + d4σ2 ⊗ τ2 + d5τ3. The crys-
talline symmetries fall into two classes: symmorphic and
nonsymmorphic space-group symmetries, the operations of
which are denoted as {g|t} and can be constructed by the
point group operations g with translation t that are a full and
a fraction of a Bravais lattice vector, respectively. In 2D, the
representative symmorphic-group symmetries are {C2x̂ |00},
{C2ŷ |00}, {Mẑ|00}, and Cnẑ. The typical 2D nonsymmorphic-
group operations include screw rotation {C2x̂ |t}, {C2ŷ |t}, glide
mirror lines {Mx̂ |t}, {Mŷ |t}, and glide mirror plane {Mẑ|t},
where t is a half translation which satisfies gt = t and
eiG·t = −1 for odd reciprocal lattice vector G. Explicitly, in
units of Bravais lattice constant, t = ( 1

2 ,0),(0, 1
2 ),( 1

2 , 1
2 ). In the

following, we will show that stable 2D DPs can only exist in
the presence of nonsymmorphic symmetries:

(i) For the symmorphic group, we take {Mẑ|00} for example;
k is invariant and (σ1,σ2,σ3) → (−σ1,−σ2,σ3). The symmetry
constraints on da(k) are d3,4(k) = 0. To the lowest order in k,
the general form is da(k) = ma + vx

a kx + v
y
a ky for a = 1,2,5,

and ma,v
x
a ,v

y
a are coefficients. The DPs are not guaranteed

and can only be generated by fine tuning. Even with the extra
{C2x̂ |00} or {C2ŷ |00} symmetry, it only constrains d2(k) =
v

y

2 ky , and still the DPs are not guaranteed.
(ii) For the nonsymmorphic group, we take {C2x̂ | 1

2
1
2 }

for example. Under {C2x̂ | 1
2

1
2 }, (x,y) → (x + 1

2 ,−y + 1
2 ),

(kx,ky) → (kx,−ky), and (σ1,σ2,σ3) → (σ1,−σ2,−σ3);
{C2x̂ | 1

2
1
2 }H(kx,ky){C2x̂ | 1

2
1
2 }−1 = H(kx,−ky). Thus,

{C2x̂ | 1
2

1
2 }2 = −e−ikx is just a full translation along the

x axis with a 2π rotation of spins. H(k) is invariant under
{C2x̂ | 1

2
1
2 } along ky = 0,π lines. Therefore, both {C2x̂ | 1

2
1
2 } and

H(kx) can be chosen as diagonal. The exact representation of
the {C2x̂ | 1

2
1
2 } operator is obtained by noticing

{
C2x̂ |1

2

1

2

}
PT = e−ikx e−ikyPT

{
C2x̂ |1

2

1

2

}
. (3)

Thus, {C2x̂ | 1
2

1
2 } = ie−ikx/2σ3, or ie−ikx/2σ3 ⊗ τ3 when ky = 0;

and {C2x̂ | 1
2

1
2 } = ie−ikx/2τ3 when ky = π . However, there is

only one case in which the stable band crossing and Dirac
Hamiltonian can appear, namely, {C2x̂ | 1

2
1
2 } = ie−ikx/2τ3 along

the ky = π line, where only the d5(kx,π ) term is present. If
d5(kx,π ) = 0 at k0 = (kx0,π ), then around the k0 point, to
the leading order, the effective Hamiltonian is Dirac like and
expanded as d1,2,3,4,5(k) = (v1ky,v2ky,v3ky,v4ky,v5kx), where
vi are real. There is an alternative way to see why topological
band crossing can only exist along the ky = π line. The
two Bloch states |u+

k 〉, |u−
k 〉 and their PT partners PT |u+

k 〉,
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FIG. 1. A nonsymmorphic symmetry {g|t} ensures band crossing
on a g invariant line at the BZ boundary. The doubly degenerate bands
are artificially split for clarity. (a) With P and T , and P = τ1, Bloch
states (|u+

k 〉,T |u−
k 〉) and (|u−

k 〉,T |u+
k 〉) carry different representations

of {g|t} (C2x̂ , for example) and cross at TRIM. (b) Without P and
T , but with combined PT , (|u+

k 〉,PT |u+
k 〉) and (|u−

k 〉,PT |u−
k 〉) have

different eigenvalues of {C2x̂ | 1
2

1
2 } and cross avoidably.

PT |u−
k 〉 are eigenstates of {C2x̂ | 1

2
1
2 }, which is ±ie−ikx/2. |u±

k 〉
has the same energy as its PT partner. To have a stable band
crossing, (|u+

k 〉,PT |u+
k 〉) and (|u−

k 〉,PT |u−
k 〉) should carry

different representations of {C2x̂ | 1
2

1
2 }, as shown in Fig. 1(b).

This is only possible as {C2x̂ | 1
2

1
2 } = ie−ikx/2τ3 along ky = π .

As shown in Table II, the stable DPs can indeed exist in
certain AFM semimetals respecting PT symmetry. The DPs
in both T -invariant and T -broken semimetals are generated by
the avoidable crossing of energy bands with distinct represen-
tations, which are protected by nonsymmorphic symmetries.
However, different from the T -invariant semimetals where the
DPs reside at TRIMs of the BZ boundary, here the DPs in
T -broken systems can only appear at the BZ boundary but
not at TRIMs in general. Moreover, the glide mirror plane
symmetry Mẑ cannot protect the DPs with T broken, as listed
in Appendix B, contrary to its protection of DPs with T .
More importantly, the DPs in the T -broken AFM DSMs are
locally permitted by crystalline symmetries, while the DPs in
T -invariant DSMs are essential and cannot be gapped without
lowering the specific space-group symmetries.

III. MODEL

A. Tight-binding model

Now we study a tight-binding model for a 2D AFM DSM to
illustrate the nonsymmorphic symmetry-protected DPs listed
in Table II. For direct comparison with theT -invariant case, we
adopted the lattice similar to Ref. [29]; as shown in Fig. 2(a),
the system has a layered AFM structure with two atoms in one

TABLE II. The classification table of 2D DSMs for case B
with T and P broken. The nonsymmorphic symmetries with the
corresponding half translation t are indicated.

Symmetry Half translation t Dispersion

{C2x̂ |t} t = (0, 1
2 ), ( 1

2 , 1
2 ) Linear

{C2ŷ |t} t = ( 1
2 ,0), ( 1

2 , 1
2 ) Linear

{Mx̂ |t} t = ( 1
2 ,0), ( 1

2 , 1
2 ) Linear

{Mŷ |t} t = (0, 1
2 ), ( 1

2 , 1
2 ) Linear

unit cell, denoted as A and B. The lattice vectors are denoted
as �a1 = (1,0,0), �a2 = (0,1,0). In each unit cell, the A and
B atoms are shifted along the z axis with the position rA =
(− 1

4 ,− 1
4 ,− c

2 ) and rB = ( 1
4 , 1

4 , c
2 ). Without AFM ordering, this

structure is in space-group no. 129 (P 4/nmm). Each lattice
site contains a dz2 orbital, where the square pyramidal crystal
field splits dz2 from other d orbitals. The Hamiltonian is

H = t
∑
〈ij〉

c
†
i cj +

∑
〈〈ij〉〉

c
†
i [t2 + iλso(d̂1 × d̂2) · s]cj

+�
∑

i

ξic
†
i s · n̂ci, (4)

where 〈ij 〉 and 〈〈ij 〉〉 denote the nearest- and next-nearest-
neighbor sites, respectively. λso is a SOC which involves spin-
dependent next-nearest-neighbor hopping, where d̂1 and d̂2 are
unit vectors along two nearest-neighbor bonds hopping from
site j to i [37]. s describes the electron spins. The third term
is the staggered Zeeman term (ξi = ±1), which describes the
AFM ordering (along the n̂ direction).

The symmetry of the system depends on the AFM order
direction. In Fig. 2(a), if n̂ = ẑ, the system breaks T and P but
respects PT . However, from the energy bands, the screw axes
{C2x̂ | 1

2 0} and {C2ŷ |0 1
2 } cannot protect the DPs, consistent with

the analysis in Table II. This is quite different from the T -,
P-invariant case (dashed line), where the DPs at X1, M , and
X2 are protected by {C2x̂ | 1

2 0} and {C2ŷ |0 1
2 } [29]. In Fig. 2(b),

if n̂ = x̂, two DPs are located along the X1-M line, and they
are at different energies in the presence of the t2 term. The
Hamiltonian

H(k) = 4tτ1 cos
kx

2
cos

ky

2
+ 2t2(cos kx + cos ky)

+ 2λsoσ2 ⊗ τ3 sin kx + (� − 2λso sin ky)σ1 ⊗ τ3.

The DPs are at k1 = (π,ky0) and k2 = (π,π − ky0), where
sin ky0 = �/2λso. These two inequivalent DPs are protected
by {Mx̂ | 1

2 0}. This can be seen by examining the effective model
near these points. Near k = k1,

H(k1 + q) = −2t cos
ky0

2
τ1qx − 2λsoσ2 ⊗ τ3qx

− 2λso cos ky0σ1 ⊗ τ3qy. (5)

At k1, the symmetry PT = iσ2K ⊗ τ1 allows the mass terms
τ2 and σ3 ⊗ τ3. This is forbidden by {Mx̂ | 1

2 0} = iσ1 ⊗ τ3,
but is allowed by {C2ŷ |0 1

2 } = σ2 ⊗ τ2. There is a subtle
point, it seems {Mẑ| 1

2
1
2 } = σ3 ⊗ τ1 could also forbid the

mass terms. To further clarify the role of {Mx̂ | 1
2 0} and

{Mẑ| 1
2

1
2 } in protecting the DPs, we distorted the lattice

which eliminates {Mx̂ | 1
2 0} and keeps {Mẑ| 1

2
1
2 } in Fig. 2(c).

Such distortion adds a term to nearest-neighbor hopping
H1 = t3 sin(kx/2) sin(ky/2)τ1, which will gap the DPs at k1,2,
consistent with DPs not being protected by {Mẑ| 1

2
1
2 }. In

Fig. 2(d), the B site is shifted along the y axis, which breaks
{Mẑ| 1

2
1
2 } but keeps {Mx̂ | 1

2 0}. Such reduced symmetry allows
a term H2 = cos(kx/2) sin(ky/2)(t4τ1 + t5τ2), where the DPs
located along the X1-M line remain protected. However, it
is noted that these two inequivalent DPs always appear or
disappear together.
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FIG. 2. Energy band with DPs protected by nonsymmorphic symmetries in an AFM lattice respecting PT . The DPs are marked as green
dots in the BZ. (a) DPs are gapped and cannot be protected by {C2x̂ | 1

2 0} and {C2ŷ |0 1
2 } when n̂ = ẑ. (b) Two DPs located along the X1-M line

are protected by {Mx̂ | 1
2 0} solely when n̂ = x̂. (c) Distortion in the 〈11〉 direction eliminates {Mx̂ | 1

2 0} but keeps {Mẑ| 1
2

1
2 }, gapping the DPs.

(d) Alternatively, B sites shifted in the y direction breaks {Mẑ| 1
2

1
2 }, but DPs still remain protected.

B. Symmetry breaking

Lowering the symmetry by external perturbations provides
a toolbox to explore a wealth of topological phases. We start
with the system as shown in Fig. 2(d). The {Mx̂ | 1

2 0} breaking
by distortion in Fig. 2(c) leads to a NI with gapped DPs.
Displacing the B sites along [11] or [11̄] always lead to NI
phases. Quite different from T -, P-invariant 2D DSM where
it lies at the boundary between QSH and NI [29], the 2D AFM
DSM lies deeply in the NI phases. This is simply because
the edge of a physical system always breaks PT and leads
to gapped edge states, even though a nontrivial bulk Z2 index
may be defined. Similarly, the structure inversion asymmetry
(SIA), by applying an electric field along the z axis, naturally
breaks PT and adds a term V τ3, resulting in nondegenerate
bands where DPs split into Weyl points, as shown in Fig. 3(a).
Such Weyl points are located along the kx = π line and are

not protected by symmetry. More interestingly, if bothPT and
{Mx̂ | 1

2 0} are broken, a quantum anomalous Hall (QAH) state
can be realized [38] and electrically controllable, as shown
in Fig. 3(b). Furthermore, with the proximity effect to an s-
wave superconductor, the realization of a chiral topological
superconductor with external tunability is expected [39–42].

IV. DISCUSSION AND CONCLUSION

The AFM long-range order could exist in 2D. It would be
interesting to study how the magnetic fluctuation and Coulomb
interaction affect the stability of DPs, which is left to future
work. In terms of realistic materials, the actual existence of
such phases in known materials remains an open question.
However, similar to TI materials, the 2D magnetic DSMs
may exist in materials with both strong SOC and specific
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FIG. 3. Symmetry-breaking phases. (a) Breaking PT by SIA, while preserving {Mx̂ | 1
2 0}, leads to Weyl points (marked as yellow and green

dots) on the kx = π line. (b) Breaking both PT and {Mx̂ | 1
2 0} results in the QAH insulator. In the edge spectrum, the green and red lines are

edge states located at upper and lower edges, respectively.

space-group symmetries. Furthermore, we comment on the
possible candidate in the AMnBi2 family of compounds (A
= Ca, Sr, Eu, Yb) [43–48]. The transport experiments have
already shown the 2D Dirac fermion behaviors in the bulk
materials [47,48]. Take SrMnBi2 for example; its bulk structure
is in space group no. 139 (I4/mmm). For a monolayer of
this material, the AFM order on Mn atoms is along the [001]
direction, which breaks both T and P whereas PT still holds.
The Bi atoms form two layers of square lattice, which is
similar to the structure in Fig. 2(a), and determine most of the
electronic structure [43–45]. The nonsymmorphic symmetries
are {C2x̂ | 1

2
1
2 } and {C2ŷ | 1

2
1
2 }. Therefore, the 2D DPs, if they

exist in this material, can be protected by these symmetries,
in principle. Unfortunately, this system shows massive Dirac
fermions around the Fermi level, with a Dirac mass gap along
the line �-M and M-X [43,44]. In fact, it is similar to the model
in Eq. (4) with AFM ordering n̂ along the [001] direction.

In summary, we show that the 2D Dirac fermions could
exist in AFM semimetals with PT symmetry, where the

FIG. 4. (a) Nonsymmorphic symmetry-protected 2D DSMs with
DPs located at the BZ boundary. (b) 2D DPs with accidental
degeneracy appear at the phase transition between QSH and NI
controlled by parameter m.

nonsymmorphic space-group symmetries play an essential
role. The realistic AFM DSM materials remain unknown.
However, considering the ongoing rapid progress in the
field of 2D materials [49], together with the nonsymmorphic
symmetries listed in Table I as a guidance, we are thus
optimistic about the material search of the 2D AFM DSMs.

Note added. Recently, we became aware of an independent
work on a similar problem [50]. However, their approach to
2D magnetic DSMs is different from our results.
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APPENDIX A: Cnẑ AND Mẑ SYMMETRIES IN CASE A

The representations of the � matrices depend on the crys-
talline symmetry. If P = ±τ0, we get �(1,2,3,4,5) = (τ1,σ3 ⊗
τ2,σ1 ⊗ τ2,σ2 ⊗ τ2,τ3) and da(k) = da(−k) for a = 1, . . . ,5.
Similarly, if P = ±τ3, �(1,2,3,4,5) = (σ3 ⊗ τ1,τ2,σ1 ⊗ τ1,σ2 ⊗
τ1,τ3), and da(k) = −da(−k) for a = 1, . . . ,4, d5(k) =
d5(−k).

Here we give a short summary for the representations of Mẑ

and Cnẑ, and then give a detailed analysis for Cnẑ symmetry.
(i) Mẑ symmetry. Mẑ is the mirror symmetry with respect to

the xy plane and requires [Mẑ,H(k)] = 0. It can be viewed as
Mẑ = C2ẑP , where C2ẑ is the π rotation along the z axis. Mẑ
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follows the constraints [T ,Mẑ] = 0, M
†
ẑMẑ = 1, and M2

ẑ =
eiφ . The explicit form of Mẑ is (a) Mẑ = iσ3 ⊗ τ1, or σ3 ⊗ τ2

when |P| = τ1; (b) Mẑ = iσ3, or iσ3 ⊗ τ3 when |P| = τ0,τ3.
The stable DPs can appear with Mẑ = σ3 ⊗ τ2 and P = ±τ1.

(ii) Cnẑ symmetry. Cnẑ is an n-fold rotation along the z

axis, with n = 2,3,4,6. The stable DPs can appear with C	ẑ

(	 = 2,4,6) and P = ±τ1.
Cnẑ is the n-fold rotation along the z axis, with n = 2,3,4,6.

In order to obtain the explicit form of Cnẑ, we can choose a
basis where Cnẑ is diagonal as Cnẑ = diag[u↑

A,u
↑
B,u

↓
A,u

↓
B] =

diag[αp,αq,α
∗
p,α∗

q ], where αp = exp[i 2π
n

(p + 1
2 )] with p =

0,1, . . . ,n − 1. The invariance of the system under Cnẑ

requires

CnẑH(k+,k−)C−1
nẑ = H

(
k+ei 2π

n ,k−e−i 2π
n

)
, (A1)

where k± = kx ± iky . Therefore, at the TRIM, the Hamilto-
nian commutes with Cnẑ, i.e.,

[Cnẑ,H(kTRIM)] = 0. (A2)

This is different from the C2x̂ and Mẑ cases, where invariant
lines or plane exist in the BZ. We find that stable DPs can
appear and are protected by C2ẑ, C4ẑ, C6ẑ together with P =
±τ1. The classification of 2D DSM protected by Cnẑ symmetry
in case A is listed in Table I. From Table I, we can see that the
C4ẑ case is consistent with the results obtained in Ref. [29].
The C2ẑ case is not independent from the Mẑ case in the main
text, for in the presence of P , C2ẑ = MẑP .

Below we show the basic steps to see when the stable
DPs can appear. As we discussed in the main text, the basic
mechanism for the avoidable crossing of energy bands is to let
the bands have different symmetry representations. The four
Bloch states can be chosen as |u↑

A〉, |u↑
B〉, |u↓

A〉, and |u↓
B〉. Here,

|u↑
A〉 and |u↑

B〉 have the Cnẑ eigenvalues u
↑
A and u

↑
B , respectively.

There are two distinct cases:
(i) When P = ±τ0,±τ3, the inversion operation will not

flip the orbitals; thus the energy EA,↑ = EA,↓, and EB,↑ =
EB,↓ at kTRIM. Therefore, the four Bloch states are grouped
into (u↑

A,u
↓
A) and (u↑

B,u
↓
B). In order to have a stable band

crossing, one necessary condition is that these two groups
must have different eigenvalues of Cnẑ. Namely, (u↑

A,u
↓
A) are

different from (u↑
B,u

↓
B). Due to [Cnẑ,H(kTRIM)] = 0, both Cnẑ

and H(kTRIM) can be diagonal. The only possible form is
H(kTRIM) = d5τ3. However, d5 is even under P , thus d5 = m,
where m is the external parameters. In general, m 
= 0, and
Eq. (A1) cannot constrain m to be zero; therefore, the stable
Dirac points are not possible in this case.

(ii) Similarly, when P = ±τ1, inversion operation will
switch the orbitals; therefore EA,↑ = EB,↓, and EB,↑ = EA,↓.
Thus, (u↑

A,u
↓
B) must be different from (u↑

B,u
↓
A). This necessary

condition rules out C3ẑ. Moreover, we consider the only pos-
sible form of H at kTRIM is H(kTRIM) = d1σ3 ⊗ τ3. However,
d1(k) is an odd function, and thus d1 vanishes. Furthermore,
using Eq. (A1), one can get the possible forms of da(k). Here
we take C4ẑ for example; from the above symmetry analysis,
the only possible form is C4ẑ = e±i π

4 σ3 ⊗ τ3. At the TRIM,
all odd functions d1,2,3,4 vanish, while d5(kTRIM) is an even
function. But C4ẑ also force d5(kTRIM) to be odd. Therefore,

TABLE III. The nonsymmorphic symmetries which cannot pro-
tect the DPs in case B with T and P broken.

Symmetry Half translation t DP protection

{C2x̂ |t} t = ( 1
2 ,0) No

{C2ŷ |t} t = (0, 1
2 ) No

{Mx̂ |t} t = (0, 1
2 ) No

{Mŷ |t} t = ( 1
2 ,0) No

{Mẑ|t} t = ( 1
2 ,0),(0, 1

2 ),( 1
2 , 1

2 ) No

d5 vanishes at the TRIM and DPs can appear at such TRIMs.
At the TRIM, the Hamiltonian is expanded as d1,2,3,4,5(k) =
(0,0,vkx,vky,0). More interestingly, C6ẑ symmetry could
support the cubic Dirac fermions.

Here we point out that in case A with P symmetry, one
can always construct the mirror symmetry Mn̂⊥ (n̂⊥ ⊥ ẑ) from
C2n̂⊥ and P as Mn̂⊥ = C2n̂⊥P . Here, n̂⊥ can be chosen to be
x̂ or ŷ. Therefore, Mn̂⊥ is not independent from C2n̂⊥ , and is
not listed in Table I. However, in case B without P , Mn̂⊥ is
different from C2n̂⊥ , as we can see from Table I.

APPENDIX B: NONSYMMORPHIC SYMMETRY WITH NO
DP PROTECTION IN CASE B

Here we list in Table III the nonsymmorphic symmetries
which cannot protect the DPs in case B.

APPENDIX C: ELECTRICALLY CONTROLLABLE
QAH STATE

The parameters in Fig. 3(b) of the main text are t2 = −0.1,
λso = 0.5, � = 0.3, V = 0.9, and the four nearest-neighbor
hoppings are tAB = (1.5,1.3,1.3,0.7). Meanwhile, the QAH
state is electrically tunable, i.e., small V leads to the NI phase,
as shown in Fig. 5.

FIG. 5. The electrically tunable QAH state in both PT and
{Mx̂ | 1

2 0} broken AFM DSMs. The parameters V = 0.2 and others
are the same as in Fig. 3(b), which leads to a NI phase.
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