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Inverse participation ratios in the XX spin chain
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We continue the study of the inverse participation ratios (IPRs) of the XXZ Heisenberg spin chain initiated by
Stéphan, Furukawa, Misguich, and Pasquier (2009) and continued by Misguich, Pasquier, and Luck (2016) by
focusing on the case of the XX Heisenberg spin chain. For the ground state, Stéphan et al. note that calculating the
IPR is equivalent to Dyson’s constant term ex-conjecture. We express the IPRs of excited states as an apparently
new “discrete” Hall inner product. We analyze this inner product using the theory of symmetric functions (Jack
polynomials, Schur polynomials, the standard Hall inner product, and ωq,t ) to determine some exact expressions
and asymptotics for IPRs. We show that IPRs can be indexed by partitions, and asymptotically the IPR of a
partition is equal to that of the conjugate partition. We relate the IPRs to two other models from physics, namely,
the circular symplectic ensemble of Dyson and the Dyson-Gaudin two-dimensional Coulomb lattice gas. Finally,
we provide a description of the IPRs in terms of a signed count of diagonals of permutohedra.
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I. INTRODUCTION

The inverse participation ratios (IPRs) of a quantum
mechanical system measure how localized a given state of
the system is with respect to a preferential basis. The IPR are
related to the configuration (or Renyi-Shannon) entropy with
Renyi parameter n = 2 studied in Refs. [1] and [2]. In Ref.
[1], this quantity was calculated for the ground state of the
periodic XXZ chain, and a close connection with the partition
function of the Dyson-Gaudin gas was pointed out. Recently in
Ref. [3], Misguich, Pasquier, and Luck completed a numerical
study of the IPRs in the spin-1/2 XXZ chains. The authors
were mainly concerned with the sum of the IPRs and looked
at the distribution of IPRs of individual eigenstates as a way
to understand the behavior of the former. The general interest
in understanding the IPRs stems from the fact that integrable
systems generally fail to reach thermal states. Misguich et al.
ask in particular about the IPRs in the special case of the XX
spin chain with respect to the Ising basis.

We let L denote the length of the spin chain and restrict
attention to the space spanned by Ising bases of M down
spins. To analyze the IPRs, we will proceed as follows. First,
we will obtain an expression for the eigenstates in terms of the
Ising basis. We will see then that the IPRs are naturally labeled
by partitions λ and are equal to

tλ = (M!L2M )−1
∑

θ1,...,θM∈{0, 2π
L

,...,
2π(L−1)

L
}
|sλ(eiθ1 , . . . ,eiθM )|4

×
∏
i<j

|eiθi − eiθj |4,

where sλ is the Schur polynomial (a specialization of the
Jack polynomials). This will naturally lead us to the theory
of symmetric functions. We will analyze these quantities in
complete mathematical rigor (Sec. IV and on).

In Appendix A we provide several physical interpretations
of the IPRs and discuss the ground state. The calculation of
the ground state IPR (sλ = 1) is equivalent to Dyson’s constant
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term ex-conjecture, an important motivation for much of the
development of the theory of Macdonald polynomials. For
excited states, we can interpret the IPR as the expectation value
of |sλ|4 over the Dyson-Gaudin two-dimensional Coulomb
lattice gas. In the limit L → ∞ the gas is no longer restricted
to a lattice. In this situation, the IPR can be interpreted as the
expected value of |sλ|4 over the circular symplectic ensemble
(CSE) of Dyson. The CSE is a modification of the Gaussian
symplectic ensemble (GSE), a key matrix ensemble in random
matrix theory.

Next we study the IPRs using the tools of symmetric
function theory, namely, Jack polynomials, Hall inner product,
and ωq,t . We interpret the IPRs in terms of a “discrete” Hall
inner product and show that assuming, roughly, L > 2M , the
discrete Hall inner product and the traditional one coincide.
This allows us to use the orthogonality of the Jack polynomials
to evaluate the IPRs in terms of the transition coefficients
from Schur polynomials to Jack polynomials. When these are
known, we are able to determine exact expressions for the IPRs
and their asymptotics. Finally, we show that curiously, if λ∗ is
the conjugate partition of λ, then

tλ = tλ∗ (1)

assuming, roughly, that L > 2M � 1. We provide an interpre-
tation of this result in terms of particle-hole duality together
with a proof.

II. INVERSE PARTICIPATION RATIOS

In this section we provide the basic definition of the inverse
participation ratios ([4], [3]).

Definition 1. Let the normalized eigenvectors of a Hamil-
tonian H be {|ψi〉}i=1,...,D and assume they are nondegenerate.
The inverse participation ratio (IPR) of an eigenstate |ψk〉 in a
preferential basis {|ai〉}i=1,...,D is

tk :=
D∑

i=1

|〈ai |ψk〉|4. (2)

The maximum value of this quantity is reached when an
eigenstate coincides with a single basis state, in which case
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tmax = 1. The minimum value is reached for eigenstates which
are uniform superpositions of all the basis states, with the
same modulus |〈ai |ψk〉| = 1√

D
. This maximally delocalized

limit gives tmin = 1
D

.
We note that if

|ψ̃k〉 =
∑

i

ci |ai〉 (3)

is an unnormalized multiple of |ψk〉, then

|〈ai |ψk〉|4 = |ci |4( ∑
j |cj |2

)2 (4)

and

tk =
∑

i |ci |4( ∑
j |cj |2

)2 . (5)

III. PERIODIC XX HEISENBERG MODEL

We consider the XX spin chain (XXZ with anisotropy
parameter � = 0) with periodic boundary conditions and L

sites. The Hamiltonian is given by

H =
L∑

i=1

Sx
i Sx

i+1 + S
y

i S
y

i+1. (6)

We will single out the preferential basis called the Ising
configuration for the IPRs. These are the eigenstates of all
Sz

i :

|↑↑↓ · · · 〉,|↑↓↑ · · · 〉, . . . (7)

We restrict attention to the subspace spanned by Ising config-
urations having M down spins. This space has dimension

(
L

M

)
.

The coordinate Bethe ansatz tells us that the wave numbers
kj ,j = 1, . . . ,M and Bethe roots Ij ,j = 1, . . . ,M satisfy

Lkj = 2πIj , j = 1,2, . . . ,M. (8)

For simplicity, we will be assuming that M is odd, so that the
Ij are in {0,1, . . . ,L − 1} mod L [5]. All statements can be
adapted to the case of even M , in which case the Ij are half
integers. To avoid the nullity of the wave function, the wave
numbers must be distinct.

We use the shorthand notation

|x〉 = |x1 · · · xM〉, x1 < x2 < · · · < xM (9)

for the Ising basis with down spins at x1, . . . ,xM and

k = (k1, . . . ,kM ). (10)

The eigenvectors of H are now given by

|ψk〉 =
∑

x

c(x)|x〉 =
∑

x

∑
π∈SM

sgn(π )eiπ(k)·x|x〉

=
∑

x

det(eikaxb )a,b|x〉. (11)

By (5), the IPRs are equal to

tk =
∑

x | det(eikaxb )a,b|4( ∑
x | det(eikaxb )a,b|2

)2 . (12)

The denominator of (12) is relatively easy to evaluate. We have

|c(x)|2 = c(x)c(x) (13)

=
( ∑

P∈SM

sgn(P )eiP (k)·x
)⎛

⎝ ∑
Q∈SM

sgn(Q)e−iQ(k)·x

⎞
⎠
(14)

=
∑

P,Q∈SM

sgn(P ) sgn(Q)ei(P (k)−Q(k))·x. (15)

We now use the fact that the determinant is zero whenever any
two of xi are equal. This allows us to remove the restriction
of the xi being distinct. In addition, we must divide by M! to
account for the order. We also note that

L∑
x1,...,xM=1

M∏
j=1

eixj mj =
M∏

j=1

L∑
xj =1

eixj mj . (16)

We have∑
x

|c(x)|2

= 1

M!

L∑
x1,...,xM=1

|c(x)|2

= 1

M!

L∑
x1,...,xM=1

∑
P,Q∈SM

sgn(P ) sgn(Q)
M∏

j=1

eixj (kP (j )−kQ(j ))

= 1

M!

∑
P,Q∈SM

sgn(P ) sgn(Q)
L∑

x1,...,xM=1

M∏
j=1

eixj (kP (j )−kQ(j ))

= 1

M!

∑
P,Q∈SM

sgn(P ) sgn(Q)
M∏

j=1

L∑
xj =1

eixj (kP (j )−kQ(j )). (17)

Now kj = 2πIj

L
and 0 < |Ij − Ii | < L. Consequently,

L∑
xj =1

eixj (kP (j )−kQ(j )) = Lδ(kP (j ) = kQ(j )). (18)

Substituting yields the result∑
x

|c(x)|2 = LM. (19)

Therefore

tk =
∑

x | det(eikaxb )a,b|4
L2M

. (20)

(An anonymous referee kindly pointed out that one could
have obtained this result using a standard second-quantization
property: The state c

†
k1

· · · c†kM
|0〉 is normalized if the fermion

creation operators c
†
kj

satisfy the canonical fermionic anticom-
mutation relations. This condition is met if we add a factor
1/

√
L in each single-particle wave function, and we thus get

LM for the norm squared of the many-body state.)
Next, set θj := 2π

L
xj , so that

eikaxb = eiIaθb . (21)
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We set

c(θ ) = det(eiIaθb )a,b (22)

and introduce the notation
∑

θ to denote summation over
distinct values of θ1, . . . ,θM in 2π

L
{0, . . . ,L − 1}.

Example 1. IPR of the ground state. For the ground state,

{I1,I2, . . . ,IM} =
{

M − 1

2
,
M − 1

2
− 1, . . . , − M − 1

2

}
.

(23)

Therefore

c(θ ) =

∣∣∣∣∣∣∣∣∣

ei(− M−1
2 )θ1 ei(− M−1

2 )θ2 · · · ei(− M−1
2 )θM

ei(− M−1
2 +1)θ1 ei(− M−1

2 +1)θ2 · · · ei(− M−1
2 +1)θM

...
... · · · ...

ei( M−1
2 )θ1 ei( M−1

2 )θ2 · · · ei( M−1
2 )θM

∣∣∣∣∣∣∣∣∣
.

(24)

We notice that (24) is equal to

ei(− M−1
2 )(θ1+...+θM )

∣∣∣∣∣∣∣∣∣

1 1 · · · 1
eiθ1 eiθ2 · · · eiθM

...
... · · · ...

ei(M−1)θ1 ei(M−1)θ2 · · · ei(M−1)θM

∣∣∣∣∣∣∣∣∣
,

(25)

the determinant being a Vandermonde determinant:∣∣∣∣∣∣∣∣∣

1 1 · · · 1
eiθ1 eiθ2 · · · eiθM

...
... · · · ...

ei(M−1)θ1 ei(M−1)θ2 · · · ei(M−1)θM

∣∣∣∣∣∣∣∣∣
=

∏
j<k

(eiθk − eiθj ).

(26)

Therefore the IPR of the ground state is equal to

t0 = 1

L2M

∑
θ

∏
j<k

|eiθk − eiθj |4. (27)

We will complete the evaluation in (A10).
Notice that | det(eiIaθb )a,b| is invariant under shifts of the

Bethe roots I , since

det(ei(Ia+n)θb )a,b = ein(θ1+...+θM ) det(eiIaθb )a,b. (28)

Therefore IPRs corresponding to two excited states whose
Bethe roots are related by a shift will be equal.

Assume without loss of generality that I1 > I2 > . . . > IM .
Set

λj = Ij − M + 1

2
+ j (29)

so that λ1 � λ2 � . . . � λM yields a partition λ =
[λ1, . . . ,λM ]. In this notation,

| det(eiIaθb )a,b| = |sλ(eiθ1 , . . . ,eiθM )V (eiθ1 , . . . ,eiθM )|, (30)

where s is the Schur polynomial (discussed in Appendix B)
and V (x1, . . . ,xM ) is the Vandermonde determinant:

V (x1, . . . ,xM ) =
∏
i<j

(xj − xi). (31)

We then have

tλ =
∑

θ |sλ(eiθ1 , . . . ,eiθM )|4 ∏
i<j |eiθi − eiθj |4

L2M
, (32)

where we have introduced a labeling by partitions λ.

IV. CALCULATING THE IPRS OF XX

Throughout this section, we refer the reader to Appendix B
for notation and necessary definitions from symmetric function
theory. Set

�(x; β) =
∏
i �=j

(
1 − xix

−1
j

)β/2
. (33)

Then

�(x; β) =
∏
i<j

[
(xj − xi)

(
x−1

j − x−1
i

)]β/2
. (34)

In particular,

�(eiθ ; β) =
∏
k<l

|eiθl − eiθk |β. (35)

Define TL to be a discrete torus:

TL :=
{
eiθ ∈ C : θ ∈ 2πZ

L
∀j

}
. (36)

Define a scalar product on symmetric polynomials by

〈f,g〉L;β := 1

LMM!

∑
T M

L

f (z)g(z)�(z; β). (37)

In terms of this “discrete” Hall inner product,

tλ =
〈
s2
λ,s

2
λ

〉
L;4

LM
. (38)

Note that ∑
z1,...,zM∈TL

z
a1
1 z

a2
2 · · · zaM

M

=
{
LM if a1 ≡ · · · ≡ aM ≡ 0 (mod L)
0 otherwise.

(39)

Consequently, the inner product can be expressed as an
extraction of coefficients:

〈f,g〉L;β = 1

M!

∑
i1,...,iM∈Z

[
x

Li1
1 · · · xLiM

M

]

×f (x1, . . . ,xM )g
(
x−1

1 , . . . ,x−1
M

)
�(x; β). (40)

As we show next, for fixed f,g,M and all sufficiently
large L,

〈f,g〉L;β = 1

M!
CT[f (x)g(x−1)�(x; β)]

= 1

M!

∫
T

f (z)g(z)�(z; β), (41)

the Hall inner product of (B9).
Proposition 1. Let f,g be symmetric polynomials and

suppose that β/2 ∈ N. Let degi(f ) denote the degree of xi
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in f . Set

p1 := max
i

degi(f ), q1 := max
i

degi(g). (42)

p2 := min
i

degi(f ), q2 := min
i

degi(g). (43)

Then

| max
i

degi(f ḡ�(x; β))|
� max{|p1 − q2|,|p2 − q1|} + (β/2)(M − 1). (44)

Proof. Let δ = (0,1, . . . ,M − 1). The product f ḡ�(x; β)
is a sum of monomials of the following form: with σ (i1),σ (i2)

permutations, x
f1
1 · · · xfM

M monomials coming from f and
x

g1
1 · · · xgM

M monomials from g,

x
f1
1 · · · xfM

M x
−g1
1 · · · x−gM

M

β/2∏
i=1

(
xσ (i1)δx−σ (i2)δ

)
. (45)

The degree of xi is equal to

fi − gi +
β/2∑
i=1

σ (i1)(δ) − σ (i2)(δ). (46)

It satisfies∣∣∣∣∣fi − gi +
β/2∑
i=1

σ (i1)(δ) − σ (i2)(δ)

∣∣∣∣∣
� max{|p1 − q2|,|p2 − q1|} + (β/2)(M − 1). (47)

�
Example 2. Proposition 1 is tight. Taking M = 4,λ =

[2,1,1] and β = 2, we have

p1 = q1 = 2, p2 = q2 = 0. (48)

The proposition guarantees that the maximum degree of a
variable in f ḡ�(x; 2) does not exceed M + 1 = 5. This means
that when L > 5, the proposition guarantees that the discrete
Hall inner product will be equal to the Hall inner product.
Computing on the monomial symmetric functions,

〈mλ,mλ〉4;2 = 16 (49)

〈mλ,mλ〉5;2 = 9 (50)

〈mλ,mλ〉L;2 = 1

M!
CT[mλmμ�(x)]

= 〈mλ,mλ〉2 = 2 ∀L � 6. (51)

We see that the proposition is tight in the sense that no
smaller L would work.

Proposition 1 clarifies when we can truncate the sum in
(40). Namely, each i should satisfy

Li � max{|p1 − q2|,|p2 − q1|} + (β/2)(M − 1). (52)

The case β = 4 is of particular interest to us. According to
Proposition 1, if M,L,λ,μ satisfy L − 2M > max{λ1,μ1} −
2, then 〈

J
(1/2)
λ ,J (1/2)

μ

〉
L;4 = 〈

J
(1/2)
λ ,J (1/2)

μ

〉
4. (53)

In particular, under these conditions these Jack polynomials
are orthogonal with respect to the scalar product 〈·,·〉L;4.

Theorem 1. Suppose that L and M are given. Let λ be a
fixed partition with λ1 < (1/2)(L − 2M + 2). Let sλ,J

(1/2)
μ be

the Schur and Jack polynomials, respectively. Write

s2
λ =

∑
ν

rν
λJ (1/2)

ν . (54)

The IPR for partition λ is equal to

tλ = (2M)!

M!(2L)M
∑

ν

N (1/2)
ν (M)Cν(1/2)

(
rν
λ

)2
. (55)

Proof. Under these conditions on λ,

tλ =
〈
s2
λ,s

2
λ

〉
L;4

LM
=

〈
s2
λ,s

2
λ

〉
4

LM
. (56)

We have

〈
s2
λ,s

2
λ

〉
4 =

〈∑
ν

rν
λJ (1/2)

ν ,
∑

ν

rν
λJ (1/2)

ν

〉
4

=
∑

ν

(
rν
λ

)2〈
J (1/2)

ν ,J (1/2)
ν

〉
4. (57)

Applying (B8) for β = 4 yields the result. �
The transition coefficients for Jack polynomials with a

parameter α1 to Jack polynomials of another parameter α2

are not well understood and are closely related to several open
problems, such as finding a combinatorial description of the
Littlewood-Richardson coefficients of Jack polynomials. Our
particular case when one of the types of Jack polynomials is a
Schur polynomial offers hope, though we do not have explicit
formulas. One can calculate these coefficients indirectly, how-
ever, by transitioning first to the symmetric monomial basis:
J α1 → m → J α2 (see Appendix B 4 and the Supplemental
Material [6] for computer code in SageMath.).

Example 3. The simplest excited state has λ = [1]. Com-
puting,

s2
[1] = s[1,1] + s[2] (58)

and

s[1,1] = (1/2)J[1,1], s[2] = (2/3)J[2] − (1/6)J[1,1], (59)

so that

s2
[1] = (2/3)J[2] + (1/3)J[1,1]. (60)

The IPR is

t[1] = (1/LM )
〈
s2

[1],s
2
[1]

〉
4

= (1/LM )〈(2/3)J[2] + (1/3)J[1,1],(2/3)J[2]

+ (1/3)J[1,1]〉L. (61)

We also compute

C[1,1] = 3/2, C[2] = 3/4. (62)

N[1,1] = M

M − 1/2

M − 1

M − 3/2
, N[2] = M

M − 1/2

M + 1/2

M
.

(63)
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TABLE I. Table of IPRs, assuming L − 2M > 2λ1 and N ≈ 1,
the latter occurring when M is large.

λ tλ

[] t0

[1] (1/2)t0

[2] (11/32)t0

[1,1] (11/32)t0

[3] (17/64)t0

[2,1] (1/4)t0

[1,1,1] (17/64)t0

[4] (1787/8192)t0

[3,1] (1451/8192)t0

[2,2] (99/512)t0

[2,1,1] (1451/8192)t0

[1,1,1,1] (1787/8192)t0

Consequently,

LM t[1] = (4/9)〈J[2],J[2]〉4 + (4/9)〈J[2],J[1,1]〉4

+ (1/9)〈J[1,1],J[1,1]〉4. (64)

Assuming L > 2M + 2, we can replace the discrete Hall inner
products with the Hall inner product. Then

〈J[2],J[2]〉4 = C[2]N[2]
(2M)!

M!2M
(65)

〈J[1,1],J[1,1]〉4 = C[1,1]N[1,1]
(2M)!

M!2M
(66)

〈J[1,1],J[2]〉4 = 0. (67)

This gives us the exact value of the IPR t[1]. Assuming further
that M is large, so that N ≈ 1, yields

t[1] ≈ (1/2)
(2M)!

M!LM2M
= (1/2)t0. (68)

Example 4. Table of IPRs.
Table I suggests the following property:〈

J
(1)
λ ,J

(1)
λ

〉′
4 = 〈

J
(1)
λ∗ ,J

(1)
λ∗

〉′
4. (69)

Here, we recall, J (1) is a (rescaled) Schur polynomial and
the inner product is the Hall inner product for parameter β =
4 (or α = 1/2 in the symmetric polynomial literature). We
emphasize that the inner product has a different parameter than
the Jack polynomials being operated on. Moreover, generally
even 〈

J
(1/2)
λ ,J

(1/2)
λ

〉′
4 �= 〈

J
(1/2)
λ∗ ,J

(1/2)
λ∗

〉′
4, (70)

where the parameters are matching. Thus the choice of Schur
polynomials is special among the Jack polynomials.

Theorem 2. Let λ,μ be partitions and sλ the Schur polyno-
mial. For any β,

〈sλ,sμ〉′β = 〈sλ∗ ,sμ∗ 〉′β. (71)

Proof. Following [7, VI §2], consider the symmetric
polynomials with coefficients in Q(q,t) and define an inner

product on the basis of power sum polynomials pμ:

zμ(q,t) := zμ

l(μ)∏
i=1

1 − qμi

1 − tμi
, 〈pμ,pκ〉′q,t := δμ,κzμ(q,t).

(72)

This inner product is a q-analogue of the inner product
〈·,·〉′β . Indeed, denote the limit (q,t) → (1,1) with q = t2/β

by (q,t) −−→
2/β

(1,1). Then

lim
(q,t)−−→

2/β
(1,1)

〈·,·〉′(q,t) = 〈·,·〉′β. (73)

Let ωt,q be the standard automorphism on symmetric functions
with coefficients in Q(q,t):

ωq,t (pλ) = (−1)|λ|+l(λ)pλ

l(λ)∏
i=1

1 − qλi

1 − tλi
. (74)

Let

ωβ = lim
(q,t)−−→

2/β
(1,1)

ωq,t . (75)

The automorphism ωq,t satisfies

ω−1
q,t = ωt,q (76)

〈ωu,vf,g〉′q,t = 〈f,ωu,vg〉′q,t (77)

〈ωt,qf,g〉′q,t = 〈ω2f,g〉′2 (78)

〈ω2f,ω2g〉′2 = 〈f,g〉′2. (79)

The Schur polynomials satisfy

ω2sλ = sλ∗ . (80)

Putting this together,

〈sλ,sμ〉′β = 〈ω−1
β sλ,ωβsμ〉′β = 〈ω2sλ,ωβsμ〉′2. (81)

By evaluating on the power sum basis, we can check that

ωq,tω2 = ω2ωq,t . (82)

Consequently,

〈ω2sλ,ωβsμ〉′2 = 〈ω2ω2sλ,ω2ωβsμ〉′2
= 〈ω2ω2sλ,ωβω2sμ〉′2 = 〈ω2sλ∗ ,ωβsμ∗ 〉′2, (83)

which proves the result. �
Corollary 1. Let λ be a partition satisfying λ1 < (1/2)(L −

2M + 2) with M � |λ| (so thatNλ ≈ 1). Then the IPRs satisfy
the duality relation

tλ = tλ∗ . (84)

Proof. We have shown that under these hypotheses,

tλ =
〈
s2
λ,s

2
λ

〉
4

LM
. (85)

Moreover, since Nλ ≈ 1,〈
s2
λ,s

2
λ

〉
4〈

s2
λ∗ ,s2

λ∗
〉
4

=
〈
s2
λ,s

2
λ

〉′
4〈

s2
λ∗ ,s2

λ∗
〉′
4

. (86)
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(a) (b) (c)

FIG. 1. (a) An infinite chain of particles below an infinite chain of
holes represents the ground state. (b) The partition [3] is interpreted as
taking the ground state and moving the top particle up three positions.
(c) The partition [1,1,1] raises the top three particles of the ground
state by one position. The map taking the configuration of a partition
to that of its dual corresponds to particle-hole duality: exchanging
particles with holes followed by a flip.

It will suffice to show that the latter ratio is equal to 1. Write
s2
λ and s2

λ∗ in the Schur basis:

s2
λ =

∑
ν

cλ
ν sν, s2

λ∗ =
∑

ν

cλ∗
ν sν. (87)

Since ω is an automorphism, for any partitions μ,κ ,

ω(sμsκ ) = sμ∗sκ∗ . (88)

In particular,

s2
λ = ωω

(
s2
λ

) = ω
(
s2
λ∗

) ⇒ s2
λ∗ = ω

(
s2
λ

)
. (89)

Comparing coefficients,∑
ν

cλ∗
ν sν =

∑
ν

cλ
ν sν∗ =

∑
ν∗

cλ
ν∗sν ⇒ cλ∗

ν = cλ
ν∗ . (90)

Expanding〈
s2
λ,s

2
λ

〉′
4 =

∑
ν1,ν2

cλ
ν1

cλ
ν2

〈
sν1 ,sν2

〉′
4

=
∑
ν1,ν2

cλ
ν ′

1
cλ
ν ′

2

〈
sν ′

1
,sν ′

2

〉′
4 =

∑
ν1,ν2

cλ∗
ν1

cλ∗
ν2

〈
sν ′

1
,sν ′

2

〉′
4

=
∑
ν1,ν2

cλ∗
ν1

cλ∗
ν2

〈
sν1 ,sν2

〉′
4 = 〈

s2
λ∗ ,s

2
λ∗

〉′
4. (91)

�
We have shown that conjugate partitions have asymptoti-

cally (assuming N ≈ 1) equal IPRs. This is not the case for
finite M , when N �= 1. We thank the anonymous referee for
suggesting the following interpretation.

The ground state is represented as an infinite sequence of
particles at positions −1, − 2, . . .. In positions 0,1, . . . are
holes. A partition λ = [λ1,λ2, . . .] represents the configuration
with respect to the ground state in which the ith particle from
the top is raised by λi positions (see Fig. 1).

The map taking the particle configuration of partition
λ to the configuration of λ∗ corresponds to particle-hole
duality: First particles and holes are exchanged, and then the
configuration is flipped. We prove this in the following.

FIG. 2. Proof of Proposition 2.

Proposition 2. Suppose that M and L are infinite. Partitions
λ correspond to infinite sequences of integers I1 > I2 > · · ·
via

Ij = λj − j. (92)

We denote this map by φ. Let C be the map taking a set S to
its complement in Z and let N be the map x �→ −x − 1. The
following diagram commutes.

Partitions
φ−−−−→ Infinite integer sequences

∗↓ ↓N◦C

Partitions
φ−−−−→ Infinite integer sequences

Proof. We prove the result by induction on |λ|. For the base
case, corresponding to λ = [], φ(λ) = {−1, − 2, . . .}. Then
N ◦ C({−1, − 2, . . .}) = N ({0,1,2, . . .}) = {−1, − 2, . . .}.
On the other hand, φ([]∗) = φ([]) = {−1, − 2, . . .},
establishing the base case.

Now assume the result for all partitions with |λ| � k −
1,k � 1 and consider a partition with |λ| = k. Since the
partition has finite |λ|, there is some least index i for which
λi > λi+1. Let μ be the partition defined by

μj =
{
λj j � i

λj − 1 j < i,

a partition with |μ| < |λ|. Label the regions of φ(λ) as in
Fig. 2. The diagram of φ(λ) consists of a region a, a hole,
a sequence of consecutive particles, and then a region b of
holes. The diagram of φ(μ) is similar: Region a is followed
by the sequence of consecutive particles, then a hole, then
region b. Applying the transformation N ◦ C to the diagram of
φ(λ) yields N ◦ C(b), followed by a sequence of consecutive
holes, then a particle, then N ◦ C(a). The region N ◦ C(b)
consists solely of particles. The transformation N ◦ C takes the
diagram of φ(μ) to N ◦ C(b), followed by a particle, followed
by a sequence of consecutive holes, followed by N ◦ C(a). By
induction, this is the diagram of φ(μ∗). Since N ◦ C(b) consists
solely of particles, the diagram of N ◦ C(φ(λ)) corresponds to
raising the next unraised particle of φ(μ∗) by i positions. In
particular, it is the diagram of the dual partition φ(λ∗). This
completes the induction.
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IPRs and diagonals of permutahedra

An alternate expression for
∑

x |c(x)|4 is obtained by multiplying out the terms of the determinant:

∑
x

|c(x)|4 = 1

M!

∑
P,Q,R,S∈SM

sgn(PQRS)
M∏

j=1

L∑
x1,...,xM=1

eixj (kP (j )+kQ(j )−kR(j )−kS(j )) (93)

= LM

M!

∑
P,Q,R,S∈SM

sgn(PQRS) δ(kP (j ) + kQ(j ) − kR(j ) − kS(j ) ≡ 0 mod 2π,∀j ). (94)

Using kj = 2πIj

L
, this sum is equal to

LM

M!

∑
P,Q,R,S∈SM

sgn(PQRS) δ(IP (j ) + IQ(j ) − IR(j ) − IS(j ) ≡ 0 mod L,∀j ) (95)

= LM

M!

∑
P,Q,R,S∈SM

sgn(PQRS) δ(IP + IQ − IR − IS ≡ 0 mod L). (96)

Consequently,

tλ = 1

LMM!

∑
P,Q,R,S∈SM

sgn(PQRS) δ(IP + IQ − IR − IS ≡ 0 mod L). (97)

We may interpret the sum as follows. A permutahedron
is the polytope obtained by taking the convex hull of all
permutations of a fixed vector (I1,I2, . . . ,IM ) with distinct
entries. We can interpret IP − IR as a diagonal vector of this
permutahedron. Then a condition of the form

IP − IR = IS − IQ (98)

would be a condition on two diagonals to be mutual translates,
and a congruence of the form

IP − IR ≡ IS − IQ (mod L) (99)

is interpreted similarly.

V. FUTURE DIRECTIONS

Several interesting questions remain to be studied.
(1) Numerical experiments suggest that

lim
M→∞

〈
J

(1/2)
λ ,J

(1/2)
λ

〉
2M;4〈

J
(1/2)
λ ,J

(1/2)
λ

〉
4

= 1. (100)

In other words, for a finite number of variables, the discrete
Hall inner product is asymptotically equal to the Hall inner
product when L = 2M . The reason this is not a simple
consequence of the convergence of a Riemann sum to the
corresponding integral is that even though the number of
sample points L on each torus increases, the number of torii
M does as well. Nonetheless, numerical experiment suggests
that the error decreases (see Fig. 3). If true, this will allow us to
extend the methods to compute the asymptotics of IPRs when
L = 2M .

(2) There exists a dynamical interpretation of the IPRs
(described in Ref. [3]). In the case when the spectrum is

nondegenerate, it is given by summing the IPRs:

T :=
∑

k

tk =
D∑

i,k=1

|〈ai |ψk〉|4. (101)

This quantity measures how much the eigenstates are localized
in the preferential basis. It can range from Tmin = 1 (the
eigenstates are spread maximally over the whole basis) to
Tmax = D (each eigenstate matches a basis vector). The ratio
T/D measures the stationary return probability to an initial
basis state, averaged over all the basis states. The minimum
value is reached if the dynamics connects any initial basis
state to all the other basis states. On the other hand, if it takes
on the maximum value, then the system does not evolve if it
is initialized from a basis state. What can be said about the
quantity T for XX?

(3) The scalar product 〈·,·〉L;β is a discretization of the Hall
inner product. Using the Gram-Schmidt orthonormalization
procedure on the symmetric monomial functions, we may de-
fine an orthonormal basis which is triangular with respect to the
monomial symmetric basis. Such “discrete Jack polynomials”
may have interesting properties.

(4) The data table suggests that the IPR of the ground state
is largest. The next few excited states, labeling by partitions,
have IPRs which are approximately 1/2,1/3,1/4, and 1/5 of
the ground state IPR, for |λ| = 1,2,3,4. It is unlikely that this
pattern will continue. It would be interesting to determine the
distribution of the values of the IPRs.
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FIG. 3. Plotted are the logs of
〈J (1/2)

[2] ,J
(1/2)
[2] 〉L;4

LM and
〈J (1/2)

[2] ,J
(1/2)
[2] 〉4

LM for L = 2M .

APPENDIX A: CONNECTION BETWEEN THE IPRS OF
XX, THE CIRCULAR SYMPLECTIC ENSEMBLE, AND

THE DYSON-GAUDIN COULOMB GAS

We show in this section how to interpret the IPRs of XX in
terms of expectation values of quantities for two-dimensional
Coulomb gas on a one-dimensional lattice, or equivalently,
as expectation values over a discretization of the circular
symplectic ensemble.

In studying his famous random matrix ensembles, Dyson
[8] developed a physical model for the eigenvalues of the ma-
trices of the circular ensemble consisting of charges distributed
on a unit circle in two dimensions and experiencing Coulomb
forces. In Ref. [9], Gaudin studied a discrete formulation of
the problem, in which the gas particles lie on lattice sites of the
circle. This formulation corresponds to the finite L situation
of the IPRs above, whereas Dyson’s to the limit as L → ∞.
We will now explain the details.

1. Circular symplectic ensemble

The circular symplectic ensemble (CSE) is the space of self
dual unitary quaternion matrices with a probability measure
defined as follows. Each element is a unitary matrix, so it has
eigenvalues on the unit circle eiθ1 , . . . ,eiθM . The probability
density function for the phases in the circular symplectic
ensemble is given by

p(θ1, . . . ,θM ) = 1

ZM,4

∏
1�i<j�M

|eiθi − eiθj |4. (A1)

The normalization constant is given by

ZM,4 = (2π )M
(2M)!

2M
. (A2)

2. Dyson-Gaudin Coulomb gas

The positions which a unit charge can occupy on the
circumference of a unit circle are restricted to L equidistant

points exp(iθj ), θj = 2πj/L, 1 � j � L. One considers three
distinguished values of the inverse temperature β = 1,2,4
[10]. The joint probability density for M unit charges to occupy
positions j1, . . . ,jM is given by

Pβ(j1, . . . ,jM ) = C−1
LMβL−M exp(−βW ). (A3)

Here W is the potential energy, calculated as follows. If we
place point unit charges at angles θ1, . . . ,θM on a circle in two
dimensions of radius 1, then the potential energy is equal to

W = −
∑

1�j<k�M

log |eiθk − eiθj |, θl = 2πjl/L. (A4)

Note in particular that

exp(−βW ) =
∏

1�j<k�M

|eiθk − ejθj |β. (A5)

The expected value of a quantity f (eiθ1 , . . . ,eiθM ) is given by

Eβ(f ) =
∑

θ

f (eiθ1 , . . . ,eiθM )Pβ(j1, . . . ,jM )

= C−1
LMβL−M

∑
θ

f (eiθ1 , . . . ,eiθM )

×
∏

1�j<k�M

|eiθk − eiθj |β. (A6)

In Ref. [9], Gaudin calculates the partition function of
the discrete Coulomb gas. In particular, he determines the
normalization constant for β = 4:

∑
θ

∏
1�j<k�M

|eiθk − eiθj |4 = (2M)!LM

2MM!
. (A7)
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Hence

Eβ=4(f ) = 2MM!

(2M)!LM

∑
θ

f (eiθ1 , . . . ,eiθM )

×
∏

1�j<k�M

|eiθk − eiθj |4. (A8)

We recognize that

tλ = (2M)!

2MM!LM
Eβ=4(|sλ|4). (A9)

Thus the IPR of the ground state is equal to

t0 = (2M)!

2MM!LM
(A10)

as determined previously in Refs. [1,3].

APPENDIX B: JACK AND SCHUR POLYNOMIALS

In this section we gather the results from symmetric
function theory that we will use to analyze the IPRs. The
primary sources are Refs. [11] and [7].

1. Partitions

A partition λ = [λ1,λ2, . . .] is a weakly decreasing se-
quence of nonnegative integers. The length l(λ) is the number
of nonzero entries. Let mi(λ) = mi be the number of times i

appears in λ. Set

zλ =
∏
i�1

imi mi!. (B1)

The weight of a partition |λ| is
∑

i λi . Given two partitions
λ,μ of equal weight, the dominance partial order is defined by

λ � μ ⇐⇒
k∑

i=1

λi �
k∑

i=1

μi ∀k. (B2)

The Young diagram of a partition λ is a convenient graphical
representation. It is obtained by putting λi boxes left aligned at
row i. The conjugate partition λ∗ of λ is obtained by reflecting
the Young diagram of λ about the diagonal.

Example 5. Young diagrams and conjugate partitions. The
Young diagram of λ = [2,1,1] is

The conjugate partition λ∗ is read off from the Young diagram
after reflection in the diagonal:

Thus λ∗ = [3,1].

2. Jack polynomials

The Jack polynomials J
(2/β)
λ are a notable family of

symmetric polynomials parameterized by a real parameter
β. For β = 2, they specialize to scaled Schur functions. For
β = 1 one obtains the zonal polynomials and for β = 4 the

quaternion zonal polynomials [12]. We will be using the “J”
normalization. The Jack polynomials will be useful for us due
to their property of orthogonalizing the circular ensembles [7,
(10.36)]. We state this more precisely now.

Let λ and κ be a pair of partitions. Let λ∗ denote the
transpose of the partition λ and l(λ) the number of nonzero
parts in λ. Let (i,j ) ∈ λ refer to a cell of the Young diagram
of λ [the indexing begins at (1,1)]. Set

N (α)
λ (M) =

∏
(i,j )∈λ

M + (j − 1)α − (i − 1)

M + jα − i
(B3)

and

Cλ(α) =
∏

(i,j )∈λ

(α(λi − j ) + λ′
j − i + 1)

× (α(λi − j ) + λ′
j − i + α). (B4)

The Jack polynomials satisfy [13]∫
[0,2π]M

dθ1

2π
· · · dθM

2π
J (2/β)

κ (eiθ1 , . . . ,eiθn )

× J
(2/β)
λ (eiθ1 , . . . ,eiθn )

∏
j<k

|eiθj − eiθk |β

= δκ,λδ(l(λ) � M)Cλ(2/β)N (2/β)
λ (M)

�(1 + Mβ/2)

�(1 + β/2)M
.

(B5)

The factor �(1+Mβ/2)
�(1+β/2)M is the one from Dyson’s ex-conjecture

[8],∫
[0,2π]M

dθ1

2π
· · · dθM

2π

∏
j<k

|eiθj − eiθk |β = �(1 + Mβ/2)

�(1 + β/2)M
.

(B6)

The factor δ(l(λ) � M) is simply the statement that J
(2/β)
λ = 0

if the number of parts of λ is greater than M .
We define a corresponding inner product

〈f,g〉β = 1

M!

∫
[0,2π]M

dθ1 · · · dθM

(2π )M
f ḡ

∏
j<k

|eiθj − eiθk |β

(B7)

with respect to which

〈J (2/β)
κ ,J

(2/β)
λ 〉β = δκ,λCλ(2/β)N (2/β)

λ (M)
�(1 + Mβ/2)

M!�(1 + β/2)M
.

(B8)

This inner product can be thought of as a specialization of the
Hall inner product to finitely many variables. It may also be
written as the extraction of a constant term (see, e.g., Ref. [7,
VI, 10.35])

〈f,g〉β = 1

M!

∫
T M

f (z)g(z)�(z; β) = 1

M!
CT[f ḡ�(z; β)]

(B9)

�(z; β) =
∏
i �=j

(1 − ziz
−1
j )β/2, T = {z : |z| = 1}. (B10)
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A word about notation. Since our main interest will be with
β = 4, we will reserve the shorter Nλ,Cλ for that case.

The Jack polynomials also form an orthogonal basis of the
symmetric polynomials with respect to the Hall inner product
[13, (4.1),(4.3)],〈

J
(2/β)
λ ,J (2/β)

μ

〉′
β

= δλμCλ(2/β) (B11)

defined on power sum polynomials by

〈pλ,pμ〉′β = δλμ(2/β)l(λ)zλ. (B12)

Conceptually, we will think of this inner product as be-
ing obtained from 〈·,·〉β , upon approximating N (β)

λ (M) ≈ 1,
which occurs for large M . The � factors are a matter of
normalization.

3. Schur polynomials

Let sλ(x1, . . . ,xM ) denote the Schur polynomial associated
to the partition λ = (λ1, . . . ,λM ):

sλ(x1, . . . ,xM ) :=
det

[(
x

λj +M−j

i

)
1�i,j�M

]
det

[(
x

M−j

i

)
1�i,j�M

] . (B13)

The Schur polynomials are (rescaled) Jack polynomials J (1)

and form a linear basis for the symmetric polynomials. There
is a combinatorial description for the product of two Schur
functions. Namely, writing

sλsμ =
∑

ν

cν
λ,μsν, (B14)

the Littlewood-Richardson rule states that cν
λ,μ is equal to

the number of Littlewood-Richardson tableaux of skew shape
ν/λ and of weight μ. The coefficients are known as the

Littlewood-Richardson coefficients and appear in many other
mathematical contexts.

4. Transition matrices

When discussing transition matrices between Q bases of
symmetric polynomials [7, I §6], we index rows and columns
by partitions of a positive integer n, arranged in reverse lexi-
cographical order (so that [n] is first and [1n] is last). A matrix
(Mλμ) is strictly upper triangular if Mλμ = 0 unless μ � λ in
the dominance order on partitions. The strictly upper triangular
matrices form a group. Given twoQ bases (uλ),(vλ), we denote
by M(u,v) the matrix (Mλμ) of coefficients in the equations

uλ =
∑

μ

Mλμvμ. (B15)

M(u,v) is called the transition matrix from the basis (uλ) to
the basis (vλ).

The following result in the special case when one of the Jack
polynomials is specialized to be a Schur polynomial makes an
appearance in experimental form in Ref. [14] and is derived
using physical arguments in Ref. [15].

Proposition 3. The transition matrix M(J α1 ,J α2 ) is strictly
upper triangular with respect to the dominance ordering of
partitions.

Proof. Let (mλ) denote the the monomial basis for the
symmetric polynomials. The transition matrices M(J α1 ,m)
and M(J α2 ,m) are strictly upper triangular. Consequently,

M(J α1 ,J α2 ) = M(J α1 ,m)M(m,Jα2 )

= M(J α1 ,m)M(J α2,m)−1 (B16)

is strictly upper triangular.
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