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Spin-entanglement between two freely propagating electrons: Experiment and theory
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Theory predicts that electron pairs, which are emitted from a crystalline surface upon impact of spin-polarized
low-energy electrons, can be spin-entangled. We quantify this entanglement by the von Neumann entropy,
which we show to be closely related to the spin polarization of the emitted electrons. Measurement of the
spin polarization therefore facilitates an experimental study of the entanglement. As target we used a Cu(111)
surface, which exhibits an electronic surface state giving rise to a high pair emission intensity. Experimental spin
polarization spectra for several orientations of the reaction plane broadly agree with their theoretical counterparts.
They are consistent with spin entanglement of the electron pair at a macroscopic distance.
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I. INTRODUCTION

Quantum theory has proven to be a very accurate de-
scription of nature. Furthermore, modern technology rests
on the understanding of the quantum properties of matter
and we cite semiconductor technology and spintronics as
specific examples. Right at the beginning of the formulation
of quantum mechanics it was realized that it contains features
which are seemingly at odds with fundamental views on
the description of nature. This was expressed in a famous
gedankenexperiment by Einstein-Podolsky-Rosen [1]. This
led Schrödinger to introduce the term entanglement and we
quote [2]: “When two systems enter into temporary physical
interaction and when after a time of mutual influence the
systems separate again, then they can no longer be described
in the same way as before, viz. by endowing each of them
with a representative of its own. I would not call that one
but rather the characteristic trait of quantum mechanics. By
the interaction the two representatives (or ψ functions) have
become entangled.”

The concept of entanglement plays a central role in
current research activities covering diverse fields like quantum
computing, cryptography, and teleportation to name a few.
Consequently, a large body of work exists and we refer to a
few reviews for more information [3–5]. An obvious scenario
considered by Schrödinger constitutes the scattering of a
primary particle with a target. Specifically, the scattering of two
electrons interacting via the Coulomb interaction is regarded a
source for entangled electron pairs. Such a process has so far
been explored only theoretically, for collisions between two
free electrons [6,7] and between a free electron and an electron
bound in a crystal surface [8]. The latter process is also known
as (e,2e) and has been shown to reveal important aspects in the
electron correlation of atoms, molecules, and surfaces.

The degree of entanglement can be quantified in the von
Neumann entropy [6]. We will show that this entity is related
to the spin polarization of the emitted electrons in an (e,2e)
process. This spin polarization is experimentally accessible
and allows for an experimental test of entanglement. As a
specific example we investigated in theory and experiment the
(e,2e) process on a Cu(111) surface. It is well established that
this surface exhibits a prominent surface state (cf. Ref. [9] and
references therein). This state is confined into a small region
near the Fermi level and near the center of the surface Brillouin

zone. This facilitates identification of its contribution in the
pair emission as demonstrated previously [10,11]. We study the
spin entanglement in the electron pair emission from a Cu(111)
surface. To this end, we use a spin-polarized electron source
and a spin detector in one of the two electron trajectories.
The present work reports the first experimental study for
the entanglement of two electrons, which after the collision
propagate freely in space over distances of order 10 cm.

II. EXPERIMENT

In Fig. 1, we sketch the basics of our experimental setup
and the nomenclature we use. In an (e,2e) process, a primary
electron e1 hits a sample and interacts with a valence electron
labeled e2. This leads to the emission of a pair of electrons
called e3 and e4, respectively. The experimental studies used a
time-of-flight coincidence spectrometer with a pulsed spin-
polarized electron gun as described previously [12]. The
generation of a spin-polarized electron beam is an established
technique. We use a strained AlInGaAs/AlGaAs superlattice
with negative electron affinity excited by a pulsed laser diode
with 828 nm wavelength [13]. The spin polarization is around
60%. The polarization vector is oriented orthogonal to the
paper plane and is switched between the states “+” and “−”
by reversal of the helicity of the light source. The primary beam
propagates along the sample normal. The key modification of
the setup was the rearrangement of the detector labeled B in
Fig. 1. Before electrons e3 can reach this detector, a transfer
lens focusses them onto a spin-polarizing mirror [14–16].
Essentially, it consists of a pseudomorphic monolayer of Au
on Ir(100) and we use the (0,0) beam in elastic reflection. The
detectors A and B consist of channel plates with delay-line
anodes. The information about the impact position and flight
times allows to determine the kinetic energy and emission
angles of the electrons e3 and e4.

We use as target a Cu(111) surface which was cleaned via
Ar+ sputtering and annealing. We have demonstrated in earlier
(e,2e) experiments that the Shockley surface state makes a
strong contribution to the intensity [10,11]. Suitable primary
energies Ep are in the range 19–30 eV. The identification
of this state is possible via energy and in-plane momentum
conservation in the (e,2e) process as we explain in the
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FIG. 1. A primary electron e1 interacts with a valence electron e2,
this leads to the emission of electrons e3 and e4. The reaction plane
is the paper plane and the spin polarization of the primary beam
is perpendicular to it. The spin polarizing mirror measures the spin
polarization of the emitted electron e3 perpendicular to the scattering
plane.

theoretical section. There we also discuss the usefulness of
the Cu(111) surface state.

The key quantity to measure is the spin-polarization P3 of
electrons e3 as a function of the energy difference E3 − E4

of the two emitted electrons. The spin analyzing properties of
a spin-mirror depend critically on the angle of incidence and
primary energy [14–16]. Good working parameters have been
identified if the electron beam to be analyzed strikes the mirror
with an angle of 45◦ with respect to the spin-mirror surface.
The scattering energies are then around 11 or 50 eV. Due
to geometrical constraints we could not adopt this scattering
angle and had to identify other suitable conditions. For this
we turned the Cu(111) surface by 22.5◦, now the elastically
reflected (0,0) beam from the Cu(111) surface passes through
the transfer lens and serves as primary beam for the spin mirror.
The spin-orbit interaction is weak in Cu, consequently, we
can assume that the spin polarization of the primary beam is
maintained upon reflection from the Cu(111) surface. From
these preliminary investigations, we found an optimum if the
incoming beam strikes the spin mirror at an angle of 35◦. If
the scattering energy is about 11 eV, the spin sensitivity Sspin

adopts a value of 0.2 in contrast to 0.6 for an angle of 45◦
[16]. We denote the intensity I+ and I− for the coincidence
measurement with primary spin “+” and “−”. The term Pgun

takes into account the spin polarization of the primary beam.
With these definitions we determine the spin polarization P3 as

P3 = 1

Pgun

1

Sspin

I+ − I−
I+ + I−

. (1)

III. THEORETICAL FORMALISM

A theoretical treatment of the creation of spin entanglement
by (e,2e) and of its quantification by a modified von Neumann

entropy has been put forward in Ref. [8]. It therefore suffices
to recall the essential features and formulas.

The basic ingredients are four one-electron states, which
in the absence of spin-orbit coupling (which can be neglected
for the low-Z material Cu) can be written as a product of a
spatial and a spin part: |En,�k‖

n〉|σn〉, where En is the energy, �k‖
n

the surface-parallel momentum, and σn = +/− indicates the
spin orientation (up/down) normal to the reaction plane. The
index n = 1 refers to the incident electron, n = 2 to the valence
electron, n = 3 to the outgoing electron labeled e3 in Fig. 1, and
n = 4 to the outgoing electron e4. Energy and surface-parallel
momentum (modulo a parallel reciprocal lattice vector) are
conserved, i.e.,

E1 + E2 = E3 + E4 and �k‖
1 + �k‖

2 = �k‖
3 + �k‖

4 . (2)

To make the following more transparent, we write the above
four states as |n,σn〉 = |n〉|σn〉 with n = 1, . . . ,4, where |n〉
stands for the spatial part |En,�k‖

n〉.
We recall that these states are quasiparticle states, i.e., the

influence of all the other electrons of the crystal is incorporated
via a complex self-energy term in the one-electron potential.
Since electrons in metals near the Fermi energy are adequately
described within an independent quasiparticle picture, the
valence state |2,σ2〉 can—via energy and momentum conser-
vation, cf. Eq. (2)—be singled out from the N -electron ground
state and the remaining (N − 1)-electron state plays no role in
our (e,2e) formalism except for providing the screening of the
Coulomb interaction between two quasielectrons.

Before addressing the initial and final two-electron states,
which are built from these one-electron states, we briefly
recall the concept of entanglement in the present case of
two identical fermions, which has been discussed extensively
in the literature (Refs. [6,17,18] and references therein). A
two-electron state, which consists of a linear combination of
N linearly independent Slater determinants (antisymmetrized
products of one-electron states) with expansion coefficients
ak—with k = 1, . . . ,N—satisfying the normalization condi-
tion

∑
k |ak|2 = 1, is genuinely entangled, if N is greater than

one. As quantitative measure of the entanglement of such a
state we choose a modified von Neumann entropy:

S = −
N∑

k=1

|ak|2 log2(|ak|2). (3)

A state consisting of a single Slater determinant is thus not
entangled with S = 0. For entangled states, one has S > 0,
with maximal value S = 1 reached in the case N = 2 and
|a1|2 = |a2|2 = 0.5.

In (e,2e), the initial two-electron state is an antisymmetrized
product of the incoming and valence one-electron states:

1√
2
(|1,σ1〉|2,σ2〉 − |2,σ2〉|1,σ1〉). Being just a single Slater

determinant, this state is—for parallel as well as for antiparallel
spins σ1 and σ2—not entangled and has entropy S = 0.

The final two-electron state differs for parallel and antipar-
allel spins. For the former (σ := σ3 = σ4 = ±), it is

(f − g)
1√
2

(|3,σ 〉|4,σ 〉 − |4,σ 〉|3,σ 〉), (4)
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where f and g are the direct and exchange transition matrix
elements. Being just a single Slater determinant, this state is
not entangled.

For antiparallel spins (σ := σ3 = ± and σ̄ := −σ =
σ4 = ∓), the final two-electron state has the form

f√
2

(|3,σ 〉|4,σ̄ 〉 − |4,σ̄ 〉|3,σ 〉)

− g√
2

(|3,σ̄ 〉|4,σ 〉 − |4,σ 〉|3,σ̄ 〉). (5)

Consisting of two linearly independent Slater determinants, it
is entangled with entropy [cf. Eq. (3)]

S = −|f̃ |2 log2 |f̃ |2 − |g̃|2 log2 |g̃|2, (6)

where f̃ = f/(
√

|f |2 + |g|2) and g̃ = g/(
√

|f |2 + |g|2). S

ranges from 0, if f or g vanish, to the maximal value 1, which
is obtained if f = ±g.

In a coplanar symmetric (e,2e) setup, the latter is always the
case for equal energies of the outgoing electrons, irrespective
of the primary energy, the polar emission angles and the choice
of the crystal surface. For f = g, Eq. (5) is easily seen to
become the paradigmatic Bell singlet state.

From Eqs. (4) and (5), one obtains the (e,2e) reaction cross
section (intensity)

|f − g|2 and |f |2 + |g|2 (7)

for parallel and antiparallel spins, respectively.
If—for given initial conditions—collisions with valence

electrons of both spin orientations are possible, the total
intensity is the sum of the two terms in Eq. (7), and the final
two-electron state is a mixed state described by the sum of
the statistical operators corresponding to the two pure states in
Eqs. (4) and (5). An appropriate measure of the entanglement
is then the “entropy of formation” (e.g., see Ref. [19]):

S̃ = S · (|f |2 + |g|2)/(|f |2 + |g|2 + |f − g|2), (8)

where S is the entropy for the antiparallel-spin case
[Eq. (5)], and |f |2 + |g|2) and |f − g|2 are the intensities
for antiparallel and parallel spins [cf. Eq. (7)], respectively.
S̃ is thus smaller than S if—in addition to antiparallel spin
collisions—there are also collisions between parallel-spin
electrons. To create maximal entanglement, one therefore has
to choose conditions, under which there are no parallel-spin
valence electrons (which is possible in ferromagnets) or under
which they are forbidden to contribute to (e,2e) due to selection
rules.

Turning now to the issue of how the entanglement in (e,2e)
can be studied experimentally, we first note that measuring
spin-spin correlations and employing Bell type inequalities
is beyond present day technology. Instead, we consider the
spin polarization P3 of the electrons, which leave the surface
in one direction (say e3 in Fig. 1), if the primary electrons
are polarized normal to the reaction plane with P1 = ±1
(i.e., spin label σ1 = ±). In the case of parallel spin of the
valence electron, P3 is obviously the same as P1. In the purely
antiparallel-spin case, P3 = σ1(|f |2 − |g|2))/(|f |2 + |g|2). If
valence electrons with both spin orientations contribute,

from Eq. (7), one gets

P3 = σ1(|f |2 − |g|2 + |f − g|2)/(|f |2 + |g|2 + |f − g|2).

(9)

For short, we refer to the numerator (denominator) as intensity
difference (total intensity). P3 is closely related to the entropy
S̃ [Eq. (8)] since both are functions of the transition matrix
elements f and g. In particular, in the equal energy case (E3 =
E4) with f = g, in which the parallel-spin intensity |f − g|2
is zero, we have maximal entanglement S̃ = 1 associated with
P3 = 0.

In view of making contact with experimental data obtained
at a macroscopic distance (about 20 cm) away from the
surface, one has to consider the possibility that the entangled
pair, which starts at the surface, could suffer decoherence
on its way to the detectors due to some interaction with the
environment (e.g., see the extensive monographs [20,21] and
ample references therein).

Rather than by the wave function, Eq. (5), it would then be
represented by a density matrix of the form

ρ = ρ0 + ηρint, (10)

where ρ0 + ρint is the density matrix corresponding to the
pure state Eq. (5), ρ0 respresents an incoherent superposition,
and the factor ηε[0,1] in front of the interference part
ρint indicates the strength of the decoherence (none for
η = 1 and maximal for η = 0). The spin polarization P3 is
tr[(1⊗σz)ρ] = tr[(1⊗σz)ρ0], i.e., the same for any decoherence
value η. In particular, for the antiparallel-spin case with
maximal entanglement at the surface, the value P3 = 0 would
be obtained at the detectors even if the Bell-type state had
completely decohered along the way from the surface to the
detectors. P3 = 0 is thus a necessary, but by itself not sufficient
condition for entanglement at a macroscopic distance.

IV. RESULTS

To get quantitative (e,2e) entanglement results extending
beyond the special equal-energy case, numerical calculations
for a specific surface system are required. The Cu(111) surface
appears most suitable for several reasons. (1) It exhibits a
valence electron surface state (so-called Shockley state), which
gives rise to strong (e,2e) intensity [10,11]. (2) Since this
state is just below the Fermi energy, there are hardly any
inelastic multiple scattering events, which would degrade the
entanglement. (3) The threefold rotation symmetry of Cu(111)
implies a strong dependence of S̃ and P3 on the azimuthal
rotation angle about the surface normal. Applying to Cu(111)
a multiple scattering formalism, which has been described in
detail in earlier articles (Refs. [22,23] and references therein),
we obtained the transition matrix elements f and g and thence
the entropy of formation S̃ according to Eq. (8) and the spin
polarization P3 of outgoing electrons e3 according to Eq. (9).
Specific theoretical model features, in particular quasi-particle
potentials and the screening of the Coulomb interaction, were
taken to be the same as in previous (e,2e) work [24].

In Fig. 2, we present (e,2e) results from Cu(111) calculated
for the coplanar symmetric geometry sketched in the upper half
of Fig. 1 with fixed polar angles ϑ3 = ϑ4 = 45◦. The normally
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FIG. 2. Theoretical results from Cu(111) for normally incident primary electrons with E1 = 24 eV and spin σ1 = +. The two outgoing
electrons have energies E3 and E4 and equal polar angles ϑ3 = ϑ4 = 45◦. Surface geometry sketches are in the right-hand column, the x axis
is along the [1,−1,0] direction and the y axis along [−1,−1,2]. The red line marks the intersection of the reaction plane with the surface for
azimuthal angles ϕ = 0◦, 30◦, and 90◦ as indicated. The plane normal to the reaction plane (dashed green line) is a mirror plane for ϕ = 0◦ and
a nonmirror plane in the cases ϕ = 30◦ and 90◦. The energy distributions in panels (a)–(i) are presented as functions of the energy difference
E3 − E4 of the two outgoing electrons and of the valence electron energy E2 minus EF , which by virtue of energy conservation is equivalent
to the sum energy E3 + E4. In each panel, the vertical dashed line marks the special case of equal energies of the two electrons. (a)–(c) show
results for azimuthal angle ϕ = 0◦. (a) Total intensity |f |2 + |g|2 + |f − g|2 [cf. Eq. (7)]. (b) Entropy of formation S̃ [cf. Eq. (8)]. (c) Intensity
difference |f |2 − |g|2 + |f − g|2, which is equal to the spin polarization P3 of electrons e3 in Fig. 1 [cf. Eq. (9)] times the total intensity. (d)–(f)
Same as (a)–(c) but for ϕ = 30◦. (g)–(i) Same as (a)–(c) but for ϕ = 90◦. The results for ϕ = 60◦ are not shown, because they are identical
with those for ϕ = 0◦. For primary spin σ1 = −, the total intensity and the entropy of formation are the same as for σ1 = +, but the intensity
difference has the reversed sign.

incident primary electron has fixed energy E1 = 24 eV.
Intensities, entropy and spin polarization then depend only
on the two outgoing electron energies E3 and E4. Since the
energy sum E3 + E4 is equal to E1 + E2, they can equivalently
be regarded as functions of the energy difference E3 − E4

and the valence electron energy E2 + 	 = E2 − EF relative
to the Fermi energy EF , where 	 is the work function.
Further, in our geometry the conservation laws of Eq. (2)
associate with each pair (E3,E4) a unique value of valence
electron parallel-momentum �k‖

2 = (k2r ,0), where k2r is the
component in the reaction plane. In particular, electrons with
E3 − E4 = 0 originate from collisions with valence electrons
with �k‖

2 = (0,0), i.e., at the center of the surface Brillouin zone.
The presentation of (e,2e) results as functions of E3 − E4 and
E2 − EF thus facilitates the association of individual (e,2e)
intensity features with features of the underlying �k‖-resolved
valence electron density of states. Figure 2(a) shows, for the
reaction plane at azimuthal angle ϕ = 0◦ (cf. geometry sketch
in Fig. 2), the total intensity |f |2 + |g|2 + |f − g|2 [cf. Eq. (7)]
arising from collisions of primary spin-up electrons with
both spin-up and spin-down valence electrons. The dominant
feature is the arched structure, which from a valence energy of

about 0.4 eV below the Fermi energy EF at E3 − E4 = 0
disperses upward towards EF . This structure reflects the
dispersion of the sp-like Shockley surface state (cf. Ref. [9] and
references therein). For studying entanglement, this state has
the important virtue of even symmetry with respect to mirror
planes normal to the surface. If such a mirror plane exists
normal to the chosen (e,2e) reaction plane, selection rules
dictate that for E3 = E4 the parallel-spin intensity [Eq. (7)] is
zero and cannot degrade entropy and spin polarization [25].
As the geometry sketch in the first row of Fig. 2 indicates,
this is the case for ϕ = 0◦. Consequently, at the bottom of the
Shockley state arch, the entropy in Fig. 2(b) has the maximal
value one. The intensity difference shown in Fig. 2(c) and the
spin polarization P3 [cf. Eq. (9)] are zero. Sizeable entropy
values are seen to extend out to about E3 − E4 = ±2 eV.
Going away from the center, the intensity difference and P3

become finite, with opposite sign.
For azimuthal angles ϕ = 30◦ [second row of Fig. 2 and

ϕ = 90◦ (third row)], the plane normal to the reaction plane is
not a mirror plane. Consequently, collisions between parallel-
spin electrons will generally contribute a nonzero intensity
term |f − g|2. While the total intensity [Figs. 2(d) and 2(g)]
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is only mildly affected, entropy and intensity difference are
changed drastically. In both Figs. 2(e) and 2(h), S̃ is seen to
be strongly reduced in the central region of the Shockley arch,
and the intensity difference [in Figs. 2(f) and 2(i)] is now
large, with opposite signs for ϕ = 30◦ and ϕ = 90◦. For the
spin polarization P3 [Eq. (9)], which is the intensity difference
divided by the total intensity, this means that—in contrast
to crossing zero at E3 − E4 = 0 in the case ϕ = 0◦—it has
sizable positive (negative) values for ϕ = 30◦ (ϕ = 90◦).

The relation between entropy and spin polarization can
be explicitly demonstrated over the entire (E3 − E4) range by
noting that in the valence energy range between EF and −1 eV,
which is accessible in our experiment with energy resolution
of 1 eV, the intensity is concentrated in the Shockley arch [cf.
Figs. 2(a), 2(d), and 2(g)]. Weighted averages S of S̃ and P 3 of
P3 over this E2 interval, which are both functions of E3 − E4,
therefore essentially represent entropy and spin polarization
along the Shockley arch. S(E3 − E4) and P 3(E3 − E4) were
calculated from Eqs. (8) and (9), respectively, by integrating
the numerator and denominator separately over the valence
energy interval E2 from −1.0 eV up to the Fermi level.

In Fig. 3, we show S and P 3 for the azimuthal angles ϕ =
0◦, 30◦, and 90◦. For comparison, we include the corresponding
quantities S

ap
and P

ap
3 for the case of antiparallel spins only,

which were obtained in the same way from Eqs. (8) and
(9) but without the parallel-spin intensity term |f − g|2. In
Fig. 3(a), we show results for azimuthal angle ϕ = 0◦, for
which the plane normal to the reaction plane is a mirror
plane. Most notably, for equal energy sharing E3 − E4 = 0 the
entanglement measure S attains the maximally possible value
1, whereas the spin polarization P 3 crosses through zero. S

ap

and P
ap
3 are the same as S and P 3, since for equal energy

sharing parallel-spin contributions are forbidden by selection
rule. This still holds in very good approximation in the range
between about −0.5 and 0.5 eV. Below about −1 eV and above
about 1 eV, parallel-spin contributions, which for the present
positive primary spin polarization are positive, have shifted P 3

upwards with respect to P
ap
3 and reduced S with respect to S

ap
.

This upward shift deprives P 3 of the antisymmetry, which P
ap
3

exhibits.
The results for ϕ = 30◦ [Fig. 3(b)] and ϕ = 90◦ [Fig. 3(c)],

for which the plane normal to the reaction plane is not a
mirror plane, are strikingly different. At E3 − E4 = 0, the
entanglement measure S is minimal and the polarization has
no zero crossing. In fact, P 3 is positive (negative) throughout
the entire energy range for ϕ = 30◦ (ϕ = 90◦). S and S

ap

for ϕ = 30◦ and 90◦ are seen to be related by a reflection at
E3 − E4 = 0. The two P

ap
3 curves are transformed into each

other by reflection and sign reversal. These properties are a
due to the fact that the plane at ϕ = 60◦ is a mirror plane.

As demonstrated above, the entanglement of the electron
pairs is very closely associated with the spin polarization P3

of the electrons leaving the Cu surface in one direction. Since
the sign of P3 is reversed by reversing the sign σ1 of the
primary electron spin, P3 can be measured as the asymmetry
after spin-dependent reflection at the spin-polarizing mirror,
see Fig. 1.

Experimental spin polarization data are presented, together
with theoretical results, in Fig. 4. Due to experimental
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FIG. 3. Weighted averages S of entropy (solid blue lines) and
P 3 of spin polarization (solid red lines), which were—for the same
conditions as the results in Fig. 2—obtained by integrating the
numerators and denominators of Eqs. (8) and (9), respectively, over
the valence energy interval from −1.0 eV up to the Fermi level.
Neglecting the parallel-spin intensity term |f − g|2, this procedure
yields the corresponding quantities S

ap
(dashed blue lines) and P

ap
3

(dashed red lines) for antiparallel spins only. (a)–(c) show the results
for the azimuthal angles ϕ = 0◦, 30◦, and 90◦. Results for ϕ = 60◦

are the same as those for ϕ = 0◦.

energy resolution, these data have been collected over an
energy interval 
E2 of 1 eV below the Fermi energy, which
comprises the Shockley surface state, and a number of
intervals 
(E3 − E4). The corresponding theoretical results
are the average polarization curves P 3(E3 − E4), which were
calculated from Eq. (9) by averaging the intensity difference
(numerator) and the total intensity (denominator) separately
over the valence energy interval E2 from −1.0 eV up to
the Fermi level. In Fig. 4(a), we show results for azimuthal
angle ϕ = 0◦, for which the plane normal to the reaction
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FIG. 4. Spin polarization P3 as a function of the energy difference E3 − E4 for different azimuthal angles ϕ for primary energy E1 = 24 eV.
The theoretical results (solid red lines) were obtained, for primary spin σ1 = +, from Eq. (9) by averaging over the valence energy interval E2

from −1 eV up to EF , which includes the entire Shockley surface state. The experimental results are represented by fat dots inside a rectangle. The
horizontal extension indicates the energy integration range. The vertical extension is the statistical uncertainty at each dot. The experimental
(theoretical) polarization scale is on the left (right). The constant scaling factor between them takes into account various depolarization
effects.

plane is a mirror plane. The salient common feature of the
experimental and theoretical polarization is the zero crossing
at E3 − E4 = 0. As shown in Fig. 3(a), at this point the
entanglement measure S reaches its maximal value 1. Our
experimental result is therefore consistent with the generation
of maximally entangled electron pairs. This is the central result
of the present work.

As a cross-check, we show in Fig. 4(c) experimental data
obtained at ϕ = 60◦, which according to symmetry arguments
as well as numerical calculations should be identical to those
for ϕ = 0◦. The results for ϕ = 30◦ [Fig. 4(b)] and ϕ = 90◦
[Fig. 4(d)], for which the plane normal to the reaction plane
is not a mirror plane, are strikingly different. The polarization
has no zero crossing, but is positive (negative) throughout for
ϕ = 30◦ (ϕ = 90◦). As can be seen in Figs. 3(b) and 3(c),
the entanglement measure S has a minimum of 0.12 at E3 −
E4 = 0 in contrast to the maximal value 1 obtained for ϕ = 0◦.

The experimental polarization values are about a factor 4
smaller than the theoretical values. A contributing factor of this
reduction arises from random coincidences. These are events
in which two primary electrons individually cause single-
electron emission. Our coincidence circuit will also register
these events. The spin polarization of random coincidences is
expected to vanish. The intensity contribution of this pathway
can be adjusted by the primary flux. It is well-known that
random coincidences scale quadratically with the flux, while
the intensity of interest (true coincidences) scale linearly with
flux. We adjusted the flux such that the ratio of true to random

coincidences is of the order of one. In this case, the observed
spin polarization is reduced by a factor of about 2 compared
to the spin polarization of the true coincidences.

As explained above, the measured spin polarization in
Fig. 4(a) would be the same if the pair state, which is strongly
entangled at the surface, had decohered along the way to
the detectors due to interaction with the environment. As
interaction mechanisms, which in our apparatus might reduce
the spin entanglement, we consider collisions with rest gas
molecules and magnetic fields. Since the base pressure in
our vacuum chamber is less than 10−10 mbar, the mean free
path for collisions between rest gas molecules is more than
106 m. The mean free path for electron-molecule collisions is
therefore certainly much larger than the electron trajectories
and such collisions will hardly cause decoherence. As for
magnetic fields, we have shielded the earth magnetic field by
compensating coils and by mu-metal such that the field inside
our chamber is only 1 mG. It seems rather unlikely that such a
weak magnetic field can significantly impair the entanglement.

V. CONCLUSION

We performed (e,2e) experiments on a Cu(111) surface
and focused on the events which included the Shockley
surface state. If we select a particular sample alignment with
respect to the scattering plane (ϕ = 0◦) our experimental
results are consistent with an entanglement of two electrons
at a macroscopic distance. Estimating decoherence due to
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interactions along the way as small, we moreover regard it
as very likely that they are actually significantly entangled.
For a definite verification, however, one has to await a new

generation of experiment with a spin detector in each arm
allowing the measurement of correlations and thence the
violation of Bell-type inequalities.
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