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Compact localized states and flat-band generators in one dimension
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Flat bands (FB) are strictly dispersionless bands in the Bloch spectrum of a periodic lattice Hamiltonian,
recently observed in a variety of photonic and dissipative condensate networks. FB Hamiltonians are fine-tuned
networks, still lacking a comprehensive generating principle. We introduce a FB generator based on local network
properties. We classify FB networks through the properties of compact localized states (CLS) which are exact
FB eigenstates and occupy U unit cells. We obtain the complete two-parameter FB family of two-band d = 1
networks with nearest unit cell interaction and U = 2. We discover a novel high symmetry sawtooth chain with
identical hoppings in a transverse dc field, easily accessible in experiments. Our results pave the way towards a
complete description of FBs in networks with more bands and in higher dimensions.
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I. INTRODUCTION

Flat band (FB) networks are tight-binding translationally
invariant lattices which ensure the existence of one (or several)
completely dispersionless bands in the spectrum [1]. FBs
have been studied in a number of lattice models in three-
dimensional, two-dimensional, and even one-dimensional
(1D) settings [2–6] and recently realized experimentally with
photonic waveguide networks [7–12], exciton-polariton con-
densates [13,14], and ultracold atomic condensates [15,16].

At variance with the spatially continuum case of a two-
dimensional electron gas with Landau levels of the time-
reversal symmetry broken quantum Hall effect, FB networks
can co-exist with time reversal symmetry and essentially rely
on destructive interference. The latter is responsible for the
existence of compact localized states (CLS). These exact
eigenstates to the FB energy have strictly zero support outside
a finite region of the lattice. With one CLS given, the whole
CLS set is generated by lattice translations. This set can be
orthogonal or nonorthogonal but still forms a complete basis
for the FB Hilbert space. The CLS are classified by the number
U of lattice unit cells they occupy [17]. The presence of a FB
signals macroscopic degeneracy and diverging density of states
of a corresponding Hamiltonian. Slight perturbations of such a
system will in general lift the degeneracy, leading to uniquely
defined eigenstates. Emergent transport properties, in turn, are
defined by the type of perturbation. The zero width of the FB
calls for nonperturbative effects of the weakest perturbations
like disorder or many-body interactions. Thus FB models are
high-symmetry cases in a general control parameter space of
perturbed lattice Hamiltonians, at which qualitatively different
physical phases of matter meet, similar to quantum phase
transition points [18]. Examples of such nontrivial and abrupt
changes of the wave-function properties of perturbed FB
systems are the appearance of flat-band ferromagnetism for
many-body interacting fermions [1–3], energy dependent scal-
ing of disorder-induced localization length [17,19], singular
mobility edges with quasiperiodic potentials [20,21], and
Landau-Zener Bloch oscillations in the presence of external
fields [22].

It is highly desirable to introduce a clear classification
of FBs and to have local FB testing routines which tell
FBs and non-FBs apart avoiding potentially costly band
structure calculations. But the most important missing item
is a systematic FB generator which allows us to obtain
all FB models within a given class. Several approaches to
construct FB networks have been proposed using graph theory
[2], local cell construction [3], so-called “Origami rules” in
decorated lattices [23], and repetitions of mini arrays [24].
None of them starts with a classification of FBs and can be
therefore considered at best as a partial accomplishing of a
generator which lacks completeness. In addition, a number
of FB models have been identified by intuition or simply
accidentally [25].

A first attempt to classify FBs through the properties of
CLS was published in Ref. [17]. The observation was that for
U = 1 the CLS set forms an orthogonal complete FB basis,
with the possibility to detangle the CLS from the rest of the
lattice. The inverse procedure—taking any lattice, assigning a
set of ν detangled CLS states with energies εν to each unit cell
of the lattice, and finally performing the inverse entangling
procedure of mixing the CLS states with the states from each
unit cell—leads to the most general U = 1 FB generator for
arbitrary lattice dimension, arbitrary number of bands, and
arbitrary number of FBs amongst them [17]. However, for all
U > 1 cases—for various reasons the more interesting and
nontrivial ones—the inverse detangling method fails, since
CLS states are not anymore orthogonal. Therefore, we are
in need of a different approach. In this paper we present a
nontrivial FB generator for U = 2 in one dimension. We also
define a simple local FB tester routine.

II. THE MODEL

We consider a one-dimensional (d = 1) translationally
invariant lattice with ν > 1 lattice sites per unit cell n and the
wave function � = (. . . , �ψn−1, �ψn, . . .), where the individual
vectors �ψn have elements ψna , and a = 1, . . . ,ν labels the
sites inside the unit cell. The time-independent Schrödinger
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FIG. 1. (a) Top: canonical ν = 2 chain for U = 2. Circles—
lattices sites (different sizes correspond to different onsite energies).
Lines—hopping connections (different lines correspond to different
hopping strengths). Filled circles—location of a CLS. Bottom:
generalized sawtooth chain after basis rotation (see text for details).
Signs indicate signs of the CLS amplitudes. (b) The known sawtooth
ST1 chain. (c) New sawtooth ST2 chain. Top of (b), (c): lattice
structure. Bottom of (b), (c): band structure.

equation on such a network is given by

H� = E�, (1)

where H is the Hamiltonian matrix of the network, and E

is the eigenenergy. Discrete translational invariance assumes
that H is invariant under shifts n → n + p. With the help of
the Floquet-Bloch theorem the eigenstates of (1) can be rep-
resented as �ψn = ∑

k eikn�u(k), where �uμ(k) is the polarization
vector of the μth band with μ = 1,2, . . . ,ν and k is a wave
number. The eigenvalues form ν bands Eμ(k) = Eμ(k + 2π ).
For the purpose of clear classification we decompose H into a
block matrix:

∞∑
m=−∞

Hm
�ψn+m = E �ψn, (2)

where the ν×ν matrices Hm = H
†
−m describe the hopping

(tunneling) between sites from unit cells at distance m. Note
that H0 is Hermitian, while Hm with m �= 0 are not in general.
We further classify networks according to the largest hopping
range mc: Hm ≡ 0 for |m| > mc � 1. Note that H0 describes
intracell connectivities and Hm�=0 intercell links.

A compact localized state (CLS) is a solution of (2)
with �ψn �= 0 only on the smallest possible finite number U

of adjacent unit cells and zero everywhere else [17]. The
corresponding eigenenergy is denoted as EFB. If such an
eigenstate exists, then its translations along the lattice are also
eigenstates, leading to a macroscopic degeneracy of EFB. The
resulting band is flat, i.e., Eμ(k) = EFB is independent of k.
We arrive at three essential control parameters which classify
FB networks: the hopping range mc, the number of bands ν,
and the CLS class U . The lattice and band structure of the
cross-stitch lattice with U = 1, ν = 2, mc = 1 was reported in
Ref. [17] and corresponds to H0 = (0 0

0 0) and H1 = −(1 1
1 1).

In Fig. 1(b) the sawtooth lattice (ST1) with U = 2, ν = 2, and
mc = 1 is shown [17] together with its CLS and band structure,

with H0 = −( 0
√

2√
2 0

) and H1 = −(0
√

2
0 1 ). ST1 and its FB

were recently experimentally probed with photonic waveguide
lattices [11].

III. FLAT BAND TESTER

The existence of CLS in a FB lattice can now be used to
design a simple local test routine as to whether a given network
has a FB of class U or not. Consider the U×U block matrix

HU =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

H0 H1 H2 H3 . . . HU

H
†
1 H0 H1 H2 . . . HU−1

...
. . .

. . .
. . .

. . .
...

...
...

H
†
U−1 . . . H

†
2 H

†
1 H0 H1

H
†
U . . . H

†
3 H

†
2 H

†
1 H0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3)

and an eigenvector ( �ψ1, �ψ2, . . . , �ψU ) with eigenvalue EFB such
that

mc∑
m=−mc

Hm
�ψp+m = 0, �ψl�0 = �ψl>U = 0 (4)

for all integers p with −mc + 1 � p � 0 and U + 1 � p �
U + mc. Similar equations hold for H

†
m. These two sets of

equations ensure �ψl�0 = �ψl>U = 0. Then the Hamiltonian is
FB to class U . As an example, consider mc = 1, see Fig. 2. The
corresponding condition simplifies to H

†
1

�ψU = H1 �ψ1 = 0.
Given a network Hamiltonian, and successively increasing
the test value for U = 1,2, . . . , we arrive at a systematic
procedure to identify a FB model with any finite class U .
Given one computed CLS, the whole set of CLS vectors is
generated by discrete translations along the lattice. This set
is linearly independent if the set of vectors { �ψ1, . . . , �ψU } is
linearly independent (see Appendix A for details). It follows
that the CLS set for U = 1,2 is always linearly independent
(Appendix A). A linearly independent CLS set has dimension
equal to the dimension of the Bloch eigenvectors of the FB
and therefore completely spans the FB Hilbert subspace. The
Bloch polarization vectors �u(k) of the FB can then be obtained
by computing �u(k) ∼ ∑U

l=1
�ψle

i(U−1)k (Appendix A 4).

FIG. 2. Schematics of the compact localized state with mc = 1
and ν = 2.
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IV. FLAT BAND GENERATOR

With that we arrive at our core result—a systematic local FB
generator based on CLS properties. Without loss of generality
we will use a canonical form of H: A unitary transformation
on each unit cell will diagonalize H0 sorting its diagonal
elements (eigenvalues) Hμμ monotonically increasing with μ.
A trivial gauge H → H + ζI (with I the identity matrix)
sets H11 = 0, and a subsequent rescaling H → κH ensures
H22 = 1 (the case of a completely degenerate H0 will be treated
separately). For convenience we set mc = 1 which corresponds
to nearest neighbor hopping and is one of the most typical
cases considered both experimentally and theoretically. Then
we have to find those ν × ν matrices H0,H1 which solve the
following set of equations for 1 � l � U :

H
†
1

�ψl−1 + H0 �ψl + H1 �ψl+1 = EFB �ψl, (5)

H
†
1

�ψ1 = H1 �ψU = 0, �ψ0 = �ψU+1 = 0. (6)

Choosing a set of H0,H1 we solve the eigenvalue problem (5)
under the constraint of (6) which makes H1 singular and �ψ1

and �ψU the left and right eigenvectors of the zero mode(s) of
H1.

Let us choose the simplest yet nontrivial case of two bands
ν = 2 which completely fixes the nondegenerate matrix H0:

H0 =
(

0 0
0 1

)
, H1 =

(
a b

c d

)
. (7)

Since H1 is singular and of size 2, it has exactly one zero mode
and can be parametrized with H1 = α|θ,δ〉〈ϕ,γ | as follows:

H1 = α

(
cos θ cos ϕ eiγ cos θ sin ϕ

e−iδ sin θ cos ϕ e−i(δ−γ ) sin θ sin ϕ

)
. (8)

The prefactor α = |α|eiφα can be complex, and |ϕ,γ 〉 and |θ,δ〉
are the left and right eigenvectors of the nonzero eigenvalue of
H1 (see Appendix B). The upper plot in Fig. 1(a) illustrates this
canonical network structure. A rotation of the unit cell basis
by an angle ω shifts the angles θ → θ + ω and ϕ → ϕ + ω

and modifies H0 = ( cos2 ω cos ω sin ω

cos ω sin ω sin2 ω
). Therefore the canonical

structure can be always mapped onto a generalized sawtooth
(gST) chain with three different hoppings t1,2,3 per triangle
and an onsite energy detuning [see bottom of Fig. 1(a) and
Appendix C for details].

V. RESULTS

We test our generator with the known solutions for U = 1
[Fig. 1(a) in Ref. [17]]. Equations (5) and (6) reduce to
H0 �ψ1 = EFB �ψ1 and H1 �ψ1 = H

†
1

�ψ1 = 0. Then the FB energy
is EFB = 0 or EFB = 1. For EFB = 0 it follows θ = π/2 or
3π/2 and ϕ = π/2 or 3π/2. Respectively, for EFB = 1 we
find θ = 0 or π and ϕ = 0 or π . The canonical form of
H1 has exactly one nonzero element on the diagonal, e.g.,
for EFB = 0 it is H1 = (0 0

0 |α|eiφα ). We therefore obtain the
detangled structure of the cross-stitch lattice [cf. Fig. 2(a) in
Ref. [17]]. The dispersive band energy is given by E(k) = C +
2|α| cos (k + φα), where C = 0 for EFB = 1 and C = 1 for
EFB = 0. The case of degenerate H0 ≡ 0 does not change the
structure of H1 and leads to EFB = 0 and C = 0. Interestingly

the cross-stitch lattice family in Ref. [17] was characterized
by three parameters—the location of the flat band energy,
the width of the dispersive band, and an overall gauge. Here
we obtain a four-dimensional control parameter space. The
first three—the overall gauge ζ , the rescaling κ , and the
bandwidth control |α|—reproduce the findings from Ref. [17].
The additional fourth control parameter is the phase φα . It
corresponds to a time-reversal symmetry breaking effective
magnetic field in one dimension and completes the class of
mc = 1,ν = 2,U = 1 FB lattices. Remarkably there is another
hidden U = 1 case with two flat bands for which H1 has
precisely one nonzero element on one of the two off-diagonals:
θ = 0,ϕ = π/2 or θ = π/2,ϕ = 0. To observe that one has
also to redefine the unit cell (see Appendix B for details).

We proceed to the nontrivial U = 2 case. In this case the
Hamiltonian HU=2 is a 2×2 block matrix

H2 =
(

H0 H1

H
†
1 H0

)
, (9)

where H0 is given by (7) and H1 is given by (8).
The equations (5) and (6) read

H0 �ψ1 + H1 �ψ2 = EFB �ψ1, H1 �ψ1 = 0, (10)

H
†
1

�ψ1 + H0 �ψ2 = EFB �ψ2, H
†
1

�ψ2 = 0. (11)

The details of solving the above equations are given in
Appendix B. The final result reads:

δ = γ, |α| =
√− sin(2θ ) sin(2ϕ)

| sin(2(θ − ϕ))| . (12)

FIG. 3. The flat-band energy EFB(θ,ϕ) for mc = 1,ν = 2,U = 2.
The colored squares host FB networks, while the white ones do not.
The color code shows the energy of the FB. Dashed-dotted lines—
same onsite energies in gST chain. Dotted lines—t1 = t2 in gST
chain. Dashed lines—t2 = t3 in gST chain. Solid lines—t1 = t3 in
gST chain. Filled circles: ST1 chain in Fig. 1(b). Filled squares: ST2
chain in Fig. 1(c).
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The solutions (12) and the Hamiltonian H are invariant
under the transformation {ϕ → ϕ + pπ, θ → θ + qπ,φα →
φα + (p + q)π} with p,q being integers. The irreducible angle
parameter space therefore reduces to 0 � ϕ,θ � π . Since |α|
is real, the solutions only exist for 0 � θ � π

2 ∩ π
2 � ϕ � π

or π
2 � θ � π ∩ 0 � ϕ � π

2 , i.e., two disjoint regions shown
for the flat-band energy EFB in Fig. 3. The corresponding band
structure is given by (details are given in Appendix B)

EFB = cos(θ ) cos(ϕ)

cos(θ − ϕ)
, (13)

E(k) = sin(θ ) sin(ϕ)

cos(θ − ϕ)
+ 2|α| cos(θ − ϕ) cos(k + φα). (14)

The bandwidth �w of the dispersive band is given by

�w = 2

√− sin(2θ ) sin(2ϕ)

| sin(θ − ϕ)| (15)

and is always bounded |�w| � 2.

VI. CONCLUDING REMARKS

The flat-band energy is always gapped away from the
dispersive band by a gap �g = �E − �w

2 with �E being the
distance between the flat-band energy and the dispersive band
center (except for few isolated points discussed below). The
ratio �w/�E is shown in Fig. 4. This ratio is zero for θ =
π/2 + ϕ. There the FB energy is gapped infinitely far away
from the dispersive band. Using a proper rescaling parameter
κ and a gauge ζ we can always renormalize the band gap
to a finite number, at the expense of flattening the dispersive
band. This special line corresponds to the case of degenerate
H0 and two flat bands of class U = 1 (see Appendix B 3 for
details). On the boundary lines ϕ,θ = 0,π/2,π the bandwidth
�w strictly vanishes, reducing the problem to a trivial H1 = 0
case with two flat bands of class U = 1. One exception are
the points {θ = π − ϕ, ϕ = 0,π/2,π} where the bandwidth
�w stays finite but the gap �g vanishes. Here the flat band
becomes of class U = 1 and touches the dispersive band of
finite width (see Fig. 4).

FIG. 4. The ratio of the dispersive bandwidth to the distance
between the flat band and the dispersive band center �w/�E versus
(θ,ϕ) for mc = 1,ν = 2,U = 2 in one irreducible quadrant. The color
code shows the value of the ratio.

The class U = 2 is the largest possible irreducible CLS for
ν = 2, mc = 1 networks, as can be straightforwardly checked
using the above generator construction (see Appendix A).
This conclusion can also be verified, e.g., using a band
structure calculation. Moreover, we find all one-parameter
families of gST chains for which either the onsite energies
are equal (dashed-dotted lines in Fig. 3) or a pair of the
hoppings t1,2,3 is equal (solid, dashed, and dotted lines in
Fig. 3). The known ST1 chain is given by the intersection
of dotted and dashed-dotted lines—two hoppings are equal
t1 = t2 �= t3, and the onsite energies are equal. We discover an
intersection point (square symbols in Fig. 3) where all three
hoppings are equal t1 = t2 = t3 (but the onsite energies differ).
This is a new ST2 chain [Fig. 1(c)], which should be easily
realized experimentally—simple geometry allows us to make
all hoppings equal, an external dc bias will fine tune the onsite
energy differences, and the CLS is easily addressed having
identical absolute amplitude values on occupied sites.

To summarize, we introduced a flat-band generator—a
systematic approach to construct FB networks and a complete
classification of flat-band lattices using compact localized
(eigen)states of class U . This method allows us to construct
flat band networks with predefined properties: the number of
flat bands, their position with respect to the regular band,
etc. We construct the whole FB family of two-band networks
with nearest neighbor hopping. We propose a simple testing
routine which allows us to conclude whether a given lattice is
a FB network or not, without computing the band structure.
The boundaries of the existence of the U = 2 networks are
marked by a linear dependence of the CLS set, such that the
network reduces to U = 1 networks in complete agreement
with our analytical predictions. The experimentally studied
sawtooth ST1 lattice is among the obtained U = 2 set. We
obtain an even simpler ST2 lattice with all hoppings being
equal, which should be easily experimentally accessible. Our
results pave the way towards a complete description of FBs
in networks with more bands and in higher dimensions and
towards a full understanding of the topological properties of
macroscopic degeneracies associated with FBs [26–30]. Note
that in higher dimensions the Bravais lattice classification has
to be used, which defines the number of intercell hopping
matrices. Further, we expect the shape of a CLS to become
another classification property.
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APPENDIX A: ON THE LINEAR INDEPENDENCE OF CLS
AND THEIR CORRESPONDING BLOCH

POLARIZATION VECTORS

1. Sufficient condition for a linearly independent set of CLS

Consider a linearly dependent set of CLS ��i such that
∞∑

j=−∞
αj

��j = 0, j ∈ Z, (A1)

where ��j = (. . . 0,0, �ψ1, �ψ2, . . . , �ψU,0,0, . . . ), �ψ1...U are vec-
tors with ν components, and �ψ1 is located in the j th unit cell.
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A necessary condition for that is

U∑
l=1

αj+l
�ψl = 0, (A2)

and thus the set { �ψl}l=1,2,...,U has to be linearly dependent.
If therefore { �ψl}l=1,2,...,U is a linearly independent set, the

CLS set is linearly independent as well. This result is true for
any values of ν,mc,U in one dimension. Since the dimension
of a linearly independent CLS set is equal to the number of
unit cells on the lattice, it will span the entire Hilbert space of
the flat band.

2. Linear dependence for mc = 1 and U = 2

Consider a CLS of U = 2 class �ψ = ( �ψ1, �ψ2), with mc = 1.
Assume that the two components �ψ1, �ψ2 are linearly dependent
such that �ψ1 = a �ψ2. Since ( �ψ1, �ψ2) is a CLS, it follows

H1 �ψ1 = 0, H
†
1

�ψ2 = 0. (A3)

This yields

aH1 �ψ2 = 0, H
†
1

�ψ2 = 0 or H1 �ψ1 = 0,
1

a
H

†
1

�ψ1 = 0.

(A4)

Thus �ψ1, �ψ2 are left and right eigenvectors of H1 at the same
time, therefore either �ψ1 or �ψ2 serves as the only component
of a CLS of class U = 1.

Interestingly a similar (but more lengthy) proof can be
obtained for ν = 2,mc = 1, U = 3. Given a CLS �ψ =
( �ψ1, �ψ2, �ψ3), it can be shown that the linear dependence of
{ �ψ1, �ψ2, �ψ3} implies that the flat band is of class U � 2. Once
ν > 2 linear dependence is only a necessary but not a sufficient
condition.

3. Orthogonality for ν = 2 and U = 2

Consider U = 2 with �ψ1 ⊥ �ψ2. Then a suitable rotation
of the basis in each unit cell will result in �ψ1 = (1,0) and
�ψ2 = (0,1). This seeming U = 2 case can be reduced to U = 1
by redefining the unit cell. Indeed after the above rotation we
may denote each site in a unit cell by al and bl . Then a CLS
is given by al = δl,l0 and bl = δl,l0+1 (up to prefactors and
renormalization factors). Redefining the unit cell using ãl = al

and b̃l = bl+1 turns the above CLS into class U = 1. Therefore
we can conclude that for mc = 1, ν = 2 and U = 2 �ψ1 and �ψ2

must be neither parallel (linearly dependent) nor orthogonal in
order for the flat band to be not reducible to U = 1.

4. From CLS to Bloch polarization vectors

Transforming the original Hamiltonian into Bloch repre-
sentation yields the Bloch Hamiltonian of rank ν:

H (k) =
mc∑

−mc

Hmeikm. (A5)

The eigenvectors of H (k) are the polarization vectors �u(k) =
�u(k + 2π ) which lead to the Bloch eigenstates of the original
Hamiltonian with component �u(k)eikl on each unit cell. The
set of CLS is given by ��l = (. . . 0,0, �ψ1, �ψ2, . . . , �ψU,0,0, . . . ),

and �ψ1 is located in the lth unit cell. Since all CLS of a flat
band share the same eigenenergy we can construct a new Bloch
eigenstate (up to normalization) by computing

∞∑
l=−∞

eikl ��l. (A6)

It follows that

�u(k) ∼
U∑

l=1

�ψle
i(U−1)k. (A7)

The inverse is also true: If a polarization vector for a certain
band can be expressed as

�u(k) = N (k)
U∑

l=1

�ψle
i(U−1)k, (A8)

where N (k) is a common prefactor, then the CLS state of class
U is given by ��l as defined above. Note, however, that this U

need not be the smallest possible one, i.e., the eigenstate can
be decomposed into even smaller CLS.

APPENDIX B: GENERATOR AND BAND STRUCTURE
FOR U = 2 FB NETWORKS

For the ν = 2, mc = 1, U = 2 case we solve the following
equations

H0 �ψ1 + H1 �ψ2 = EFB �ψ1, (B1)

H
†
1

�ψ1 + H0 �ψ2 = EFB �ψ2, (B2)

H1 �ψ1 = 0, (B3)

H
†
1

�ψ2 = 0. (B4)

We can always diagonalize H0, and gauge and rescale the full
Hamiltonian to obtain

H0 =
(

0 0
0 1

)
. (B5)

For nonsingular � = EFB − H0, we find �ψ2 from (B2) and
insert into (B1) to get

�−1H1�
−1H

†
1

�ψ1 = �ψ1, (B6)

�−1H
†
1

�ψ1 = �ψ2, (B7)

where �−1 = 1
EFB−H0

. Similarly we have

�−1H
†
1 �−1H1 �ψ2 = �ψ2, (B8)

�−1H1 �ψ2 = �ψ1. (B9)
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1. Real H1

Consider all elements of H1 to be real valued.
Equations (B3) and (B4) allow us to redefine H1 in
terms of unit vectors |ϕ〉 and |θ〉 which are the left and right
eigenvectors of the nonzero eigenvalue of H1, and which are
orthogonal to �ψ1 and �ψ2:

H1 = α|θ〉〈ϕ|,

|ϕ〉 =
(

cos ϕ

sin ϕ

)
, (B10)

|θ〉 =
(

cos θ

sin θ

)
,

where the scalar products

〈 �ψ1|ϕ〉 = 0, (B11)

〈 �ψ2|θ〉 = 0. (B12)

Using these definitions and solving equations (B6) and (B3)
we obtain

EFB = cos(θ ) cos(ϕ)

cos(θ − ϕ)
, (B13)

|α| =
√

− tan(θ ) tan(ϕ) csc2(θ − ϕ)

(tan(θ ) tan(ϕ) + 1)2
=

√− sin(2θ ) sin(2ϕ)

| sin(2(θ − ϕ))| .

(B14)
2. Complex H1

A complex H1 can be parameterized as

H1 = α|θ,δ〉〈ϕ,γ |

= α

(
cos θ cos ϕ eiγ cos θ sin ϕ

e−iδ sin θ cos ϕ e−i(δ−γ ) sin θ sin ϕ

)
,

|ϕ,γ 〉 =
(

cos ϕ

eiγ sin ϕ

)
, |θ,δ〉 =

(
cos θ

eiδ sin θ

)
, (B15)

where α is a complex number.
Following the same procedure as for real H1 we obtain

EFB = eiδ cot(θ ) cos(ϕ)

eiγ sin(ϕ) + eiδ cot(θ ) cos(ϕ)
,

|α| = 2e2i(γ+δ) sin(2θ ) sin(2ϕ)

((eiγ − eiδ)2(− cos(2(θ + ϕ))) + (eiγ + eiδ)2 cos(2(θ − ϕ)) − 4ei(γ+δ))(eiγ cos(θ ) cos(ϕ) + eiδ sin(θ ) sin(ϕ))2
. (B16)

Real valuedness of |α| imposes δ = γ , and consequently

EFB = cos(θ ) cos(ϕ)

cos(θ − ϕ)
, (B17)

|α| =
√− sin(2θ ) sin(2ϕ)

| sin(2(θ − ϕ))| . (B18)

Solutions (B13), (B14) and (B17), (B18) are identical.
Since |α| is real, solutions exist only in the parameter regions
0 � θ � π

2 ∩ π
2 � ϕ � π or π

2 � θ � π ∩ 0 � ϕ � π
2 .

In Bloch representation the Hamiltonian reads

Hk = H
†
1 eik + H0 + H1e

−ik. (B19)

With the above parametrization (B15) and (B5) the band
structure follows as

EFB = cos θ cos ϕ

cos(θ − ϕ)
,

Ek = cos θ cos ϕ

cos(θ − ϕ)
+ 2|α| cos(θ − ϕ) cos(k + φα), (B20)

where φα is the phase of α = |α|eiφα .

3. Degenerate H0

The solutions α and EFB in (B17) and (B18) diverge for
θ − ϕ = ±π

2 and θ = φ and so does H1. We renormalize the
Hamiltonian by multiplying it with 1

α
. Then H0 vanishes, and

H1 turns finite.

However, when θ − ϕ = ±π
2 the dispersion bandwidth in

(B20) is finite, and after normalization the dispersive band
becomes flat as well. Therefore we have two coexisting flat
bands on the lines θ − ϕ = ±π

2 . According to (B11) and (B12)
�ψ1 ⊥ �ψ2. In such a case we can always perform a rotation in
each unit cell such that ψ1 = (1,0), ψ2 = (0,1). A subsequent
redefinition of the unit cell turns the CLS into a U = 1 class
one, see above subsection on orthogonality for ν = 2 and
U = 2.

When θ = ϕ, according to (B11) and (B12), �ψ1 ‖ �ψ2,
therefore linearly dependent, and the flat band turns into the
U = 1 class. In this case

H1 = |θ,γ 〉〈θ,γ | =
(

2 cos2 θ 1
2eiγ sin(2θ )

1
2e−iγ sin(2θ ) 2 cos2 θ

)
. (B21)

The corresponding Bloch Hamiltonian in momentum space
reads

Hk = H
†
1 eik + H1e

−ik = cos k

(
2 cos2 θ eiγ sin(2θ )

e−iγ sin(2θ ) 2 cos2 θ

)
,

(B22)

which yields one flat and one dispersive band

EFB = 0, Ek = 2 cos k. (B23)
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4. FB energy equals one of the eigenvalues of H0:
reduction to U = 1

When the flat-band energy EFB equals to one of the
eigenvalues 0, 1 of H0, we have to solve the original
equations (B1)–(B4). A simple calculation shows that the only
remaining flat-band solutions are again of class U = 1.

APPENDIX C: GENERALIZED SAWTOOTH CHAIN

In our FB generator we have considered the canonical
form of H0, which was diagonal. We can perform unitary
transformations (rotations) of the unit cell basis which will
modify H1 and make H0 nondiagonal, turning the whole model
into a noncanonical one. Using the rotation matrix

R(ω) =
(

cos ω − sin ω

sin ω cos ω

)
, (C1)

we define ψ̃i = R(ω) �ψi , H̃m=R(ω)HmR†(ω), where m= − 1,

0,1 and H−m = H
†
m and

H0 =
(

0 0
0 1

)
, H1 = α

(
cos θ cos ϕ eiγ cos θ sin ϕ

e−iγ sin θ cos ϕ sin θ sin ϕ

)
(C2)

with |α| =
√− sin(2θ) sin(2ϕ)

| sin(2(θ−ϕ))| . We consider the case γ = δ = 0,
thus H0 and H1 read

H̃0 = R†(ω)H0R(ω) =
(

sin2 ω cos ω sin ω

cos ω sin ω cos2 ω

)
,

H̃1 = α

(
cos(θ + ω) cos(ϕ + ω) cos(θ + ω) sin(ϕ + ω)
cos(ϕ + ω) sin(θ + ω) sin(θ + ω) sin(ϕ + ω)

)
.

(C3)

We can always find a value of ω which will zero one row or
one column of H1. This simplifies the noncanonical lattice into
a generalized sawtooth chain. It has in general three different
hopping strengths and an onsite energy detuning between the
two sites in a unit cell. As an example we consider the case
when the first column of H1 vanishes:

ϕ + ω = ±π

2
. (C4)

It follows

H̃0 =
(

cos2(ϕ) − cos(ϕ) sin(ϕ)

− cos(ϕ) sin(ϕ) sin2(ϕ)

)
=

(
ε1 t1
t1 ε2

)
,

H̃1 = α

(
0 − sin(θ − ϕ)
0 cos(θ − ϕ)

)
=

(
0 t2
0 t3

)
. (C5)

For the particular case of the ST1 chain (sawtooth chain with
two hoppings equal, and zero onsite energy detuning, see
main text) ε1 = ε2 and t1 = t2, we find

ϕ = 3π

4
, θ = arctan(3 + 2

√
2),

ϕ = π

4
, θ = π − arctan(3 − 2

√
2). (C6)

This leads to the following tight-binding equations:

Ean =−
√

2bn −
√

2bn+1,

Ebn =−
√

2an −
√

2an−1 − bn+1 − bn−1. (C7)

The flat band is located at EFB = 2 [Fig. 1(b) in the main
text]. A compact localized eigenstate has the form a0 = a1 = 1
and b1 = −√

2 (up to a normalization factor) with all other
amplitudes vanishing. Detuning the angles θ,ϕ away from this
point we deform the ST1 model, while maintaining one band
flat.

Let us require t1 = t2 = t3. It follows

θ = π

2
− 1

2
tan−1

(
1

2

)
, ϕ = 3π

4
− 1

2
tan−1

(
1

2

)
,

θ = π

2
− 1

2
tan−1

(
1

2

)
, ϕ = 3π

4
− 1

2
tan−1

(
1

2

)
. (C8)

This is a novel high symmetry sawtooth chain (ST2 chain, see
main text). It can be obtained, e.g., with the following matrices

H0 =−
(

0 1
1 1

)
, H1 = −

(
0 1
0 1

)
. (C9)

This leads to the following tight-binding equations:

Ean =−bn − bn+1, Ebn = −bn − an − an−1 − bn+1 − bn−1.

(C10)

The flat band is located at EFB = 1 [Fig. 1(c) in the main text].
A compact localized eigenstate has the simple form
a0 = a1 = −b1 = 1 (up to a normalization factor) with all
other amplitudes vanishing. Note that we can also set other
columns and rows of H1 in (C3) to zero, and obtain all points
in the θ,ϕ diagram corresponding to ST1 and ST2 chains. All
these points are shown by filled squares and filled circles in
Fig. 3 in the main text.
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