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We discuss the entanglement spectrum of the ground state of a (1+1)-dimensional system in a gapped phase
near a quantum phase transition. In particular, in proximity to a quantum phase transition described by a conformal
field theory (CFT), the system is represented by a gapped Lorentz invariant field theory in the “scaling limit”
(correlation length ξ much larger than microscopic “lattice” scale “a”), and can be thought of as a CFT perturbed
by a relevant perturbation. We show that for such (1+1) gapped Lorentz invariant field theories in infinite space,
the low-lying entanglement spectrum obtained by tracing out, say, left half-infinite space, is precisely equal
to the physical spectrum of the unperturbed gapless, i.e., conformal field theory defined on a finite interval of
length Lξ = ln(ξ/a) with certain boundary conditions. In particular, the low-lying entanglement spectrum of
the gapped theory is the finite-size spectrum of a boundary conformal field theory, and is always discrete and
universal. Each relevant perturbation, and thus each gapped phase in proximity to the quantum phase transition,
maps into a particular boundary condition. A similar property has been known to hold for Baxter’s corner
transfer matrices in a very special class of fine-tuned, namely, integrable off-critical lattice models, for the entire
entanglement spectrum and independent of the scaling limit. In contrast, our result applies to completely general
gapped Lorentz invariant theories in the scaling limit, without the requirement of integrability, for the low-lying
entanglement spectrum. While the entanglement spectrum of the ground state of a gapped theory on a finite
interval of length 2R with suitable boundary conditions, bipartitioned into two equal pieces, turns out to exhibit
a crossover between the finite-size spectra of the same CFT with in general different boundary conditions as the
system size R crosses the correlation length from the “critical regime” R � ξ to the “gapped regime” R � ξ ,
the physical spectrum on a finite interval of length R with the same boundary conditions, on the other hand, is
known to undergo a dramatic reorganization during the same crossover from being discrete to being continuous.

DOI: 10.1103/PhysRevB.95.115122

I. INTRODUCTION AND SUMMARY OF RESULTS

Considerations of quantum entanglement have provided a
great deal of insight into the nature of ground [1] (and excited
[2]) states of Hamiltonians of complex physical quantum
systems. While the entanglement entropy is a very useful
diagnostic of a quantum state, a vastly larger amount of
information is contained in the spectrum of the reduced density
matrix, i.e., in the spectrum of the entanglement Hamiltonian
[Eq. (1) below]. For example, a particularly useful case in
point is the observation that the entanglement Hamiltonian
of a (2+1)-dimensional integer [3] as well fractional [4–8]
quantum Hall state carries a universal fingerprint of an
underlying topological phase. Indeed, this has recently become
an important tool for identifying the nature of phases of a
variety of microscopic gapped Hamiltonians by computing
the entanglement spectrum numerically.1

Here we consider the entanglement spectrum of the ground
state of a (1+1)-dimensional system in a gapped phase
near a quantum phase transition. In particular, we consider
phases in proximity to a continuous quantum phase transition
with dynamical critical exponent z = 1, which is generally2

described by a conformal field theory (CFT). The system near
such a transition is thus represented by a gapped Lorentz

1See, e.g., Ref. [34–37].
2Under very mild assumptions [38].

invariant field theory in the scaling limit (correlation length
ξ much larger than microscopic lattice scale “a”), and can
be thought of as a CFT perturbed by one or more relevant
perturbations. We consider here primarily the case of a single
relevant perturbation, described by a field φ.

In the present paper, we discuss the ground state of such
a gapped (1+1)-dimensional Lorentz invariant field theory
in infinite space. It is well known [9] that the entanglement
Hamiltonian for the ground state of such a gapped theory, ob-
tained by tracing out, say, left half-infinite space, is completely
local (being the generator of Lorentz boosts). In this paper we
will show that in general, the low-lying entanglement spectrum
of such a gapped theory is the spectrum of the underlying
unperturbed gapless, i.e., conformal theory on a finite interval
of length Lξ = ln(ξ/a) when ξ/a � 1, with two boundary
conditions: a “free” boundary condition “F ” (where the system
simply ends) at the left end of the interval corresponding to
the entanglement cut, and a “hard-wall” boundary condition,
which we denote by “Bφ” at the other, right end of the
interval, which corresponds to an interface of the CFT with a
strongly gapped phase described by a region of the same theory
where the strength of the relevant perturbation “φ” is by some
measure large (“infinite”). We emphasize that the latter (i.e.,
right) boundary condition Bφ thus depends, as indicated, on the
particular relevant perturbation “φ”, and thus on the particular
gapped phase in proximity of the transition. The entanglement
Hamiltonian of the gapped theory is thus the Hamiltonian
of a boundary conformal field theory (BCFT) [10], with
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these boundary conditions. (We note in passing that since the
entanglement Hamiltonian is also known to be equal to the
generator of Lorentz boosts [9,11,12] of the gapped relativistic
theory as well as to the Hamiltonian of the same theory subject
to a uniform acceleration [13] (i.e., in Rindler space-time),
both the boost operator as well as the Hamiltonian in Rindler
space-time also possess this boundary CFT spectrum.)

More explicitly, we show that the entanglement Hamil-
tonian ĤE defined through the reduced density matrix in
half-infinite space, region A = R+ = (0, + ∞),

ρ̂A = 1

N exp(−2πĤE), (1)

is of the form

ĤE = π

L

(
L̂0 − c

24

)
(2)

with L = Lξ ≡ ln(ξ/a). (3)

Here, L̂0 is the chiral (say left-moving) Virasoro generator [see
Eq. (5) below for a more explicit description] and c denotes
the central charge of the unperturbed theory. The normalization
factor of the reduced density matrix reads

N = Tr exp(−2πĤE) = exp

(
− c

6
L − γ + . . .

)
, (4)

where γ is a constant [14,15]. (The ellipsis indicates terms
subleading for large L.) Equation (2) implies that the spectrum
of eigenvalues ε of the entanglement Hamiltonian ĤE is of the
form

ε − ε0 = π

L
(h + n), (5)

where ε0 denotes the smallest eigenvalue. Here h runs over a
subset of possible conformal weights [16] (left-moving scaling
dimensions) of the CFT, which is completely determined [10]
by the pair of boundary conditions “F ” and “Bφ” at the two
ends of the interval of length L, and n are non-negative
integers corresponding to what are known as (conformal)
descendants [16]. This is the spectrum of a boundary conformal
field theory (e.g., the degeneracies of all levels are known
explicitly).

It is only the low-lying entanglement spectrum, describing
the largest contributions in the Schmidt decomposition of
the reduced density matrix, that is in general universal and
described by the spectrum of the BCFT discussed above.
The higher-lying spectrum depends in general on nonuniversal
details. At the end of Sec. II, we provide a rough estimate of
the excitation energy (ε∗ − ε0) beyond which the conformal
spectrum given in (5) is expected to be no longer applicable,
which is found to be roughly (ε∗ − ε0) ≈ 2πy. Here, y > 0
is the renormalization group (RG) eigenvalue of the relevant
perturbation φ, a number of order unity. Since in view of (5)
the level spacing of the low-lying spectrum is π/L, the number
of levels belonging to the low-lying part of the spectrum
increases with L. In Sec. V, we present numerical results for the
entanglement spectrum of a system of gapped noninteracting
fermions, illustrating our general analytical results. We also
note that a reasonably large number of low-lying levels of
the entanglement Hamiltonian is within the range of today’s
numerical tools even for fully interacting systems as seen,

e.g., from the numerical entanglement spectra obtained for
interacting gapless (conformal) field theories in Ref. [17].3

A similar property as that derived in the present paper
for the low-lying entanglement spectrum of a general gapped
(1+1)-dimensional relativistic field theory in the vicinity of
the CFT, has been known to hold (for many years) for an
extremely special and fine-tuned class of theories, namely
for gapped “Yang-Baxter” integrable lattice models of 2D
classical statistical mechanics. Specifically, in these systems
Baxter’s so-called corner transfer matrix [18] (CTM) can be
viewed as a lattice analog of the reduced density matrix in
half space, ρ̂A from Eq. (1), when suitably translated into
entanglement language.4 The surprising observation [19,20]
was then made for a vast number such integrable lattice
systems (see, e.g., Refs. [21,22]), that the entire spectrum of
(minus) the logarithm of the CTM, which turns out to play
a role analogous [9] to the entanglement Hamiltonian ĤE in
Eq. (1) of the field theory, equals the spectrum of a (gapless)
CFT in finite size L, with the exact replacement L → ln(ξ/a),
where a and ξ are the lattice spacing and the correlation
length, respectively, of the integrable lattice model.5 Due to
the fine-tuning arising from integrability this turns out to hold
for all eigenvalues of (minus the logarithm of) the CTM,
and moreover holds true for all, even small values of ξ/a,
not only in the scaling limit.6 The methods that have been
used to demonstrate this fact for these integrable systems rely
on the very special properties of integrable lattice models,
such as the Yang-Baxter equation. Clearly, there is no reason
for such a miraculous property to hold without the strong
fine-tuning provided by the infinite number of conservation
laws present in these integrable systems. However, what we
show in the present paper is that in the scaling limit the
low-lying entanglement spectrum is generically equal to that
of the underlying gapless theory in finite size, and that this
is a property completely independent of the requirement

3Recently, numerical results for entanglement spectra of a different
set of (1+1)-dimensional systems, albeit for somewhat smaller
system sizes than in Ref. [17], came to our attention, see Ref. [39].

4Specifically, in the scaling limit of the integrable lattice model
(which depends on a single parameter that can be adjusted so that the
system is at criticality) where the correlation length ξ of the lattice
model becomes much larger than the lattice spacing a and where the
lattice model turns out to be represented by a very special, namely,
integrable relativistic quantum field theory, the CTM ρ̂CTM becomes
equal to [ρ̂A]1/4 = (1/N )1/4 exp[−(π/2)ĤE], defined in Eq. (1). The
logarithm of the CTM generalizes the entanglement Hamiltonian
(times π/2) to classical 2D statistical mechanics systems defined on
a lattice, i.e., where Lorentz invariance is absent.

5A relation between the CTM of certain integrable lattice models
and the continuum Lorentz-boost operator was also discussed from a
different perspective in Ref. [40].

6The corner transfer matrix was used by Baxter [18] to provide, e.g.,
an explicit, relatively simple and compact expression for the local
zero-field magnetization in the 2D Ising model for all temperatures
below the critical temperature. The reason why such a relatively
simple and compact expression appears originates [19,20] from this
relationship of the corner transfer matrix (Baxter’s tool to computer
the expectation value) with a CFT in finite size.
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of integrability. The identity of these two spectra is thus
not a property of the very restricted and special class of
integrable systems, but is a completely general property of
the entanglement Hamiltonian of gapped (1+1)-dimensional
relativistic field theories.

In general, the high-lying excitation spectrum of the
entanglement Hamiltonian contains no robust information
because it is completely governed by details of the theory
on distance scales comparable to the microscopic length a,
which vary from case to case. On the other hand, an integrable
system is known to be very special in this regard, in that
even the short distance properties are completely fixed by the
infinite number of conservation laws. One way of expressing
this fact is to think of the integrable theory as a fixed point
of the renormalization group (RG), here a CFT, perturbed
by an infinite sum of terms that are ever more irrelevant (in
the RG sense), with coefficients that are completely fixed by
integrability. This notion has been implemented in practice in
the work of Ref. [23]. At the end of Sec. II, and in particular
in Appendix, we suggest that by thinking this way one may
view the known results for the CTM of the integrable systems
within the context given in the present paper.

Another related focus of attention in the existing literature
on the entanglement spectrum of gapped (1+1)-dimensional
theories has been the distribution of eigenvalues of the
entanglement Hamiltonian in the regime where the eigenvalues
become dense so that the distribution is described by a
continuous curve. Reference [24] numerically observed a
universal form of the distribution of entanglement eigenvalues.
Later, it was argued in Ref. [25] that this distribution has
a universal form characterized only by the central charge.
This was supported by numerical work in that same paper
as well as in Ref. [26]. While these interesting results are
related to the discussion in the present paper, they do not
focus on the resolution of the detailed structure of the
entanglement spectrum on the scale of the individual levels,
including their degeneracies (which are nontrivial), discussed
in the present paper. All this detailed structure on the scale
of the level spacing represents a rich amount of universal
information contained in the entanglement spectrum of the
gapped relativistic field theory.

II. DERIVATION OF THE ENTANGLEMENT SPECTRUM
OF THE GAPPED FIELD THEORY OF HALF-SPACE

We now proceed to provide an explicit derivation of
the entanglement Hamiltonian. We write the spatial coordinate
denoted by x and the imaginary (Euclidean) time coordinate
denoted by y in terms of z = x + iy and z̄ = x − iy.7

We perform a conformal transformation to a new spatial
coordinate u and a new imaginary (Euclidean) time coordinate
v, via the conformal transformation z → w(z), where w =
u + iv is given by8

z = (x + iy) = exp(w) = exp(u + iv), (6)

7A characteristic velocity is set to unity for convenience throughout
this paper.

8The complex conjugate relationship holds between z̄ and w̄ =
u − iv.

x 

y 
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u 

_ 

FIG. 1. Conformal map.

mapping the complex z plane into a cylinder, see Fig. 1.
As it is well known, there are two equivalent ways of

thinking about this transformation: (i) as angular quantization
where the angular variable v is treated as the imaginary
(Euclidean) time variable or (ii) as the study of the quantum
field theory in Rindler space-time which describes the original
quantum field theory subject to a constant acceleration (here
set to unity in suitable units).

Consider the annulus R1/a < |z| < R2/a, in the complex z

plane (where a is a short distance scale), which is mapped (see
Fig. 1) under the conformal transformation (6) into a piece
u1 < u < u2 of a cylinder (the coordinate v is periodic with
period 2π ) of length

L = (u2 − u1) = ln(R2/R1), (7)

where

R1/a = exp(u1), R2/a = exp(u2). (8)

Now consider, as discussed in Introduction, the imaginary
(Euclidean) time action of a CFT in the (x,y) coordinate
system, perturbed by a primary [16] field φ(z,z̄) of conformal
weight (h,h̄), which is relevant in the RG sense,

Sz,z̄ = S∗ + g

∫
d2z φ(z,z̄), where h̄ = h < 1. (9)

Here, S∗ denotes the action of the CFT itself. Sz,z̄ in Eq. (9)
defines the gapped relativistic field theory in infinite space,
described by coordinates (x,y) or (z,z̄). In order to obtain its
entanglement Hamiltonian in half-space, we need to express
this action in (u,v), or (w,w̄) coordinates, describing angular
quantization or, equivalently, Rindler space-time coordinates.
To this end, we use the transformation properties of the primary
field φ(z,z̄), which transforms [16] in the new coordinates to
the new field �(w,w̄) defined by

φ(z,z̄) = �(w,w̄)

(
dz

dw

)−h(
dz̄

dw̄

)−h̄

. (10)

Using the explicit form (6) of the map, we obtain(
dz

dw

)(
dz̄

dw̄

)
= exp(w + w̄) = exp(2u),
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which leads to the following form of the action from (9) when
expressed in the (w,w̄) coordinates:

Sw,w̄ = S∗ + δS

= S∗ + g

∫ ∞

u1

du

∫ 2π

0
dv eyu �(w,w̄)

= S∗ +
∫ ∞

u1

du

∫ 2π

0
dv ey[u−ln(κξ/a)] �(w,w̄), (11)

where we made use of the invariance of S∗ under conformal
transformations. Here, y = 2(1 − h) > 0 is the renormaliza-
tion group eigenvalue of the relevant coupling constant g,
inducing9 a finite (dimensionless) correlation length ξ/a =
κ−1 g−1/y (where κ is a nonuniversal dimensionless constant),
which in turn was used to write the coupling constant in the
form g = (κ ξ

a
)
−y = e−y ln(κξ/a). We have considered the limit

R2/a → ∞ [implying u2 → ∞, due to Eq. (8)], and u1 was
defined in Eq. (8).

Note that the second term δS in (11) arises from the
presence of the relevant perturbation in (9), which leads
to the lack of invariance of the total action S under the
conformal transformation. In the (w,w̄) coordinates, the term
δS describes a “potential” which grows exponentially with
the spatial coordinate u and describes an interface between
the gapless theory (g = 0), and a gapped theory in which the
coupling g is not small, and the dimensionless correlation
length ξ/a is not large. The term δS therefore confines the
theory to a finite spatial interval,

u1 < u < L, L = Lξ = ln(ξ/a). (12)

We thus see from Eqs. (11) and (12) that the action Sw,w̄ in
the (u,v) coordinates of Fig. 1 describes the gapless theory
but now on a space of finite size L = Lξ , with certain
boundary conditions imposed at the two ends which will
be discussed below. [Since the imaginary (Euclidean) time
coordinate v is periodic with period 2π , this action describes
the gapless theory at inverse temperature β = 2π .] Therefore
the Hamiltonian of the theory in the (u,v) coordinates, which
by construction is precisely the entanglement Hamiltonian
ĤE , is the Hamiltonian of the underlying gapless theory,
i.e., of the theory where the relevant perturbation is switched
off, g ≡ 0, but on the finite interval (12) of length L = Lξ .
The boundary condition on the right end u = L = Lξ of
the interval corresponds, as seen from (11), to an interface
between the gapless theory (where g = 0) and the fully
gapped theory emerging when g is not small. This interface
is sharp10 when L is large. As mentioned in Sec. I, since
the corresponding gapped theory, appearing when g does not
vanish, clearly depends on the relevant perturbation φ, so
does the resulting boundary condition, denoted by Bφ . On
the other hand, the boundary condition at the entanglement
cut on the left side u = u1 of the interval is independent of

9See, e.g., Ref. [41].
10The “potential” in (11) rises by a factor e when u increases by 1/y

(a number of order unity), which is steep as compared to the length
L of the interval, when the latter is large.

the relevant perturbation φ, and it is typically11 just a free
boundary condition (where the system “simply ends”).

In summary, we have shown that the low-lying spectrum
of the entanglement Hamiltonian ĤE of the gapped rela-
tivistic field theory is simply the finite size spectrum of
the corresponding gapless (conformal) theory with boundary
conditions “F ” and “Bφ” discussed above. This is the spectrum
of the corresponding boundary conformal field theory, as
displayed in (2), (3), and (5). The corresponding eigenstates
in the u coordinates are localized within the finite range
specified in (12), corresponding in the original x coordinates,
upon using (6), as expected to a finite region around the
entanglement cut (at x = 0) of spatial extent of the order
of the correlation length ξ . The limitation to the low-lying
entanglement spectrum arises from the replacement of the
exponentially increasing potential in (11) by a boundary
condition representing a sharp interface. This replacement
is certainly asymptotically valid for the low-energy, long-
wavelength part of the spectrum when L = ln(ξ/a) is large.
More precisely, one expects this replacement to stop being
valid for eigenstates of the entanglement Hamiltonian varying
on wavelengths of order 1/y, the scale on which the potential
rises exponentially.12 This replacement is therefore expected to
certainly cease to be valid for wave vectors kn = n(π/L) with
integer n where n � 2Ly, which roughly corresponds, using
(5), to excitation energies ε − ε0 � ε∗ − ε0 = 2πy. Since the
level spacing is π/L, the number of energy levels belonging to
the so-defined low-lying spectrum increases with L, and can in
practice be large in numerical work (see, e.g., Ref. [17], which
we mentioned already before; note this reference chose to
address only the entanglement spectrum of gapless theories). A
brief comment on how one may view, within the context of the
present paper, the result observed for the logarithm of Baxter’s
corner transfer matrix in gapped integrable lattice models,
which is known to reproduce exactly the entire spectrum of the
boundary conformal field theory (i.e., ε∗ → ∞ in the above
equation), is provided in Appendix.

III. CROSSOVER OF ENTANGLEMENT SPECTRUM OF
HALF-SPACE

It is illuminating to compare the finite-size spectra of the
entanglement and the physical Hamiltonian.

11The ground state typically does not possess any constraints
between the degrees of freedom immediately on the left (B) and
the right (A) of the entanglement cut. Therefore, upon employing the
Schmidt decomposition of the ground state for a bipartition A

⋃
B of

space and performing the trace over, say, part B, there is no constraint
on the leftmost degree of freedom of part A; this therefore implies a
“free” boundary condition. This is also borne out in recent numerical
work on the entanglement spectrum of gapless theories, see Ref. [17].
The boundary condition at the entanglement cut can be modified if
the ground state contains a specific constraint on the above-discussed
degrees of freedom adjacent to the entanglement cut.

12One can check such estimates using the exactly solvable example
of a quantum mechanical particle in an exponential potential, known
from quantum Liouville theory [42].
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A. Finite-size crossover of entanglement spectrum

Let us first define the finite-size entanglement spectrum
for open boundary conditions (also often used in numerical
work). Specifically, we consider the gapped theory on a
finite interval −R < x < +R, choosing some, for simplicity
identical boundary conditions B0 at the two ends which we
assume here to yield a unique ground state on the interval.
When tracing over the negative half −R < x < 0 of the
interval, we obtain the density matrix whose spectrum we
are interested in.

In the critical regime where the correlation length is
much larger than the entire interval, R � ξ , the entanglement
spectrum is that of the gapless theory (g = 0), which is
known [27,28] to be of the form of Eq. (5), where L = LR =
ln(R/a).13 This is the spectrum of the CFT (g = 0) on an
interval of length L = LR with typically14 a free boundary
condition “F ” on the left end (arising from the entanglement
cut), and the same boundary condition “B0” that was imposed
in physical space on the right end. As we increase R, the level
spacing of the entanglement spectrum initially decreases as
π/ ln(R/a), and ultimately saturates at π/ ln(ξ/a) when we
reach the gapped regime:

In the gapped regime where the correlation length is
much smaller than the length of the interval, ξ � R, the
entanglement spectrum is precisely the one studied in Sec. II.
This is the spectrum of the same CFT (g = 0) on an interval of
length L = Lξ = ln(ξ/a), with again typically a free boundary
condition F on the left end (arising from the entanglement
cut), and the boundary condition Bφ arising from the relevant
perturbation (discussed in Sec. II) imposed on the right end.

We thus see that upon increasing the size of the interval
from R � ξ to ξ � R, the entanglement spectrum evolves
from the spectrum of the CFT on an interval of length
L = LR = ln(R/a) and boundary conditions (F,B0), to the
spectrum of the same CFT on an interval of length L = Lξ =
ln(ξ/a) and boundary conditions (F,Bφ). This describes the
evolution of a boundary renormalization group (RG) flow,
while the bulk theory describing the entanglement Hamiltonian
always remains gapless. A simple example is provided by
the transverse field quantum Ising model perturbed by a
bulk magnetic field described by the operator φ = σ (spin
field) and a free Ising-spin boundary condition B0. Upon the
above-described crossover of the entanglement spectrum, the
bulk magnetic field induces a boundary magnetic field at the
free spin boundary condition B0 that flows under the RG to
the new fixed-spin boundary condition Bφ . In Sec. V A 1, we
discuss an example where the boundary conditions B0 and Bφ

are in fact the same, and only the level spacing changes upon
the crossover. This is confirmed numerically in Fig. 3.

B. Finite-size crossover of physical spectrum

In contrast to the boundary RG flow of the entanglement
spectrum discussed above, the physical spectrum is known to
evolve completely differently under the analogous crossover.

13This result can be obtained by setting g = 0, R2 → R, R1 → a

and L = LR = ln(R/a) in Sec. II.
14See the corresponding footnote in Sec. II.

In particular, consider the physical spectrum of the gapped
theory defined on a finite interval of length R. In order to
be able to make a direct comparison, we choose the same
boundary conditions as those for the entanglement spectrum,
namely a free boundary condition F on the left end and the
boundary condition B0 on the right end of the interval.

In the critical limit where the correlation length is much
larger than the entire interval, R � ξ , the physical spectrum is
identical to that of entanglement spectrum, Eq. (5); namely, it
is the spectrum of the CFT with the same boundary conditions
(F,B0), upon making the replacement LR = ln(R/a) → R.
Upon crossover to the corresponding gapped limit where
the correlation length is much smaller than the system size,
ξ � R, however, the physical spectrum of the gapped theory
undergoes a dramatic, highly nontrivial reorganization from
the boundary CFT spectrum with a finite level spacing to the
continuous spectrum in infinite space describing continuous
single- and multi-particle states of the gapped field theory. In
cases where the relevant perturbation of the CFT defining the
gapped theory is integrable, this reorganization of the physical
finite-size spectrum has been extensively studied in great
detail15 by means of the so-called truncated space conformal
field theory approach and the thermodynamic Bethe ansatz.16

In summary, the finite-size entanglement spectrum and the
finite-size physical spectrum exhibit entirely different behavior
upon crossover from the critical to the gapped regime.

IV. ENTANGLEMENT SPECTRUM OF A
FINITE INTERVAL

For the same gapped field theory, we now discuss the
entanglement spectrum of a spatial interval A = (−R + a, +
R − a) where 0 < a � R (a is again a short distance scale),
depicted on the real axis with coordinate ζ1 in the top
panel of Fig. 2. We use the conformal map w(ζ ) = ln (R+ζ

R−ζ
),

with inverse ζ (w) = R tanh(w/2), to map from the complex
ζ = (ζ1 + iζ2)-plane into a finite cylinder parametrized by
w = u + iv with −uR � u � +uR where uR = ln(2R/a), as
also shown in Fig. 2.

As before, consider the imaginary (Euclidean) time action
of a CFT in the (ζ1,ζ2) coordinate system, perturbed by a
relevant primary [16] field φ(ζ,ζ̄ ) of conformal weight (h,h̄),

Sζ,ζ̄ = S∗ + g

∫
d2ζ φ(ζ,ζ̄ ), where h̄ = h < 1.

Using

dζ

dw
= R

2

1

cosh(w/2)
= R

1 + cosh(w)
,

we obtain for the action in the w coordinates

Sw,w̄ = S∗ + δS, (13)

15Level crossings seen in the integrable cases as a consequence
of the additional conservation laws will typically turn into avoided
crossings in the generic, nonintegrable settings.

16See, e.g., Refs. [43,44].
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FIG. 2. Conformal map.

where

δS = gRy

∫ +uR

−uR

du

∫ 2π

0
dv

∣∣∣∣ 1

1 + cosh(w)

∣∣∣∣
y

�(w,w̄)

=
(

R
a

)y

(
ξ

a

)y

∫ +uR

−uR

du

∫ 2π

0
dv

∣∣∣∣ 1

1 + cosh(w)

∣∣∣∣
y

�(w,w̄)

=
∫ +uR

−uR

du

∫ 2π

0
dv

∣∣∣∣ e(uR−Lξ )

1 + cosh(w)

∣∣∣∣
y

�(w,w̄), (14)

and (R
a

)y = eyuR .
In the critical regime uR � Lξ , where δS is small, we

obtain the already-known [28] entanglement spectrum of the
gapless theory (g = 0) on the finite interval.17 In the gapped
regime uR � Lξ , on the other hand, the “effective u-dependent
coupling constant” in the last equation of (14) is never small
unless |u| is “close” to uR ,

(uR − |u|) � Lξ , (recall : − uR < u < +uR), (15)

in which case the expression e(uR−Lξ )/|1 + cosh(w)| appearing
in Eq. (14) tends to → e−[Lξ −(uR−|u|)], which is small when

17We see from Fig. 2 that in the critical regime the entanglement
spectrum is the spectrum of the CFT on a finite interval −uR < u <

uR with boundary conditions F and Bφ imposed at the two ends, as
in Ref. [28].

Lξ is large. The condition in Eq. (15) for δS to be small
describes two disjoint intervals, −uR < u � −(uR − Lξ ) and
(uR − Lξ ) � u < uR; these are two segments of length Lξ

(� uR) each at the right and the left ends of the full
interval −uR < u < uR in which u is defined. Therefore the
entanglement spectrum of the interval A = (−R+a,+R − a)
in this regime is the sum of two finite-size spectra of the
corresponding gapless (conformal) theory on a space of length
Lξ = ln(ξ/a) each. The boundary condition at the ends
u = ±uR of each of these two intervals is (typically) “free” F ,
whereas it is Bφ at the other ends of the two intervals. Therefore
each of these two spectra is precisely the spectrum discussed
in Sec. II.

V. NUMERICAL RESULTS

In this section, we present numerical calculations of the
(low-lying) entanglement spectrum of a chain of spinless
fermions, which confirm the above discussion of Lorentz
invariant quantum field theories. Let us consider the Su-
Schrieffer-Heeger (SSH) model defined on a one-dimensional
lattice:

H =
∑

i

�
†
i h

0�i +
∑

i

(�†
i+1h

x�i + H.c.), (16)

where i labels a site on a one-dimensional chain, and � is a
two-component fermion annihilation operator, which includes
two fermion operators cA and cB defined for each two-site unit
cell:

�i =
(

cA

cB

)
i

. (17)

The matrix elements h0 and hx are given by

h0 =
(

μs t + δt

t + δt −μs

)
, hx =

(
0 t

0 0

)
. (18)

where t (“hopping”), δt (“dimerization”), and μs (“staggered
chemical potential”) are real parameters. In addition, a proper
boundary condition must be specified (see below). For con-
venience, we will choose t = 1 and change δt and μs (which
are properly normalized with respect to the unit t = 1). When
μs = 0, the SSH model is particle-hole symmetric, and can be
thought of as a member of symmetry class D [29,30]. We will
mostly set μs = 0 in the following. Hence, when μs = 0, the
SSH model realizes two topologically distinct gapped phases
which are distinguished by a Z2-valued topological invariant.
A topologically trivial phase is realized when

δt > 0, (19)

while a topologically nontrivial phase is realized when

δt < 0. (20)

There is a quantum phase transition separating these phases
when

δt = 0. (21)

In the following, we compute the entanglement spectrum of
these phases and at the critical point between them numerically.
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FIG. 3. The single-particle entanglement spectrum of the SSH
model with OBC in its topologically trivial phase (δt = 0.01). The
blue dotted lines are guide for eyes.

A. Open boundary conditions (OBC)

We first consider the SSH model defined on a finite lattice
consisting of N unit cells, and with open boundary condition
imposed on both ends. We will take N ∈ 2Z for convenience.

1. Topologically trivial phase

Let us start with the topologically trivial phase, δt > 0. In
this phase, the SSH model with open boundary condition has
a unique ground state, |�〉. We then consider a (pure) density
matrix ρ = |�〉〈�| made out of the ground state, and trace
out the left N/2 sites to define the reduced density matrix
for the remaining subsystem (subsystem A). The number of
unit cells in subsystem A is denoted by NA(= N/2). The
computed single-particle entanglement spectrum is presented
in Fig. 3. As we make the system size (and hence the subsystem
size) bigger, the spectrum approaches the prediction from
BCFT. That is, the levels of the single-particle entanglement
spectrum are all equally spaced, and the level spacing does
not scale with NA. This spectrum is the spectrum of the free
chiral fermion conformal field theory with antiperiodic spa-
tial boundary condition, the so-called Neveu-Schwartz (NS)
spectrum.

2. Topologically nontrivial phase

Next, let us consider the nontrivial topological phase,
δt < 0. In this case, the SSH model of finite length has
near double-degenerate ground states when open boundary
conditions (OBC) are imposed, due to near zero-energy single
particle modes localized near the ends.18 of the degeneracy, we
have several options to define the density matrix and hence the
entanglement spectrum. One option would be to take a proper
linear combination of the two degenerate ground states. For
example, one can make the linear combination such that the

18There is a small splitting, exponential in the system size divided
by the correlation length, due to the interaction (tunneling) between
the zero modes at the two ends of the finite system.
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FIG. 4. The entanglement spectrum of the SSH model with OBC
in its topologically nontrivial phase (δt = −0.01). The blue dotted
lines are guide for eyes.

(near) zero-energy single particle eigenstate is localized at a
given end. One motivation for taking such a linear combination
is that the so-constructed state may well be compared with the
ground state defined for a semi-infinite system—the geometry
that we considered in the bulk of the paper for the entanglement
Hamiltonian.

In practice, such a ground state can be constructed by
turning on a small μs (near a boundary, say). One should,
however, note that such a procedure breaks particle-hole
symmetry. In fact, for any finite system size and finite
correlation length, if we take a linear combination of
near zero-energy modes to respect particle-hole symmetry,
they are not localized at a given end. (Note, however,
that there is one exception for this: the “zero correlation
length limit” that we can take in the SSH model.) Only in
the semi-infinite limit, (one of) the localized zero energy
mode is an exact particle-hole symmetry eigenstate of the
Hamiltonian.

In Fig. 4, the entanglement spectrum with this construction
of the ground state (i.e., the unique ground state selected by
turning on a finite μs) is shown. As we make the subsystem
size bigger, the entanglement spectrum “crosses over”. In
particular, while for small NA, the single-particle entanglement
spectrum does not have a zero mode, as we make the system
size bigger, one level approaches zero from below, and
asymptotically the single-particle entanglement spectrum has
one exact zero mode. We call this entanglement spectrum
the Ramond (R) spectrum (the spectrum of the free chiral
fermion conformal field theory with periodic spatial boundary
condition). The R spectrum, whose many-body spectrum
displays a double degeneracy, is what is predicted from BCFT
(in the “gapped regime”).

Let now us discuss the “crossover” in more detail. In fact,
one could discuss two kinds of features separately; one in
terms of the scaling of the level spacing, and the other in terms
of the structure of the levels, or more precisely the presence or
absence of the zero mode.

From the former perspective, if a well-defined crossover
region ever appears, the spectrum should follow the critical
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scaling, ∼HL/ ln NA, for NA much smaller than the correlation
length ξ (“critical regime”). On the other hand, for NA much
larger than the correlation length, the entanglement spectrum
should scale as ∼HL/ ln ξ (“gapped regime”). However, it is
not entirely clear how to identify such a crossover region in
Fig. 4.

From the perspective of the structure of the spectrum,
the entanglement spectrum for small NA looks like the NS
spectrum (i.e., there is no zero mode in the single particle
entanglement spectrum), which crosses over to the R spectrum.
(However, this “NS-like” spectrum should be distinguished
from the NS-spectrum that appears in the topologically trivial
case, because of the different scaling of the level spacing.) It
is here crucial to recall that, by our construction of the unique
ground state, the entanglement spectrum breaks particle-hole
symmetry. In fact, what would look like a crossover in
numerics is possible because of the particle-hole symmetry
breaking. This should be compared with what we expect for
the ideal, semi-infinite limit. In the semi-infinite limit, the
ground state is unique and respects particle-hole symmetry,
and so is the reduced density matrix. If so, the entanglement
spectrum should be particle-hole symmetric. As a corollary,
the spectrum cannot cross over from the NS spectrum to R
spectrum in the presence of particle-hole symmetry. In short,
the crossover from the NS spectrum to R spectrum in numerics
is due to particle-hole symmetry breaking, which we can
think of as a finite-size artifact. On the other hand, as we
make the system size bigger, particle-hole symmetry breaking
eventually goes away, and hence, in this ideal limit, the
entanglement spectrum will be particle-hole symmetric. There
should in fact be no crossover from an actual NS to the R
spectrum.19

B. Periodic boundary conditions (PBC)

Let us now discuss the entanglement spectrum for the
case of periodic boundary conditions. With periodic boundary
conditions, the ground state is always unique as far as there is
a spectral gap, irrespective of the sign of δt . That is, even in the
topological case, one does not have to choose between ground
states. The numerically computed entanglement spectrum is
shown in Fig. 5. As compared to the case of open boundary
conditions, there is no crossover from the NS to the R spectrum.
(As mentioned above, such a crossover is not to be expected

19We should remark that the crossover (from small to large size NA)
observed in the numerical (single-particle) entanglement spectrum
displayed in Fig. 4 is not quite covered by the cases discussed analyt-
ically in Sec. III. This is because in Sec. III for simplicity the technical
assumption was made that the finite interval, to be bipartitioned
into two pieces, had identical boundary conditions (called B0 in that
section) imposed at the two ends. (This permitted the simple analytical
prediction of the crossover of the entanglement spectrum detailed
in Sec. III.) For the case where different boundary conditions are
imposed at the two ends, the corresponding entanglement spectrum
has not yet been studied using analytical means. The numerical study
presented in Fig. 4 of such a case may help the development of a future
analytical description of this type of crossover of the entanglement
spectrum.
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FIG. 5. The single-particle entanglement spectrum of the SSH
model with PBC in its topologically nontrivial phase (δt = −0.01).
The blue dotted lines are guide for eyes. Each level is doubly
degenerate.

in the ideal semi-infinite limit.) One important feature for
the case of periodic boundary conditions, which we expect
from our discussion in the preceding section, is that, due to
the presence of two entangling boundaries, the entanglement
spectrum consists of two identical copies of a BCFT spectrum.
That is, each level in the single-particle entanglement spectrum
is doubly degenerate. The double-degeneracy is indeed con-
firmed in numerics. In this special case of equal bipartition,
NB = N − NA = NA, this double degeneracy turns out to be
exact. This is the consequence of an accidental chiral symmetry
that exists when NA = NB and when there is an symmetry
relating regions A and B (reflection/inversion symmetry in our
case) [31–33]. Combined with the sublattice symmetry that
exists when μs is zero, the accidental symmetry commutes
with the entanglement Hamiltonian, resulting in the double
degeneracy. This degeneracy is lifted by turning on the finite
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FIG. 6. The single-particle entanglement spectrum of the SSH
model with periodic boundary conditions at its critical point (δt = 0).
The blue dotted lines are guide for eyes. To compare with the expected
result, we chose the “scale” a0 to be a0 = 0.1.
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staggered chemical potential μs or taking NA = NB . This can
be understood as a “tunneling” (coupling) between the two
copies of the BCFT spectrum.

C. Critical scaling

Finally, as an aside, let us take a look at the entanglement
spectrum at the critical point δt = 0. From the field theory con-
siderations, we expect that the spectrum scales as ∼1/ ln NA

instead of ∼1/ ln ξ. In Fig. 6, we fit the entanglement spectrum
at the critical point, which roughly follows what we expect; one
observes critical scaling HL/ ln NA when NA is large enough.

In gapless systems (critical points) in general, since there
is no spectral gap, there are many (near) degenerate states. In
our numerics, we let our computers choose the ground state.
This procedure in principle may be tricky; for example, the
behavior of the entanglement spectrum may depend severely
on the choice of NA and N . (There may be an even-odd like
effect.) In Fig. 6, we choose open boundary conditions, and as
before, fix NA as NA = N/2.

VI. CONCLUSIONS

In conclusion, we have considered in this paper (1+1)-
dimensional gapped relativistic field theories in the scaling
limit which can be viewed as describing gapped phases in the
vicinity of a quantum phase transition described by a CFT.
We have shown that the low-lying entanglement spectrum of
such a gapped field theory is the spectrum of the underlying
CFT on a finite interval of size Lξ = ln(ξ/a) with a free
boundary condition F and a boundary Bφ determined by
the relevant perturbation of the CFT defining the gapped
theory. We have also calculated the entanglement spectrum
of the gapped field theory on a finite interval. This result
provides, at the same time, the structure of the entanglement
spectrum of the theory with periodic boundary conditions,
i.e., on a circle of circumference 2R, bipartitioned into two
half-circles of length R each. In the limit where the size R

is larger than the correlation length ξ , in analogy with the
case of an interval, the entanglement spectrum is the sum
of two spectra arising from the two ends of the semicircle.
We would like to mention that interesting features arise
for entanglement spectra of (1+1) dimensional symmetry
protected topological (SPT) phases, and these will be discussed
in a companion paper by the authors which will appear very
shortly.
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APPENDIX : COMMENTS ON THE RELATIONSHIP WITH
THE CORNER TRANSFER MATRIX SPECTUM OF

YANG-BAXTER INTEGRABLE 2D CLASSICAL
STATISTICAL MECHANICS MODELS

In this appendix, we briefly suggest a way in which the
observation made (many years ago) in the literature about the
spectrum of the logarithm of the CTM of integrable lattice
models could be viewed within the context of the notions used
in the present paper about the low-lying entanglement spec-
trum of gapped relativistic (1+1)-dimensional field theories.
This will also provide some intuition about how the highly
special constraints of integrability manage to generate the
exact BCFT spectrum at arbitrarily high excitation “energies”
of the entanglement Hamiltonian, even far off the scaling limit,
i.e., for values of the correlation length ξ down to distances
of the lattice scale a. First, recall that all the many off-critical
integrable lattice models in which the behavior in question of
the CTM was observed, are in fact one-parameter families of
integrable models, which have the property that the system is
critical (ξ/a = ∞) for one special value λ∗ of the parameter λ,
where they represent lattice realizations of a certain set of
CFTs. Moreover, the deviation δλ = (λ − λ∗) of the parameter
from this special value is a relevant perturbation, and couples
to a particular relevant field φ of the CFT. (This particular field
is also special in the context of the CFT, in that even in the CFT
perturbed by it an infinite subset of the conservation laws of the
CFT survive. Only a few very special relevant perturbations
of the CFT have this property.) Second, recall that (i) one
can represent the critical lattice theory at λ = λ∗ as the CFT
perturbed by an infinite number of irrelevant perturbations.
Some of these irrelevant perturbations include powers of
the energy-momentum tensor of the CFT which lead to
nonlinear contributions to the energy-momentum relationship,
thus representing the breaking of Lorentz-invariance present
in the lattice theory. Moreover, (ii) the off-critical lattice model
at δλ = 0 may be represented by perturbing the so-represented
critical lattice theory at λ = λ∗ by yet another infinite set of
perturbations of the CFT, the most relevant of which is the
field φ discussed above. It is the constraints arising from the
integrability of the lattice model that fix exactly the infinite
number of expansion coefficients. A practical implementation
of this general principle of representing an integrable lattice
theory in terms of such perturbations of a CFT, can be
found, e.g., in Ref. [23]. Now it is clear that the presence
of all these perturbations (in principle infinite in number)
can be treated in precisely the same way the single relevant
perturbation φ is treated in Sec. II of the present paper. In that
section, it is shown that a single relevant perturbation φ, when
added to the CFT, leads to a “domain wall potential” in the
coordinate u parametrizing the coordinate space on which the
entanglement Hamiltonian ĤE acts (angular quantization or
Rindler space-time). All the additional perturbations that have
to be added to the CFT to represent the lattice theory exactly
will simply modify the shape of that domain wall potential in
some way. Since the spectrum of the logarithm of the CTM of
the gapped integrable models is known to be exactly the entire
spectrum of the boundary CFT with the boundary conditions
mentioned in the present paper, it ought to be the case that
the exact domain wall potential being generated in this way in
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the integrable theory, exactly describes a conformal boundary
condition, all the way up to arbitrarily high (entanglement)
energies. It may be possible to study explicitly, in the spirit

of Ref. [23] mentioned above, approximations to the entire
entanglement spectrum of the integrable system in terms of that
of a CFT with a finite, but increasing number of perturbations.
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