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Interplay between d-wave superconductivity and a bond-density wave in the one-band
Hubbard model
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It is now well established that superconducting cuprates support a charge-density-wave state in the so-called
underdoped region of their phase diagram. We investigate the possibility of charge order in the square-lattice
Hubbard model, both alone and in coexistence with d-wave superconductivity. The charge order has a period of
4 in one direction, is centered on bonds, and has a d form factor. We use the variational cluster approximation, an
approach based on a rigorous variational principle that treats short-range correlations exactly, with two clusters
of size 2 × 6 that together tile the infinite lattice and provide a nonbiased unit for a period-4 bond-density wave
(BDW). We find that the BDW exists in a finite range of hole doping and increases in strength from U = 5
to U = 8. Its location and intensity depend strongly on the band dispersion. When probed simultaneously with
d-wave superconductivity, the energy is sometimes lowered by the presence of both phases, depending on the
interaction strength. Whenever they coexist, a pair-density wave (a modulation of superconducting pairing with
the same period and form factor as the BDW) also exists.
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I. INTRODUCTION

Charge order in underdoped superconducting cuprates has
been observed by many techniques and in many compounds.
Nuclear magnetic resonance measurements on YBa2Cu3Oy

indicate the presence of a long-range, static charge order
without any signature of spin order [1,2]. In Bi2Sr2CaCu2O8+δ ,
scanning tunneling microscopy (STM) shows a periodic
modulation in the density of states [3,4]. Charge-density-wave
correlations have also been observed in x-ray scattering [5–7],
and the charge-density wave seems to be directed along copper
oxygen bonds [8]. STM measurements also indicate that the
charge-density-wave modulation resides on Cu-O-Cu bonds
[4,9,10]. The dependence of the peak intensity as a function of
magnetic field clearly indicates the possibility of a competition
between d-wave superconductivity and charge-density-wave
order [7]. More recently, the pair-density wave (PDW) that
coexists with d-wave superconductivity and charge order has
also been observed [11].

Theoretical investigations of charge order in cuprates
roughly fall into two categories: (i) those that study the
effect of static charge order on observables and (ii) those
that attempt at explaining the origin of charge order from a
model Hamiltonian with interactions. This work belongs to
the second category. A few attempts have been made in that
direction in the literature. For instance, Vojta [12] applied
mean-field theory to the t-J model plus extended interactions
and mapped out various charge-order phases that appear
when J is low enough, whereas d-wave superconductivity
dominates at higher J . A pure exchange model (without
correlated hopping) has also been studied at the mean-field
level by Sachdev and La Placa [13]. Atkinson et al. applied
the generalized random-phase approximation to the full three-
band Hubbard model [14] and view charge order, like the
pseudogap, as a side effect of short-range antiferromagnetic
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correlations. The Gutzwiller approximation was applied to
the Hubbard model (without extended interactions) but no
charge order was found with that approach [15]. Renormalized
mean-field theory (based on the Gutzwiller approximation)
applied to the t-J model indicated that a large variety of nearly
degenerate spin- and charge-order states may coexist with
d-wave superconductivity [16,17]. Charge order at half filling
in the extended Hubbard model was recently investigated with
the dynamical cluster approximation [18], where it should be
competition with antiferromagnetism. That competition was
also studied in the context of the Hubbard-Holstein model
[19], in which optical phonons would favor charge order over
antiferromagnetism.

There is also a vast literature on stripe order, i.e., a
coexistence of charge- and spin-density waves, which we
do not review here. Let us mention nonetheless the work of
Corboz et al. [20] in which the nearest-neighbor t-J model
is studied using the projected-entangled pair states (PEPS)
variational ansatz, and where stripe order occurs naturally in
coexistence with d-wave superconductivity. This is consistent
with the previous work of Capello et al. [21] on the same model
using the variational Monte Carlo approach. Finally, the PDW
state has been the focus of many studies [22–26] (for a recent
review, see Ref. [27]).

In this work we investigate whether a particular charge-
density-wave (CDW) order can arise from local repulsive
interactions alone, and whether it can coexist with d-wave
superconductivity. To this end, we apply the variational cluster
approximation (VCA) [28–30] to the one-band repulsive
Hubbard model. The charge-density wave studied is bond
centered, has a d-wave form factor, and is henceforth referred
to as a bond-density wave (BDW). The VCA, and other
quantum cluster methods such as cluster dynamical mean-field
theory [31,32] and the dynamical cluster approximation [33]
already predict the presence of d-wave superconductivity in
the doped one-band Hubbard model [34–36]. We find that a
bond-density wave is indeed possible in the doped Hubbard
model and that this phase is more robust when increasing
the interaction strength U . Its location is also sensitive to the
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FIG. 1. Bond-density-wave pattern studied in this work. Blue
means positive, red negative, and gray zero.

detailed band structure. In addition, we find that the BDW can
coexist with d-wave superconductivity (dSC), although both
the dSC and BDW order parameters are negatively affected by
their coexistence. A PDW order also sets in when BDW and
dSC orders coexist.

This paper is organized as follows: in Sec. II, we describe
the particular BDW studied and briefly review the VCA
method; in Sec. III, we present and discuss our numerical
results. Finally, we conclude in Sec. IV.

II. MODEL AND METHOD

Let us first establish some notation. The one-band Hub-
bard model on a square lattice is defined by the following
Hamiltonian:

H = −t
∑

〈r,r′〉,σ
c†r,σ cr′,σ + U

∑
r

nr,↑nr,↓ − μ
∑
r,σ

nr,σ , (1)

where cr,σ destroys an electron of spin σ at site r on the lattice;
nr,σ = c

†
r,σ cr,σ is the number of electrons of spin σ at site r.

The chemical potential μ is included in the Hamiltonian for
convenience.

Following Ref. [37], a general BDW operator of wave
vector q is defined as follows:

�̂BDW =
∑
rσ,a

tq,ac
†
r,σ cr+a,σ ei(q·r+a/2) + H.c. (2)

We probe a BDW of period 4, with d-wave form factor:
q = (π/2,0), with tq,ŷ = −tq,x̂ ≡ −1/

√
2. The d-wave form

factor is supported by STM observations [38]. The period 4
is also supported by STM data [3], but generally an inverse
period somewhere between 0.25 and 0.3 is reported. This
BDW is illustrated in Fig. 1. This choice is motivated by its
simple commensurability and its compatibility with the cluster
method we use, as explained below.

We also probe d-wave superconductivity, with a pair
operator defined as

�̂dSC =
∑

r,a=x̂,ŷ

�a(cr,↑cr+a,↓ − cr,↓cr+a,↑) + H.c., (3)

where �x̂ = 1 and �ŷ = −1. If both superconductivity and
charge order are present, the pair-density wave (singlet) order
parameter

�̂PDW =
∑
r,a

tq,a(cr,↑cr+a,↓ − cr,↓cr+a,↑)ei(q·r+a/2) + H.c.

(4)

should also be nonzero.

The variational cluster approximation

In order to probe the possibility of superconductivity and
bond-density wave as well as their coexistence in model (1),
we use the VCA with an exact diagonalization solver at
zero temperature [29]. This method, which goes beyond
mean-field theory by keeping the correlated character of
the model, has been applied to many strongly correlated
systems in connection with various broken-symmetry phases,
in particular d-wave superconductivity [34,39]. For a detailed
review of the method, see Refs. [40,41].

In essence, the VCA is a variational method on the electron
self-energy. It can probe various broken symmetries (or just
the normal state) by exploring a space of self-energies that
are the actual self-energies of model (1), but restricted on
a small cluster of sites and augmented by Weiss fields that
probe broken symmetries and other one-body terms. Once the
optimal self-energy in that space is found, it is added to the
noninteracting Green function for the full lattice and, from
there, various observables may be computed.

Like other quantum cluster methods, VCA starts by a tiling
of the lattice into an infinite number of (usually identical)
clusters. In VCA, one considers two systems: the original
system described by the Hamiltonian H , defined on the infinite
lattice, and the reference system, governed by the Hamiltonian
H ′, defined on the cluster only, with the same interaction part as
H . Typically, H ′ will be a restriction of H to the cluster (i.e.,
with intercluster hopping removed), to which various Weiss
fields may be added in order to probe broken symmetries.
More generally, any one-body term can be added to H ′. The
size of the cluster should be small enough for the electron
Green function to be computed numerically.

The optimal one-body part of H ′ is determined by a
variational principle. More precisely, the electron self-energy
� associated with H ′ is used as a variational self-energy, in
order to construct the following Potthoff self-energy functional
[42]:

�[�(ξ )] = �′[�(ξ )] + Tr ln[−(
G−1

0 − �(ξ )
)−1

]

− Tr ln(−G′(ξ )). (5)

The quantities G′ and G0 above are respectively the physical
Green function of the cluster and the noninteracting Green
function of the infinite lattice. The symbol ξ stands for a small
collection of parameters that define the one-body part of H ′.
Tr is a functional trace, i.e., a sum over frequencies, momenta,
and bands, and �′ is the grand potential of the cluster, i.e., its
ground-state energy, since the chemical potential μ is included
in the Hamiltonian. G′(ω) and �′ are computed numerically
via the Lanczos method at zero temperature.

The Potthoff functional �[�(ξ )] in Eq. (5) is computed
exactly, but on a restricted space of the self-energies �(ξ ) that
are the physical self-energies of the reference Hamiltonian
H ′. We use a standard optimization method (e.g., Newton-
Raphson) in the space of parameters ξ to find the stationary
value of �(ξ ):

∂�(ξ )

∂ξ
= 0. (6)

This represents the best possible value of the self-energy �,
which is used, together with the noninteracting Green function
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FIG. 2. The two 12-site clusters used in this work (black dots)
with the BDW amplitudes (blue, positive; red, negative). These two
clusters together form a unit that is repeated in both x and y directions.
Note that changing the sign of the BDW amounts to interchanging
the two clusters or to flipping each cluster about the vertical axis.

G0, to construct an approximate Green function G for the
original lattice Hamiltonian H :

G(k,ω) = 1

G−1
0 (k,ω) − �(ω)

. (7)

In the above the wave vector k is restricted to the reduced
Brillouin zone associated with the superlattice defined by the
cluster, and all boldface quantities are matrices of dimension
L (or 2L, if superconductivity is present), L being the number
of sites in the cluster. From that Green function one can
compute the average of any one-body operator, in particular
order parameters associated with BDW or dSC.

The competition between orders can be studied by probing
the two orders separately, and then together, in a coexistence
scenario. If homogeneous coexistence is possible, then gen-
erally the associated value of �, which approximates the free
energy in this approach, is lower than for the pure solutions
for the two phases separately.

Charge-density waves, or other states that break translation
symmetry, present a particular challenge to cluster methods
like VCA, first because the unit cell of the density wave
may be larger than the largest cluster that can be practically
solved numerically, and second because cluster methods break
translation symmetry from the outset. The first difficulty is
solved by aggregating different clusters that together form
a “supercluster” (or repeated unit) that tiles the lattice and
that accommodates the charge-density wave. To overcome the
second difficulty, one has to choose the clusters in such a way
that the method is not biased towards the broken-symmetry
state. In other words, if λ and � are the amplitudes of the
Weiss fields associated with the BDW and dSC, respectively,
then the Potthoff functional �(λ,�) should be an even function
of λ and �. Thus, the normal solution (λ = � = 0) is always
an option and the broken-symmetry state occurs if a nontrivial
solution exists with a lower value of �. In this work, we use the
two 12-site clusters shown in Fig. 2; the amplitudes of the bond
charges in the particular BDW studied are indicated by colored
circles. Together, these two clusters form a supercluster that
contains three unit cells of the BDW. Changing the sign of
the BDW amounts to flipping each cluster horizontally, which
does not affect the value of �(λ,�).

We give a few words on the computation of expectation
values. The average of any one-body operator can be computed
from the VCA solution in two different ways: (i) by taking its
trace against the Green function or (ii) by differentiating the
grand potential with respect to an external field. Let sαβ be the
one-body matrix defining the operator Ŝ, such that

Ŝ =
∑
α,β

sαβc†αcβ (8)

(α and β are compound indices, representing the site together
with spin or other band indices). In a cluster approach, a partial
Fourier transform can be applied to the site indices in sαβ to
produce a reduced expression sαβ(k), where k belongs to the
reduced Brillouin zone and the site indices are now limited to
those of the repeated unit (the “supercluster”). In this language,
the expectation value of Ŝ may be evaluated as

〈Ŝ〉 =
∫

dω

2π

∫
rBZ

d2k

(2π )2
tr[s(k)G(ω,k)], (9)

where the frequency integral is taken over a contour that
circles the negative real axis, targeting the occupied states
only. Alternatively, one may add an external field sŜ to the
lattice Hamiltonian, compute the best estimate of the grand
potential � for s = 0 and s = ε (i.e., the optimized self-energy
functional), and compute the derivative

〈Ŝ〉 = ∂�

∂s
≈ �(ε) − �(0)

ε
. (10)

The two approaches (9) and (10) do not necessarily yield the
same answer (the first one is less computationally intensive). In
the case of a local operator, like the particle number N̂ , which
does not contain intercluster components, it can be shown
that the two approaches will yield the same value n = 〈N̂〉
if the corresponding Weiss field on the cluster (in this case
μ′, the cluster’s chemical potential) is treated as a variational
parameter on the same level as the others (e.g., λ and �).

III. RESULTS AND DISCUSSION

In this section we report the results of VCA calculations
on model (1) at various values of the interaction U and for a
few band parameters. Since the simulations are somewhat time
consuming, we could not explore the space of parameters in
extenso, but our results illustrate how a bond-density wave can
arise at finite doping in the presence of repulsive interactions,
and in coexistence with d-wave superconductivity also arising
from the same interaction.

A. Pure bond-density wave

We start by probing a pure BDW, without superconductiv-
ity. In VCA, this amounts to solving the following Hamiltonian
on the cluster system of Fig. 2:

H ′ = H ′
0 + λ�̂ ′

BDW, (11)

inserting the computed Green function into the expression (5)
for the Potthoff functional, and finding the value of λ that
minimizes the functional. In the above expression, H ′

0 and
�̂ ′

BDW are the restriction to the cluster of the kinetic energy
operator and of the BDW operator (2), respectively. The
coefficient λ was the only variational parameter used in
optimizing the functional �. At this point, we have neglected
the possible interaction with superconductivity. We comment
on the interaction with antiferromagnetism towards the end of
this section.

Figure 3(a) shows the optimal value of the Weiss field λ

as a function of chemical potential μ, for a few values of the
local repulsion U , and for second-neighbor hopping t ′ = −0.3
and third-neighbor hopping t ′′ = 0 and t ′′ = 0.2. Note that the
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FIG. 3. (a) Optimal value of the Weiss field λ for the pure BDW
phase as a function of chemical potential μ for various values of the
interaction U and of the third-neighbor hopping t ′′, at t ′ = −0.3. The
Weiss field goes generally to zero at the edge of the BDW phase, with
the exception of (U,t ′′) = (8,0.2). Note the direction of the axis: larger
densities are on the left. (b) Corresponding BDW order parameter as
a function of hole doping δ = 1 − n (n being the electron density),
where n is computed from the Green function. (c) The same as in (b)
except that the electron density is computed from the derivative of
the grand potential � with respect to μ.

nearest-neighbor hopping t is set to unity and thus defines
the energy scale. These data constitute the “raw” solution
from VCA. It is more physically instructive to look at the
order parameter 〈�̂BDW〉 as a function of electron density n

(or doping δ = 1 − n), as is done in Figs. 3(b) and 3(c). We
show the raw data in Fig. 3(a) in order to shed some light on
the method itself.

Note that the transition from the BDW phase to the normal
phase can proceed in many ways: (i) the Weiss field λ can

0.00 0.05 0.10 0.15 0.20
λ

− 0.005

− 0.003

− 0.001

0.001

0.003

�
�λ
�

−
�
�0
�

U � 8

t � − 0.3

Μ � 1.74

Μ � 1.75

Μ � 1.77

Μ � 1.80

FIG. 4. Self-energy functional � as a function of Weiss field λ in
the study of pure BDW. Acceptable VCA solutions are indicated by
arrows. The data illustrate how the VCA solution may sometimes
disappear because of the “intrusion” of segments with different
behavior and the concomitant appearance of cusplike minima (top
curve), which are not acceptable solutions.

go to zero at the phase boundary (continuous transition)
or (ii) the solution can jump from a finite value of λ to
zero, either because the solution becomes metastable at that
point or because it ceases to exist (the derivative at the
minimum is no longer defined, i.e., the functional � acquires
a cusplike behavior). The latter type occurs in the figure
for (U,t ′′) = (8,0.2). Figure 4 illustrates this last point by
showing plots of �(λ) for a few values of μ. We see how the
smooth minimum (indicated by arrows) disappears at some
value of μ as �(λ) acquires nondifferentiable features. This
behavior is an occasional drawback of the method and is likely
dependent on the shape and size of the cluster, on the type
of Weiss field considered, etc. (We have checked that this
behavior is not caused by a sudden change in the cluster ground
state leading to a discontinuity in the cluster density.) In the
continuous case the order parameter goes to zero smoothly,
whereas it jumps discontinuously in the second case. A more
conventional first-order transition, in which two distinct bona
fide solutions have the same value of � at some value of an
external parameter, is also possible but has not been observed
here.

Figure 3(b) shows the BDW order parameter 〈�̂BDW〉 as
a function of hole doping, both computed from the Green
function [Eq. (9)], for the same data sets as those appearing in
Fig. 3(a). Figure 3(c) shows the same data, this time with the
density computed from the derivative of � with respect to μ.
The values of doping obtained by these two approaches differ
by roughly a factor of 2. Whatever the method of computing n,
it appears that the BDW is increasing in strength with U and
is also quite sensitive on the band dispersion; in particular, no
BDW order occurs at (U,t ′′) = (5,0.2).

An apparent way out of the ambiguity in the way to compute
electron density is to treat the cluster chemical potential μ′ as
a variational parameter, on the same level as the Weiss field λ.
When this is done, the data of Fig. 5 are obtained (this was done
for t ′ = −0.3 and t ′′ = 0 only). Figure 5(a) shows the Weiss
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FIG. 5. (a) Optimal value of the Weiss field λ for the pure BDW
phase as a function of chemical potential μ for various values of the
interaction U and t ′ = 0, this time by treating the cluster chemical
potential μ′ as a variational parameter as well. The dashed vertical
line indicates the chemical potential at which the free energy � of
the BDW solution crosses that of the pure antiferromagnetic solution
at U = 8 (the latter has a lower energy on the left of that line).
(b) Corresponding BDW order parameter as a function of doping δ.
This time, the two methods for computing the electron density are
consistent with one another. The Green curve shows the competing
pure antiferromagnetic (AF) order parameter at U = 8. The red
dashed line of (a) corresponds to the two red dashed lines (two
different dopings) shown here. The blue dotted line is the doping
beyond which the energy � + μn of the BDW solution at U = 8 is
lower than that of the AF solution.

field as a function of μ, and Fig. 5(b) shows the BDW order
parameter as a function of doping. Note that the Weiss field
tends to larger values on the overdoped side (smaller μ). This
leads us to think that the overdoped results are less reliable: the
“canonical” phase transition in VCA has the Weiss field go to
zero at the same time as the order parameter. A discontinuity
in the solution for U = 8, also mildly apparent at U = 6,
reinforces this point of view.

We also show, in Fig. 5, a comparison, at U = 8, between
pure antiferromagnetic (AF) and BDW solutions. The AF order
parameter is shown in Fig. 5(b) (green curve). The free energies
� of the two competing states cross at a value of the chemical
potential μ indicated by a red dashed line in Fig. 5(a). This
value of μ corresponds to two different values of the density
(or doping) in the two solutions, indicated by red dashed lines

in Fig. 5(b), and leaving a gap between them in which one
could theoretically expect a macroscopic coexistence (phase
separation) of the two states (ignoring the possibility of all
other states, of course). On the other hand, it is also possible
to compare the energies E = � + μn (n is the density) of the
two states, and the blue dotted line in Fig. 5(b) indicates the
doping beyond which the BDW state has a lower energy than
the AF state. For lower values of U , the AF state will stay
closer to half filling and the BDW states move away from half
filling, thus reducing the competition between the two. We
have not found any solution where the AF and BDW states are
in homogeneous coexistence.

To conclude this part, model (1) indeed supports a pure
bond-density wave as the particular one studied here, but the
VCA is not too reliable as to the precise doping range where
it occurs. The BDW appears quite sensitive to the dispersion
relation, as expected. It appears beyond a certain threshold
value of U and grows with U up to intermediate coupling.
It is not preempted by antiferromagnetic order. Note that the
d-wave form factor of the BDW is crucial. We have looked
for BDWs with an extended s-wave form factor (which differs
from the d-wave form factor only by the sign of the y bonds)
and did not find any nonzero solution (the Potthoff functional
has a minimum at a vanishing value of the Weiss field).

B. Bond-density wave and d-wave superconductivity

We now proceed to probe solutions in which dSC coexists
with the BDW. This is done by adding both BDW and
dSC terms, as defined by Eqs. (2) and (3), to the cluster
Hamiltonian:

H ′ = H ′
0 + λ�̂ ′

BDW + ��̂ ′
dSC. (12)

We start by studying the case with nearest-neighbor hopping
only (t ′ = t ′′ = 0), for U = 5 and u = 6. Figure 6 shows the
dSC and BDW order parameters both for the pure and the
coexistence solutions as a function of the hole doping δ [the
“pure” solutions are obtained by setting one of the Weiss fields
(λ or �) to zero]. The electron density was computed from the
Green function. The pure dSC solution exists in a large doping
interval, with a maximum at δ = 10%. Antiferromagnetic
order was not put in competition with dSC order, since we are
focusing on the interplay between dSC and BDW. The striking
effect shown here is that the interaction of the two phases tends
to suppress superconductivity at U = 6, whereas it tends to
suppress charge order at U = 5. The PDW order parameter is
also shown (orange dots). In this work a PDW Weiss field was
not used as a variational parameter. (That would have added to
the complexity and length of the computations.) But whenever
the BDW and dSC orders are both present, a nonzero PDW
amplitude is inevitable; i.e., it is not forbidden by symmetry.

Figure 7 shows results obtained with a more realistic band
dispersion (t ′ = −0.3), at U = 8. This time, the pure dSC
solution always has a lower energy than the pure BDW
solution, contrary to the solution found at (U,t ′) = (6,0).
Nevertheless, the coexistence solution has a lower energy than
the pure dSC solution from δ ∼ 9% on. We do not believe
the solutions beyond δ = 15% (not shown) to be reliable, as
they display the same type of discontinuity as shown in Fig. 5.
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FIG. 6. dSC and BDW order parameters as a function of hole
doping δ = 1 − n for U = 5 and U = 6 at t ′ = t ′′ = 0. The pair-
density wave (PDW) order parameter 〈�̂PDW〉 is also shown (note the
change of scale); the latter only exists in the coexistence phase. The
bottom two panels show the free energies � of the same solutions
(shifted by a multiple of μ in order to improve readability) as a
function of the chemical potential.

Note that the dSC solution reconnects to the pure-dSC solution
when the BDW falls to zero, at δ ∼ 8%.

The VCA approach used in this work has strengths and
weaknesses. The main strength is that the problem can be
treated at all: In the context of the intermediate coupling,
repulsive Hubbard model, VCA and other quantum cluster
methods [cellular dynamical mean-field theory and dynamical
cluster approximation) are among the few options capable
of revealing d-wave superconductivity; the effective pairing
interaction is dynamically generated within the clusters used.
In addition, treating a period-4 BDW can be done elegantly
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FIG. 7. (a) dSC, BDW, and PDW order parameters as a function
of hole doping δ for U = 8 and t ′ = −0.3. The two orders were put
in competition. The open red circles show the dSC order parameter
when probed alone. In this data set the cluster chemical potential μ′

was treated as a variational parameter, in addition to the Weiss fields
� and λ. Note the dip in dSC order as the BDW order appears. (b) The
free energy � of the three solutions, as a function of μ (note that the
axis is reversed). The coexistence solution has the lowest energy but
exists in a narrower range of doping. The pure dSC solution always
has a lower energy than the pure BDW solution shown in Fig. 5.

with 2 × 6 clusters, which are too large to be treated with
an exact diagonalization solver (hence at zero temperature) in
any other approach than VCA. Seeing both BDW and dSC
emerging from the same repulsive interaction, in coexistence,
is particularly satisfying.

On the flip side, VCA, contrary to dynamical mean-field
theory (DMFT)-like approaches, does not let particles in and
out of the cluster (there are no bath degrees of freedom)
and this leads to a less reliable estimate of the electron
density. The approach is prone to (likely spurious) first-order
phase transitions that occur when doping is pushed too far.
In addition, the approach is numerically more delicate than
DMFT and convergence may be more difficult. Finally, in
practice, it can only probe orders that are defined from the
outset (i.e., it is somewhat restricted).

IV. CONCLUSION

Figure 7 is the most significant result of this work.
It shows how a particular bond-density wave and d-wave
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superconductivity both emerge dynamically from the one-
band Hubbard model and how they are intertwined in
a finite range of hole doping, for a realistic dispersion
relation.

In this work only local interactions are responsible for the
establishment of both charge order and d-wave superconduc-
tivity. It is reasonable to expect that extended interactions will
reinforce the tendency towards charge order; in the context
of quantum cluster methods, extended interactions need to
be treated partly in the Hartree approximation (the so-called

dynamical Hartree approximation [43]). Work in that direction
would be the natural next step.
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Québec : nature et technologies (FRQNT) (Québec).
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