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The energy-time uncertainty is an intrinsic limit for time-resolved experiments imposing a tradeoff between
the duration of the light pulses used in experiments and their frequency content. In standard time-resolved
photoemission, this limitation maps directly onto a tradeoff between the time resolution of the experiment and
the energy resolution that can be achieved on the electronic spectral function. Here we propose a protocol to
disentangle the energy and time resolutions in photoemission. We demonstrate that dynamical information on all
time scales can be retrieved from time-resolved photoemission experiments using suitably shaped light pulses
of quantum or classical nature. As a paradigmatic example, we study the dynamical buildup of the Kondo peak,
a narrow feature in the electronic response function arising from the screening of a magnetic impurity by the
conduction electrons. After a quench, the electronic screening builds up on timescales shorter than the inverse
width of the Kondo peak and we demonstrate that the proposed experimental scheme could be used to measure the
intrinsic time scales of such electronic screening. The proposed approach provides an experimental framework
to access the nonequilibrium response of collective electronic properties beyond the spectral uncertainty limit
and will enable the direct measurement of phenomena such as excited Higgs modes and, possibly, the retarded
interactions in superconducting systems.
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I. INTRODUCTION

The electronic response function at low energies is a
standard tool to address the physical mechanism leading to the
exotic macroscopic properties observed in complex materials.
The onset of superconductivity, charge density wave or giant
magnetoresistance, which arise from both the electron-electron
interactions as well as from the interactions between electrons
and other degrees of freedom, is often reflected in anomalous
features in the low-energy electronic response function [1,2].
In those systems, the population dynamics and the electronic
gaps are often not “factorizable”, i.e., the excited state
population dynamically renormalizes the electronic gaps [3].
This aspect makes time-resolved photoemission particularly
appealing among nonequilibrium techniques, as it allows to si-
multaneously measure the time-dependent band structure and
the evolution of the nonequilibrium distribution of electronic
excitations. Various time- and angle-resolved photoemission
experiments have revealed the collapse of charge density
waves and Mott gaps [4–6] or the reconstruction of the gap at
photo-induced metal-insulator transitions [7,8].

Time domain pump and probe photoemission spectroscopy
suffers from the intrinsic limitation imposed by energy-time
uncertainty relation. In fact, although nowadays we have tech-
nologies to produce light pulses shorter than 100 attosecond
[9], the shorter the pulses are, the larger is their bandwidth.
In standard time domain photoemission experiments, the large
energy content of the probing pulse maps directly onto a large
spread in the energy content of the photoemitted electron.
This results in a poor energy resolution that averages out the
spectroscopic feature associated to low-energy gaps.
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For this reason, up to now, time domain studies have been
limited to study the dynamics of spectral features which are
slower than the inverse of their characteristic frequency. In
general, one could say that the time-evolution takes place
beyond the spectral uncertainty limit if relevant degrees
of freedom evolve faster than the inverse width of their
spectroscopic fingerprint.

A paradigmatic example of such situation is the Kondo
effect, i.e., the screening of an impurity magnetic moment,
which is reflected only in a narrow spectral feature close
to the Fermi energy. Since a pulse of duration �t has a
minimum bandwidth �ω = 1/�t , it is generally believed that
the dynamics of the Kondo screening can be measured only
on time scales slower than the inverse of its spectral width,
while it is known that the screening itself can evolve on a
shorter time scale [10]. A similar issue can arise in the case
of the condensate in standard BCS superconductors, whose
dynamics is believed to be observable only on time scales,
which are slower than the inverse of the gap frequency, h̄/�sc.
On the other hand, it is expected that gap amplitude oscillations
at the gap frequency should follow a sudden quench of the
superconducting gap [11,12].

In this paper we show that the tradeoff between the resolu-
tion on the photoelectron energy and the temporal resolution
is a characteristic of standard pump-probe photoemission
performed with pulses with Gaussian envelopes, and that it
can be circumvented using properly shaped light pulses. Here,
we extend the well established concepts of multidimensional
optical spectroscopy [13,14] to time-resolved photoemission
experiments. The idea leading this theoretical proposal is
that the full information about the single particle dynamics
in the solid, contained in the Green’s function G(t,t ′), can
be accurately characterized entirely in the time domain and
the limitations of the mixed time-frequency approach used
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in standard time domain experiments can be overcome. In
particular, we show that a real-time measurement of the
Green’s function can be experimentally implemented using the
interference photoemission signal from a double probe pulse,
obtained by splitting, delaying, and recombining a pulse of
arbitrarily short duration.

We illustrate this double probe pulse photoemission scheme
addressing the buildup time of the Kondo peak and highlight
how this scheme could have a more general relevance for
experiments addressing the true time scales of destruction
of electronic order in Mott insulators such as 1T -TaS2

dichalcogenide [15] and superconductors [11,12,16].
In addition to the experiments exploiting the modulation

of the classical intensity, we envision experiments taking
advantages of light pulses with statistical or quantum cor-
relations. Exploiting quantum correlations of light both in
controlling and measuring the properties of matter has a wide
application in other fields [17–21]. Our proposal represents the
first attempt to exploit noncoherent states of light to address
specific spectroscopic features in time-resolved photoemission
experiments.

II. GENERALIZED TIME-RESOLVED PHOTOEMISSION

A. Theoretical formulation

In a time-resolved angle-integrated photoemission experi-
ment, one measures the probability I (E,tp) that an electron is
emitted under the action of a short probe pulse, as a function
of the photoelectron energy E and the time-delay tp between
the probe pulse and a given excitation (e.g., the pump pulse).
The signal I (E,tp) can be obtained using time-dependent
perturbation theory in the light-matter coupling [22,23]. If
s(t)ei�t + s∗(t)e−i�t denotes the time-profile of the probe
vector potential with envelope s(t) and center frequency �,
one obtains (see Ref. [22] and Appendix A)

I (E,tp) ∝−i

∫
dt dt ′ eiE(t−t ′)G<(tp+t,tp+t ′) S(t,t ′). (1)

Here the kinetic energy E is defined with respect to the
energy h̄� − W given by the frequency � and the work
function W , and S(t,t ′) = s(t)s(t ′)∗ is an autocorrelation
function of the probe pulse, which acts as a filter determining
how eiE(t−t ′)G<(t,t ′) is sampled over the (t,t ′)-plane in the
above integration. Furthermore, G<(t,t ′) = i〈f †(t ′)f (t)〉 is
the Green’s function of the sample alone, where f (f †) is
the annihilation (creation) operator for an electron in a given
orbital of the system, 〈· · · 〉 denotes the expectation value in the
initial state (at t → −∞), and the time evolution includes all
nonequilibrium perturbations besides the probe, such as exter-
nal pump laser fields. Equation (1) can easily be extended by
adding a sum over orbitals and matrix elements, but the latter
are static and do not alter the following general discussion of
the relation between the time-dependent electronic properties
and the photoemission signal. Similarly, by inserting suitable
matrix elements, the results discussed in this work can be
reformulated for angle-resolved photoemission [24].

If the probe pulse is modelled by a Gaussian s(t) =
exp(−t2/2�t2) with duration �t , Eq. (1) can be transformed

into a mixed time frequency representation,

I (E,tp) ∝
∫

dω dt N(E + ω,tp + t) e
− t2

�t2 e−ω2�t2
, (2)

where N (ω,t) = ∫
ds

2πi
eiωs G<(t + s/2,t − s/2) is the

Wigner transform of the Green’s function, which could be
referred to as a time-dependent occupied density of states.
[At equilibrium, N (ω) = A(ω)f (ω) is the product of the
spectral function A(ω) and the Fermi distribution function.]
Equation (2) emphasizes the origin of the uncertainty limit
in time-resolved photoemission. The signal I is related to
the underlying spectral information N (ω,t) by a filter which
is subject to the uncertainty �ω = 1/�t in (t,ω) plane.
This is illustrated in Fig. 1, for the simple example of an
occupied level which is suddenly shifted in binding energy
from εi to εf . For simplicity, we choose the zero of energy
such that εi = +1 (< εvacuum) and εf = −1. Figures 1(a)
and 1(b) show the Wigner transform N (ω,t) and the result
of time-resolved photoemission with a Gaussian pulse,
respectively. While N (ω,t) contains the full information
about single-particle properties in the time-evolving quantum
state, this information can no longer be easily reconstructed
from the photoemission intensity. However, one may now
ask whether probe pulses can be appropriately devised to
shape S(t,t ′) in order to access the underlying information
in G<(t,t ′) or N (ω,t) in a more flexible way. There is
clearly no physical pulse which could yield N (ω,t) in a
single intensity measurement, since N (ω,t) can take negative
values, while I (E,t) is a nonnegative probability [25–28].
Nevertheless, in the following sections we will show that
there are filters which may be more useful than the Gaussian
one in Eq. (2) in analyzing ultrafast dynamics, since they
allow to extract different kind of information, or can be used
to “tomographically” reconstruct G<(t,t ′) and equivalently
N (ω,t) with a series of measurements.

B. Double-probe photoemission: tomography of G<(t,t ′)

In this section, we propose a probing scheme that allows to
determine G<(t,t ′) in real time, based on a set of measurements
with two probe pulses, which are separated in time but
have a fixed phase relation. The procedure is realistically
implementable from the experimental point of view with the
current technology, using splitted, delayed and recombined
pulses, as shown schematically in Fig. 2. It resembles what
is usually done in the established field of multidimensional
optical spectroscopy, albeit the fact that what is measured is
the number of emitted electrons.

If s0(t) denotes the envelope of the single pulse, the total
envelope s(t) in Eq. (1) is given by

s(t) ∝ s0(t − t0) + eiϕs0(t + t0) ≡ s+(t) + eiϕs−(t), (3)

where ϕ is the relative difference of carrier envelope phase
between the two probe pulses, and 2t0 is the temporal
separation. Using Eq. (1), the photoemission intensity obtained
with this double pulse is given by the sum of the photoemission
I±(E,tp) obtained with the individual pulses s±(t) as if they
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FIG. 1. Illustration of the use of different filters S(t,t ′) (pulses)
in a photoemission experiment. The system of interest is a single
level with H (t) = sign(t)ε0c

†c, which is initially occupied and then
suddenly shifted in energy (ε0 = 1). (a) shows the Wigner transform
N (ω,t) of the Green’s function of the system. The remaining panels
show time-resolved angle-integrated photoemission spectra obtained
with different pulses [S(t,t ′) is shown in the inset], as a function
of photoelectron energy and time. (b) Classical Gaussian probe
pulse. The observed switching is resolution limited. (c) Nonseparable

were used separately, and an interference signal

Iintf(E,tp) ∝ Im

[
eiE2t0−iϕ

∫
dtdt ′s0(t)s0(t ′)∗

× eiE(t−t ′)G<((tp + t0) + t,(tp − t0) + t ′)
]
.

(4)

This is determined by the particular shape of the filter S(t,t ′)
(inset of Fig. 2): the first contribution samples G<(t,t ′) on
the t = t ′ diagonal in (t,t ′) space, while the interference
contribution samples it out of the diagonal. Note that ϕ is
the relative difference of carrier envelope phase between the
two probe pulses, and not an absolute carrier envelope phase.
Therefore, if the phase relation between the two probes is
fixed, Iintf does not vanish upon averaging over many laser
shots. As an example, if the probe photon energy is 6 eV
(λvac 
 200 nm), the stability of the mirrors of the delay stage
in Fig. 2 controlling t0 should be of approximately 100 nm.

The above described result is understood most easily in the
limit of extremely short pulses s0(t) = δ(t). A single ultrashort
pulse retrieves only the time-dependent density nf = 〈f †f 〉
[cf. Eq. (1)], so that I±(tp,E) ∝ nf (tp ± t0), while

Iintf(E,tp) ∝ 2 Im[ G<(tp + t0,tp − t0)ei2Et0−iϕ]. (5)

The interference contribution can be extracted in two ways. On
the one hand, it can be identified by its oscillating dependence
on the photoelectron final state energy. On the other hand,
the diagonal terms I± can be obtained from an independent
measurement with a single probe pulse experiment. Even
without any knowledge of the relative phase ϕ, one can thus
obtain the absolute value |G<(tp + t0,tp − t0)| by varying tp
and t0.

In Sec. III A, we will demonstrate, for the example of the
buildup of the Kondo peak, that this information is valuable
to extract key features of the ongoing dynamics of the system,
that are otherwise hidden by the uncertainty limit of standard
probe pulses. The double probe measurement scheme may
therefore open the path for the application of extremely short
pulses to study the dynamics of emergent low-energy degrees
of freedom. It can be noted that the coherence time of the
features one wants to observe should be long enough to allow
such two-probes measurement. However, the cases in which
the double probe scheme is useful are exactly the ones in which
the spectral features are sharp and, therefore, long-lived.

In the past, pioneering works [29] explored the possibilities
of time-resolved two-photon photoemission, which uses two
delayed pulses with energies (∼3 eV) below the work function
of the sample to populate empty states and then photoemit
electrons from there. The study of interferometric effects
allowed to measure elastic and inelastic scattering rates of
excited states at the surface of metals. It is important to

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
positive definite filter S(t,t’), which, thanks to its off diagonal
structure, produces some of the features of the N (ω,t) in the
photoemission spectrum. (d) Incoherent pulse with the same intensity
profile in time as the coherent pulse in (b), which yields a lower energy
resolution.

115132-3



FRANCESCO RANDI, DANIELE FAUSTI, AND MARTIN ECKSTEIN PHYSICAL REVIEW B 95, 115132 (2017)

Ti:Sapphire
laser

Short pulse
generation

4th harmonic
or higher

S(t,t')

Sample Hemispherical energy
analyser

Photoemission
chamber

t0

tp

tp
2t0

FIG. 2. Schematic sketch of a Ti:sapphire laser based experimen-
tal set-up that uses the double probe pulses to perform the tomography
of the Green’s function, by varying tp and t0.

underline the differences between this technique and the tomo-
graphic measurement proposed here. Because time-resolved
two-photon photoemission allows only to study states with
energies within 3 eV from the vacuum level, i.e., states that
are not occupied at equilibrium, it probes a joint density of
occupied and unoccupied states rather than the single-particle
spectrum, and is therefore unsuited to study how the states
below the Fermi energy change after a general kind of
excitation, e.g., in an out-of-equilibrium phase transition or
in the modification of the low-energy properties of the system.
In contrast, in the tomography described in this work the
interference comes from different pathways leading to the
same one-photon photoemission event, which would allow
to probe any bound state.

C. Photoemission with noncoherent states of light

Although the discussion in Sec. III is based on the double
pulse scheme, we now complete the generalization of the
photoemission process extending it to states of the probe
pulse which are not coherent states |α〉, i.e., that have either
statistical or quantum correlations. A coherent state |α〉 is the
closest quantum description of a classical wave and is therefore
also called quasiclassical. While the double probe experiment
allows to reconstruct G(t,t ′) over the full (t,t ′) plane through

a tomographic process, the manipulation of the state of the
probe pulse beyond the coherent state case can allow to retrieve
specific correlations in a single measurement.

Again, the discussion starts from S(t,t ′). The probe pulse
defines a filter S(t,t ′) in the time domain [Eq. (1)] or
correspondingly in the time-frequency domain [Eq. (2)],
which relates the signal I (E,tp) to the dynamical information
contained in G<(t,t ′). In the analysis discussed so far, the
pulse autocorrelation function is generally limited to a form
S(t,t ′) = s(t)s(t ′)∗, which can be factorized in the time
domain. On the other hand, an arbitrary function S(t,t ′)
could be designed to probe specific statistical features and
correlations in the ongoing dynamics in the system. To see how
such a measurement might be implemented, we first note that
an arbitrary function of Hermitian symmetry S(t,t ′) = S(t ′,t)∗
can be expressed, through diagonalization, as the sum of
factorizable functions:

S(t,t ′) =
∑

j

ηj s̃j (t)s̃j (t ′)∗, (6)

where j labels the eigenvectors. If more than one ηj is different
from zero, then S(t,t ′) is nonfactorizable. From the above
expression, it can be seen that the result of the hypothetical
photoemission with a nonfactorizable filter S(t,t ′) would be
a weighted average I = ∑

j ηj Ij of signals obtained with
different pulses s̃j (t). This means that the measurement can be
emulated by an equivalent “tomographic” set of experiments
with factorizable filters.

The usage of a factorizable S(t,t ′) comes from the fact
that in the standard case coherent states are considered for
photoemission. This opens the intriguing question whether
the hypothetical tomographic experiment described in the
previous paragraph can be replaced by a single measurement
performed with noncoherent states of light. In order to see what
kind of filters S(t,t ′) one can obtain using general (quantum or
statistical) probe pulses, we will now show what differences
arise if a general state is considered for the light in the
photoemission process.

The derivation of the photoemission intensity for an
arbitrary state (described by the density matrix ρ) of the
incoming probe pulse is rather analogous to the semiclassical
case discussed in Ref. [22], and it is therefore presented
in the appendix. In the Coulomb gauge (∇ · A = 0), the
vector potential A is now given by an operator A(r,t) =
A+(r,t) + A−(r,t) [30],

A+(r,t) = A−(r,t)† =
∑

q

Aq âqe
iqr−iωq t , (7)

where Aq = √
h̄/2V ε0ωq , and âq is the photon annihilation

operator. For notational simplicity, we take into account only
one propagation direction n̂ (q = qn̂) and transverse linear
polarization. Setting the location of the sample at r = 0, the
only change in Eq. (1) is that the autocorrelation function
S(t,t ′) takes its quantum-mechanical form

S(t,t ′) = ei�(t ′−t) Tr(ρ A−(t)A+(t ′)). (8)

In this context, classical coherent probe pulses can be described
as a coherent state |
〉 = |α〉 = ∏

q |αq〉, which immediately
recovers the standard result, with Sα(t,t ′) = sα(t)sα(t ′)∗ and
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probe envelope sα(t) = ∑
q ei(ωq−�)tα∗

qAq . On the other hand,
if the state of the probe pulses is not a product | α〉 of coherent
states, i.e., it is not a quasiclassical coherent wave, S(t,t ′)
is not bound to the standard factorizable form. In fact, since
the probe pulse only enters through the two-time correlation
function, it can be shown that every function of the form
(6) can be obtained from Eq. (8) with a multimode state
with Gaussian Wigner function provided that ηj � 0, i.e., the
function is positive definite (see appendix B). In this way,
a tomographic set of measurements aimed at reconstructing
the effect of a Hermitian and positive definite filter S(t,t ′)
can, indeed, be replaced by a single experiment with probe
pulses not in a coherent state. In turn, every measurement
with noncoherent states can be replaced by a tomographic
set of measurements with classical pulses, because any state
of light ρ can be expressed as an integral over coherent
states using the Glauber-Sudarshan P representation [31,32]
ρ = ∫

d β Pρ(β)| β〉〈β |.
The potential use of different filters S(t,t ′) to obtain specific

information, such as the Wigner transform, is illustrated for
the level quench in Fig. 1(c), where we plot the result of
Eq. (1) with a particular choice of an exotic, but hermitian and
positive definite cross-shaped S(t,t ′). As can be seen, the result
shown in Fig. 1(c) resembles the Wigner transform plotted
in Fig. 1(b). In fact, an infinitely extending cross-shaped
filter of the type used in Fig. 1(c) would yield the sum
of a constant background (from the diagonal t = t ′) and
the Wigner transform (from the antidiagonal t = −t ′ + tp),
from which the full Green’s function can be reconstructed.
On the actual experimental side, even though the generation
and manipulation of quantum light pulses in the relevant
spectral range for photoemission are not yet established,
it is important to note that corrections to the results of
time-resolved photoemission can arise also if, instead of an
enhancement of correlation, incoherent pulses are considered,
which is also accounted for by the generalized expression.
An incoherent light pulse has a reduced correlation between
the various temporal positions in the pulse, as compared to
coherent light. In the (t,t ′) plane, S(t,t ′) must quickly go to
zero moving away from the t = t ′ diagonal, as shown in the
inset of Fig. 1(d). This leads to a reduced frequency resolution
[Fig. 1(d)] compared to the result obtained with a coherent
pulse with the same intensity profile in time.

III. ILLUSTRATION AND PROPOSALS FOR THE DOUBLE
PROBE EXPERIMENT

A. Buildup of the Kondo resonance: standard
time-resolved photoemission

In the following, we illustrate the real-time measurement of
the Green’s function with the double-pulse technique (Fig. 2)
for the buildup of a Kondo resonance, which is a classical
problem of nonequilibrium many-body physics and also a
paradigmatic example of dynamics occurring beyond the
spectral uncertainty limit. We start by discussing the results
in standard photoemission.

The Kondo effect can arise when a localized orbital, such
as a quantum dot or an impurity atom on a metallic surface,
hybridizes with a continuum of conduction electrons [33].

Depending on the orbital occupancy, a magnetic moment
is formed on the impurity when charge fluctuations are
suppressed due to the Coulomb repulsion. This moment
becomes screened by the conduction electrons below the
Kondo temperature TK , an emergent low-energy scale of the
system. The buildup of Kondo screening in real time, e.g.,
after the impurity is suddenly coupled to the conduction band,
has recently been a subject of intensive numerical research
[10,34–36]. The spectroscopic signature of the Kondo effect
is a narrow resonance of width TK at the Fermi energy (the
so-called Kondo peak), which can be resolved only after times
h̄/TK [34], while the Kondo screening cloud is formed to
a large extent on the much shorter time scale set by the
hybridization between impurity and conduction band [10].
Thus the buildup of Kondo screening turns out to be a process
which happens on time scales beyond the spectral uncertainty,
i.e., too fast to be spectrally resolved.

We now discuss the Kondo effect at equilibrium and results
of time-resolved photoemission during the buildup of the
Kondo resonance within the Anderson model,

HK =
∑

σ

εf f †
σ fσ + Uf

†
↑f↑f

†
↓f↓

+
∑
kσ

Vkc
†
kσ fσ + H.c. +

∑
kσ

εkc
†
kσ ckσ . (9)

Here, fσ and ckσ are annihilation operators for electrons
with spin σ on the impurity and bath levels, respectively,
εf is the position of the impurity level relatively to the
Fermi level, U the on-site Coulomb energy, and Vk the
tunneling matrix element between the impurity and the bath.
We take the limit U → ∞, so that a double occupancy
of the level is suppressed, and assume a hybridization
density of states �(ε) ≡ 2π

∑
k |Vk|2δ(ω − εk) =

�dot/(e10(ε/D−1) + 1)(e−10(ε/D+1) + 1) which is constant (�dot)
below a smooth high-energy cutoff D. (In the following, D/4
and 4h̄/D set the unit of energy and time, respectively.) The
Kondo temperature of the model depends exponentially on the
position of the level TK = De−π |εf |/�dot . The Green’s functions
Gf (t,t ′) = −i〈TCf (t)f †(t ′)〉 at the impurity site is obtained
within the time-dependent noncrossing approximation [34],
using the implementation described in Ref. [37].

Figure 3(a) shows the spectral function Af (ω) =
− 1

π
ImGret

f (ω + i0) of the impurity atom at equilibrium. The
Lorentz peak of width 1/�dot around ω ≈ εf represents
the broadened impurity level. For εf = −0.6 (TK ≈ 1/200),
a Kondo resonance develops at the Fermi energy, whose
width decreases proportionally to T for T � TK . Following
Ref. [34], we now compute the buildup of the Kondo effect
after the system is suddenly brought into the Kondo regime,
by a shift of εf from a value ε0 = 2, for which the dot is
basically empty, to the final value ε1 = −0.6 [38]. This may
be thought of as a simplified representation of an experiment
in which the orbital energy is suddenly shifted due to a core
hole excitation. Figure 3(b) shows the photoemission intensity
from the impurity level [Eq. (1)], obtained with a Gaussian
probe s(t) = exp(−t2/2�t2) with duration �t = 50, which is
just long enough to resolve the final Kondo peak in frequency
space [the bandwidth of the pulse is represented by the dotted
line in Fig. 3(a)]. The buildup of spectral weight at ω = 0 can
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FIG. 3. (a) Spectral function of the Kondo model (�dot = 0.6)
for various inverse temperatures β at εf = −0.6 (TK ≈ 1/200) and
εf = −2 (TK ≈ 10−9). The dotted and dashed lines respectively show
the power spectrum ∝ exp(−ω2�t2) of Gaussian pulses with �t =
50 and �t = 2 for comparison. (b) Time-resolved photoemission
spectrum I (E,tp) with a Gaussian probe of �t = 50. At t = 0, εf

is switched from 2 to −0.6, the temperature is T = 1/80. The probe
time is varied in steps of �tp = 7. The bold line corresponds to tp = 0.
(c) Photoemission intensity at E = 0, obtained with different probe
duration �t . Lines are fits with an error function profile, a erf[(t −
b)/�t] + c. (Inset) S(t,t ′) for �t = 50.

almost perfectly be fitted by an error function erf with rise time
�t [cf. Fig. 3(c)]. This means that the buildup of the peak is
resolution limited, consistently with Ref. [34]. With very short
pulses �t < 1/�dot the signal would no longer be temporally
resolution limited (because 1/�dot ≈ 3.6 sets the relaxation
time of the impurity occupation, which is proportional to
the total spectral weight), but such broadband pulses would
completely wash out the Kondo peak.

B. Buildup of the Kondo resonance:
double probe photoemission

In spite of the uncertainty limited buildup of the Kondo
peak, as measured via a standard photoemission experiment,
an analysis of the Green’s function in real time can reveal the
underlying fast time scale. Figure 4 shows |G<

f (t,t + s)| =
|〈f †(t + s)f (t)〉| for fixed t as a function of difference time s,
corresponding to the hypothetical direct measurement of the
decay of a hole on the impurity after it is created at time t . The
fast initial drop at s � 10 corresponds to the Fourier transform
of the bare energy level, while the slow exponential decay at
large s is related to the Kondo resonance. After the quench
of the impurity level, we find that the equilibrium Kondo
response is almost completely formed on a time scale 1/�dot,
as soon as the population nf (t) = |G<

f (t,t)| on the impurity is
equilibrated. The same information is seen quantitatively from
the inset in Fig. 4, which shows the relative difference between
|G<

f (t,t ′)| and the equilibrated value reached for large times,
|G<

eq(t − t ′)|.
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FIG. 4. Real-time Green’s function |G<
f (t,t + s)| for the same

parameters as in Fig. 3(b). The bold black line corresponds to the
equilibrium result |G<

eq(t)| for εf = −0.6 and T = 1/80. (Inset)
Relative difference (|G<

f (t,t ′)| − |G<
eq(t − t ′)|)/|G<

eq(t − t ′)|.

The particular structure of the inset in Fig. 4 can be seen
as the real-time fingerprint that the relevant dynamics in the
system occurs on time scales below the spectral uncertainty
limit: If G<(t,t ′) at given s = t − t ′ equilibrates on a time
scale τs � s, this process cannot be resolved with a Gaussian
probe pulse, because for sufficient time-resolution �t < τs

only the Green’s function close to the t = t ′ diagonal (|t −
t ′| � �t) contributes to the photoemission signal [see the inset
of Fig. 1(b)]. In contrast, the double-pulse technique (Sec. II B
and inset of Fig. 2) is well suited to measure |G<(t,t ′)| at
t − t ′ � �t , i.e., well off from the diagonal.

In order to illustrate the main steps to be performed, we
plot in Fig. 5(a) the result of a photoemission experiment
with a double pulse [Eq. (3)] with time resolution �t = 2,
and t0 = 20, i.e., with pulses separated by 2t0 = 40. If we
consider a Kondo peak of 20 meV in width, in physical units
of time and energy, this setting would correspond to probe
pulses of duration �t 
 12 fs and separated by 2t0 
 240 fs.
As in the ideal case [Eq. (5)] of ultra-short pulses, the signal is
a superposition of an oscillating component ∝ sin(2Et0 + ϕ)
due to the interference signal produced by the two probe pulses
and a smooth background from the photoemission due to the
individual pulses. For finite �t , the contributions have a finite
width 1/�t in energy space [39] but they can nevertheless
be separated by means of a Fourier transform of the signal
with respect to E [Fig. 5(b)], provided that �t < t0, i.e., that
the two probe pulses are separated in time. (Alternatively,
the background may also be determined independently by
averaging over the phase ϕ, which can be shifted by changing
the relative carrier envelope phase of the two probes.) This
choice of t0 allows to track the slow exponential decay of
|G<(t,t + s)| (see dash-dotted lines in Fig. 4), which is related
to the Kondo peak. To study its dynamics in this simple case,
it is therefore not necessary to perform the full tomographic
measurement, but it is sufficient just to vary tp at fixed t0. In
this way, the interference signal measures |G(tp + t0,tp − t0)|.
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FIG. 5. (a) Photoemission signal I (E,tp) obtained with a double
pulse [Eq. (3)] for the same parameters as in Fig. 3(b). The individual
pulses are separated by t0 = 20 and have a Gaussian envelope with
duration �t = 2. The black line shows the interference contribution
[cf. Eq. (4)]. (Inset) S(t,t ′) for the double pulse. (b) Fourier transform
of the signal, Ĩ (τ,tp) = ∫

dEeiEτ I (E,tp). (c) Fourier component of
Ĩ (τ,tp) = ∫

dEeiEτ I (E,tp) at τ = 2t0 (black line) and τ = 0 (red
line), with normalized intensity.

The rapid increase of the amplitude of the oscillating signal
around tp = t0 [Fig. 5(c)] is an evidence of the characteristic
fast relaxation dynamics in the Kondo problem (rise time of
the black curve in Fig. 5). This demonstrates how the double
probe scheme allows to analyze the relevant dynamics (the
buildup of Kondo screening) with arbitrary temporal resolution
[Fig. 5(c)], not limited by the inverse width of the Kondo
peak.

C. Melting of Mott gaps and amplitude
mode in a superconductor

The tomographic double probe scheme (Fig. 2) could also
be used to address other questions. How fast can a Mott
gap be melted? What is the dynamics of the condensate
of a superconductor when the Higgs mode is excited? The
true time scales of the destruction of electronic order in
systems with charge density waves has not been clearly
resolved as, for example, in the Mott-Peierls charge density
wave 1T -TaS2 dichalcogenide. Recent experiments [6,15]
have determined that, while the lattice charge ordering is
destroyed on the time scale of the relevant lattice mode,
the electronic order is destroyed quasi-istantaneously on a
resolution-limited time scale. Improving the temporal reso-
lution in standard time-resolved photoemission experiments
would unavoidably bring a worse spectral resolution, which is
however important to resolve the dynamics of splitted bands.
The double probe scheme would instead allow to access the
true time scale of the process without giving up the spectral
resolution.

Attention has also been dedicated to the excitation of the
Higgs mode in BCS superconductors, such as Nb1−xTixN
thin films [11,12,16]. After the excitation with monocyclelike

THz pulses, the transmittivity of the sample in the terahertz
range oscillates at the frequency 2�BCS, as predicted for
the excitation of the Higgs amplitude mode. Oscillations
of the gap of a superconductor at its own frequency fall
under the dynamics occurring at the spectral uncertainty limit.
Photoemission with the tomographic double probe scheme is
therefore a potential way to characterize the dynamics without
the energy-time uncertainty limitation. As the lesser Green’s
function for laser-excited superconductors has been calculated
theoretically, it would be interesting to evaluate the spectro-
scopic signature of the Higgs oscillations within the two-probe
technique, and thus stimulate corresponding experiments.

IV. CONCLUSIONS

In conclusion, we have analyzed possibilities to use time-
resolved photoemission spectroscopy as a tool to probe the
evolution of the electronic structure fully in the time domain.
Whenever relevant degrees of freedom evolve on time scales
comparable to or faster than the inverse width of their
spectral signatures, such a pure real-time characterization
can provide more insight than a measurement in the usual
mixed time-frequency domain, which requires a tradeoff
between temporal and spectral resolution. In particular, we
proposed a double probe pulse technique, which can be used
to probe the dynamics of low-energy degrees of freedom with
arbitrarily short pulses, possibly in the attosecond range, with
a bandwidth that would not be able to resolve the respective
linewidths in frequency space if the pulses were taken
alone.

The case of dynamics occurring beyond the spectral uncer-
tainty limit is actually a quite common feature of correlated
systems. As examples, we discussed the buildup of the Kondo
resonance, the melting of a Mott gap, and the dynamics of a
superconductor when the amplitude mode is excited. Further
examples include the melting of other types of electronic
order such as spin-density wave gaps [40] and the buildup
of screening and plasmon resonances (in optics, the plasmon
resonance at ωp forms on a time scale 1/ωp [41]).

Moreover, the use of quantum or statistical correlations in
the light pulse would enhance the possibilities to characterize
the dynamics with a time-resolved photoemission experiment.
While this may seem technologically challenging at present,
it contributes to the questions whether correlations of light
can be exploited to enhance, in a similar way, the capabili-
ties of time-dependent measurements in other spectroscopic
techniques, such as two-photon photoemission or optical
spectroscopy.
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APPENDIX A: THEORY OF TIME-RESOLVED
PHOTOEMISSION SPECTROSCOPY WITH

NONCLASSICAL LIGHT PULSES

To describe the photoemission process, we start from a
general Hamiltonian

H = Hmatter + Hem + Hint, (A1)

where Hmatter describes both the solid and the outgoing electron
states, Hem is the free Hamiltonian for the electromagnetic
field, and Hint the interaction between matter and the radiation
field. The interaction Hamiltonian for light and electrons with
charge −e is given by [30]

Hint = H
(1)
int + H

(2)
int , (A2)

H
(1)
int = eh̄

mc

∫
d3x ψ̂(r)†

[
Â(r) · 1

i
∇

]
ψ̂(r), (A3)

H
(2)
int = e2

2mc2

∫
d3x ψ̂(r)† Â(r)2 ψ̂(r), (A4)

where Â(r) is the operator for the vector potential, and ψ̂(r)
is the fermion field operator. Here and in the following we
suppress the spin index. We expand the light-field in modes
with wave vector q and polarization λ,

Hem =
∑
q,λ

h̄ωq â
†
q,λâq,λ, (A5)

so that the vector potential in Coulomb gauge (∇ · A = 0) is
given by

Â(r) = Â
+

(r) + Â
−

(r), (A6)

Â
+

(r) = Â
−

(r)† =
∑
q,λ

Aq ε̂q,λâq,λe
iqr−iωq t , (A7)

where ε̂q,λ are unit vectors with q · ε̂q,λ = 0, and

Aq =
√

h̄

2V ε0ωq
. (A8)

Furthermore, we expand the matter field in a suitable basis:

ψ̂(r) =
∑

k

φk(r)f̂k +
∑

α

χα(r)ĉα, (A9)

where the index α refers to bound states (e.g., localized atomic
wave functions or delocalized states in the solid), and k labels
unbound states (outgoing waves) with asymptotic behavior
φk(r) ∼ eikr/

√
V and energy Ek = h̄2k2/2m + W (energies

are considered with respect to the Fermi energy, and W is the
work function). The photoemission experiment measures the
number of electrons that, under the effect of the light-matter
interaction, are emitted into an initially unoccupied outgoing
mode k, i.e., the occupation probability 〈n̂k〉 = 〈f̂ †

k f̂k〉,
Ik = 〈nk(t)〉t→∞ = 〈U(t,t0)† nk U(t,t0)〉0. (A10)

Here, U(t,t ′) = Tt exp[−i
∫ t

t ′ dt̄H (t̄)] is the time-evolution
operator, and 〈· · · 〉0 = Tr[ρ0 · · · ] denotes the expectation
value in the initial state ρ0 for t0 → −∞, in which light and
matter are uncorrelated and 〈n̂k〉0 = 0 for all k.

The probability (A10) is computed in standard second-
order time-dependent perturbation theory. We include all
the nonperturbative processes that drive the system out-of-
equilibrium (i.e., the pump pulse) in the time dependence of
Hmatter(t), and switch to the interaction representation with
respect to Hmatter(t), so that the time dependence of the
operators is understood with respect to the uncoupled evolution
U0(t,t0) = Tt exp[−i

∫ t

t0
dt̄Hmatter(t̄)]. The full time-evolution

operator is expanded as

U(t,t0) = U0(t,t0)

(
1 − i

∫ t

t0

dt1Hint(t1)

−
∫ t

t0

dt1

∫ t1

t0

dt2Hint(t1)Hint(t2) + · · ·
)

. (A11)

Because fk gives zero when acting on ρ0 = 0, the only
nonvanishing contributions to Eq. (A10) up to second order
in the probe field are

Ik = lim
t→∞

∫ t

t0

dt1dt2
〈
H

(1)
int (t1) n̂k(t) H

(1)
int (t2)

〉
0. (A12)

To further simplify this expression, we rewrite H
(1)
int using the

expansion (A9),

H
(1)
int = eh̄i

mc

∑
k,α,j

f
†
k cα

∫
d3rAj (r)φk(r)∗∇j

r χα(r) + H.c.,

(A13)

where the sum over Cartesian components j is made explicit.
In this expression, we have kept only terms containing mixed
products f

†
k cα and c†αfk, which induce transitions between

bound states and outgoing states. Terms proportional to c
†
α′cα

or f
†
k′fk give no contribution in the expectation value (A12),

as in this case an annihilation operator fk would act on
the initial state, which does not have any outgoing electron.
To simplify the notation, we will assume linearly polarized
light in the following, so that A(r,t) and ∇ are understood
as the components in the direction of the polarization. It is
straightforward to reinsert the sums over cartesian components
below. Inserting equation (A13) in equation (A12), we thus
have

Ik =
∫

d1d2

(
eh̄

mc

)2

χ (1)∗ ∇1φ(1) χ (2) ∇2φ(2)∗

× 〈Â(1) ĉ(1)† f̂ (1) n̂k(t) f̂ (2)† ĉ(2) Â(2) 〉0, (A14)

with a combined notation for indices 1 ≡ (t1,r1,α1,k1),∫
d1 = ∫ t

t0
dt1

∫
d3r1

∑
k1,α1

, χ (1) = χα1 (r1), φ(1) = φk1 (r1),

Â(1) = Â(r1,t1), f̂ (1) = f̂k1 (t1), ĉ(1) = ĉα1 (t1), and ∇1 = ∇r1

(acting on r1).
The expectation value in the above integral can be factorized

in a two-time correlation function of the field and a three-time
correlation function of the electrons. To reduce the expression
to the single particle properties of the solid alone, one
commonly neglects the interaction of the outgoing electrons
with the electrons within the solid. This so-called sudden
approximation implies that the electronic correlation function
factorizes in outgoing and bound state, so that the expectation
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value in (A14) is given by the product of

〈f̂ (1)n̂k(t)f̂ (2)†〉0 = ei(t2−t1)Ekδk2,kδk1,k , (A15)

the lesser Green’s function

〈ĉ(1)†ĉ(2)〉0 = −iG<(2,1) = −iG<
α2α1

(t2,t1), (A16)

and the light field correlation function


(1,2) = 〈: Â(1)Â(2) :〉0. (A17)

Here, : B̂ : is the normal ordering, whose effect is to
bring all annihilation operators to the right. The difference
〈Â(1)Â(2)〉0 − 〈: Â(1)Â(2) :〉0 is the vacuum expectation value
of 〈Â(1)Â(2)〉0 (a pure number). Since we do not expect
spontaneous photoemission from vacuum fluctuations, we can
omit these terms.

As a further simplification, we assume that the propagation
time δt = L/c of light through the probed volume is small
compared to the pulse duration �t . Technically, the mode
frequencies in the pulse are distributed around some large
carrier frequency � and wave vector q0, with widths �ω and
�q = �ω/c, respectively. We can then factor out this main
carrier wave vector and set

Â
±

(r) ≈ e±iq0 r Â
±

(r = 0), (A18)

(with the probe volume centered at r = 0), provided that
L�q � 1, which is indeed equivalent to δt � �t because
�t ≈ 1/�ω. The approximation can be systematically im-
proved, but, like any precise treatment of matrix elements,
it would not alter the general discussion of the properties of
time-resolved photoemission. Furthermore, the approximation
is exact for a pointlike object, like an atom on a surface, or
a thin layer. With these considerations and Eq. (A6), we can
write the light correlation function as


(1,2) ≈
∑

σ1,σ2=±
eiσ1q0 r1eiσ2q0 r2
σ1,σ2 (t1,t2), (A19)

with 
σ1,σ2 (t1,t2) = 〈 : Âσ1 (t1,0)Âσ2 (t2,0) : 〉0. Furthermore, it
is useful to factor out the carrier frequency �:


σ1,σ2 (t1,t2) ≡ e−i�(σ1t1+σ2t2)Sσ1,σ2 (t1,t2). (A20)

The time-dependent part of the integral (A14) is then written
by

∑
σ1,σ2=±

(−i)
∫ t

t0

dt1dt2 G<
α2α1

(t2,t1)Sσ1σ2 (t1,t2)

× ei(t2−t1)Ekei�(σ1t2+σ2t1).

For large carrier frequency, only the term (σ1,σ2) = (−,+)
with exponential factor ei(�−Ek)(t1−t2) will survive the in-
tegration. For all the other combinations of σ1 and σ2,
the exponent contains counter-rotating terms which oscillate
quickly compared to the time-dependence of G and S, thus
vanishing upon integration. The final result is

Ik =
∑
αα′

p∗
q0,k,αpq0,k,α′

×
∫

dtdt ′ei(t−t ′)(Ek−�)(−i)G<
αα′ (t,t ′)S(t,t ′), (A21)

where pq0,k,α are matrix elements between the bound and
outgoing states,

pq0,k,α =
∫

d3r eiq0 rχα(r)∇φk(r)∗, (A22)

and

S(t,t ′) = ei�(t ′−t)
∑
q1,q2

Aq1Aq2e
iωq1 t−iωq2 t ′ 〈a†

q1
aq2〉0

= ei�(t ′−t) Tr(ρ A−(t)A+(t ′)) (A23)

as in Eq. (8) of the main text. For a coherent
state the expectation value factorizes, so that S(t,t ′) =
e−i�t 〈
|A−(t)|
〉〈
|A+(t ′)|
〉ei�t ′ ≡ s(t)s(t ′)∗ and A(t) =
〈
|A−(t)|
〉 + 〈
|A+(t)|
〉 = s(t)ei�t + s(t)∗e−i�t .

APPENDIX B: PULSE CORRELATION
FOR A MULTIMODE SQUEEZED STATE

As an illustration of S(t,t ′) for more general states with
Gaussian Wigner function, we now evaluate Eq. (A23) for a
multimode squeezed vacuum |
〉 = Q†|0〉, with the squeezing
operator

Q = exp

[
1

2

∑
ωω′

Rω,ω′a†
ωa

†
ω′ − H.c.

]
. (B1)

The squeezing matrix R is symmetric in frequency space, but
not necessarily Hermitian. (We switched between frequency
and momentum labels ω = cq because light is propagating on
one axis only.) We evaluate Eq. (A23) in the frequency domain,
i.e., we compute

Sω,ω′ =
∫

dtdt ′e−iωtS(t,t ′)eiω′t ′ . (B2)

For simplicity, we set the energy shift � = 0 in the following.
Inserting Eq. (A23) in (B2), we obtain

1

(L/c)2
A−1

ω Sω,ω′A−1
ω′ = 〈
|a†

ωaω′ |
〉. (B3)

The prefactor is the normalization volume, with∫
dtei(ω−ω′)t = (L/c)δω,ω′ . To evaluate the expectation

value 〈
|a†
ωaω′ |
〉, we use the commutator relation

eABe−A = B + [A,B] + 1
2! [A,[A,B]] + ... to obtain the

general identity [30],

QaωQ† =
∑
ω′

Cω,ω′aω′ −
∑
ω′

Sω,ω′a
†
ω′ , (B4)

with the functions

C =
∞∑

n=0

(RR†)n

(2n)!
, S =

∞∑
n=0

R(R†R)n

(2n + 1)!
. (B5)

(For a single mode and R = |r|eiθ ∈ C, the two functions
correspond to the the hyperbolic functions C = cosh |r| and
S = eiθ sinh |r|.) In the expectation value 〈0|Qa†

ωaω′Q†|0〉,
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we thus get, dropping the terms a|0〉,
〈0|Qa†

ωaω′Q†|0〉 = 〈0|Qa†
ωQ†Qaω′Q†|0〉 (B6)

=
∑
ω1,ω2

S∗
ω,ω2

Sω′ω1〈0|aω2a
†
ω1

|0〉 (B7)

= (SS†)ω′,ω, (B8)

which together with Eq. (B3) concludes the determination of
Sω,ω′ .

More interestingly, we can use Eqs. (B3) and (B8) to
prove the statement, given in the main text, that any desired
correlation function Sω,ω′ [or S(t,t ′)] can be, in principle,
obtained from a single light pulse, provided that the matrix

Sω,ω′ is (i) Hermitian and (ii) positive definite. Conditions (i)
and (ii) imply that the matrix Mω,ω′ ≡ 1

(L/c)2 A−1
ω Sω,ω′A−1

ω′ in

Eq. (B3) can be diagonalized, M = V dV †, where d is diagonal
with dαα � 0. The latter implies that the choice

R = V asinh(
√

d)V ∗, (B9)

with (V ∗)ω,ω′ = V ∗
ω,ω′ , is a well-defined symmetric matrix.

Using Eqs. (B5) and (B8), one can then directly verify that
Eq. (B3) is satisfied, i.e, the squeezed vacuum Eq. (B1) with
the squeezing matrix (B9) gives the desired cross-correlation
Sω,ω′ .
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