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A formalism is presented for treating strongly correlated graphene quantum Hall states in terms of an SO(8)
fermion dynamical symmetry that includes pairing as well as particle-hole generators. The graphene SO(8) algebra
is isomorphic to an SO(8) algebra that has found broad application in nuclear physics, albeit with physically
very different generators, and exhibits a strong formal similarity to SU(4) symmetries that have been proposed to
describe high-temperature superconductors. The well-known SU(4) symmetry of quantum Hall ferromagnetism
for single-layer graphene is recovered as one subgroup of SO(8), but the dynamical symmetry structure associated
with the full set of SO(8) subgroup chains extends quantum Hall ferromagnetism and allows analytical many-body
solutions for a rich set of collective states exhibiting spontaneously broken symmetry that may be important for
the low-energy physics of graphene in strong magnetic fields. The SO(8) symmetry permits a natural definition
of generalized coherent states that correspond to symmetry-constrained Hartree-Fock-Bogoliubov solutions, or
equivalently a microscopically derived Ginzburg-Landau formalism, exhibiting the interplay between competing
spontaneously broken symmetries in determining the ground state.
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I. INTRODUCTION

Quantum Hall effects are characteristic of two-dimensional
(2D) electron gases in strong magnetic fields. The integral
quantum Hall effect (IQHE) [1] is explained in terms of weakly
interacting electrons filling quantized Landau levels (LL) pro-
duced by application of a strong magnetic field perpendicular
to the 2D gas [2]. In contrast, the fractional quantum Hall effect
(FQHE) [3] can occur only as a result of strong electronic
correlations in partially filled Landau levels [4].

Because of its massless chiral charge carriers and atomic-
monolayer honeycomb lattice exhibiting sublattice, valley, and
spin degeneracies, quantum Hall effects in graphene could
be much richer than in the semiconductor 2D electron gas,
where there is no crystal structure and the only degeneracies
are those of the (nonrelativistic) Landau levels and spin. For
graphene in strong magnetic fields, an integral quantum Hall
effect [5,6] and a fractional quantum Hall effect [7–10] have
been observed, with anomalous filling factors that reflect the
unique degeneracies of the graphene electronic structure and
the Dirac-like nature of its electrons.

The valley isospin and spin degrees of freedom imply
that graphene in a strong magnetic field is described well
by a low-energy Hamiltonian that commutes approximately
with the generators of an SU(4) Lie algebra. This SU(4)
symmetry allows classification of states in graphene, and
can serve as the basis for computing explicit breaking of the
SU(4) symmetry by small nonsymmetric terms in the effective
Hamiltonian. However, there is growing evidence that many
states observed in modern experiments cannot be described
by explicit breaking of SU(4). For example, the ground state
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of graphene in a magnetic field at low temperature exhibits
a rapid increase of the longitudinal resistance Rxx above a
critical magnetic field Bc [11]. The value of Bc decreases for
increasingly cleaner samples, indicating that the resistance is
not caused by impurity scattering but instead is intrinsic to
the state itself [12]. In quantum Hall systems the currents are
carried by edge states, so this insulating ground state must
correspond to an emergent state that does not support edge
currents produced by spontaneous (not explicit) breaking of
the SU(4) symmetry.

Thus the approximate SU(4) symmetry of graphene can
suggest possible low-energy collective modes exhibiting
spontaneously broken symmetry that are important for the
properties of graphene in a magnetic field, but the SU(4)
symmetry alone cannot determine which of these modes is the
ground state. Until now, those broken-symmetry modes have
been addressed quantitatively by numerical simulations em-
ploying limited numbers of states and particles, or by effective
low-energy field-theory approximations. These calculations
find various possible low-energy collective states resulting
from spontaneous breaking of the SU(4) symmetry with very
similar energies. Thus they have been unable to give a definitive
answer to the nature of the insulating ground state. Let us note
that other approaches to the problems addressed here have been
proposed (for example, Refs. [13–15]). However, the present
discussion will concentrate on methods based on approximate
SU(4) symmetry of the Hamiltonian.

An alternative and potentially more powerful application
of symmetries has been employed extensively in both nuclear
structure and condensed matter physics [16–20]. This fermion
dynamical symmetry method truncates the Hilbert space to a
tractable collective subspace by positing a highest symmetry
associated with the physical operators for the system, and
constructing effective Hamiltonians from polynomials in the
Casimir invariants of the highest symmetry’s subgroup chains.
In this approach it is possible not only to classify low-energy
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collective modes, but to solve analytically for the properties
of these modes and to determine which lie lowest in energy,
either exactly in particular symmetry limits, or approximately
using generalized coherent state methods.

In an earlier paper the first application of fermion dynamical
symmetry methods to graphene was introduced and applied to
determining the ground state in strong magnetic fields [21].
This paper develops the full dynamical symmetry formalism
upon which Ref. [21] rests. It will be shown that the
highest symmetry is SO(8), with its generators identifiable
with particle-hole and pairing degrees of freedom that have
been discussed previously in the physics of graphene. This
symmetry will be shown to be isomorphic to an SO(8)
symmetry used extensively in nuclear structure physics, which
permits already-developed mathematics to be appropriated
for the graphene problem, and suggests instructive physical
analogies between two very different physical systems. A
generalized coherent state approximation will be introduced
that corresponds to a Hartree-Fock-Bogoliubov (HFB) for-
malism subject to SO(8) symmetry constraints. This permits
quantitative evaluation of energy surfaces associated with
spontaneously broken symmetry.

The SO(8) highest symmetry will be shown to have an
SU(4) subgroup that recovers the known physics of SU(4)
quantum Hall ferromagnetism as a special case, but implies in
the more general case new low-energy physics that transcends
SU(4) quantum Hall ferromagnetism. Hence a solvable and
physically illuminating approach to the rich low-energy
structure of undoped graphene in strong magnetic fields will
be proposed that reproduces known physics, but also suggests
testable new physics in this complex system.

II. OVERVIEW OF PAPER

The organization of our presentation is as follows. A brief
overview of the structure of graphene in a magnetic field and
associated quantum Hall states will be given in Secs. III–V,
with emphasis on those aspects important for the material of
this paper. Then what is presently known about symmetries
for graphene states in a magnetic field, in particular SU(4)
quantum Hall ferromagnetism, is reviewed in Sec. VI. This will
complete the survey of known physics required as background
for this paper.

In Sec. VII, the essential idea of the new approach to
collective states in graphene in terms of fermion dynamical
symmetries will be introduced and related to standard SU(4)
quantum Hall ferromagnetism. Section VIII is pivotal: there
the mathematical proof will be given that the structure of
the fermion dynamical symmetry wave function is equivalent
to that of wave functions employed in more traditional
discussions of graphene quantum Hall states, even though
it looks very different superficially. In Sec. IX, it will then
be shown in outline how this implies that the new fermion
dynamical symmetry methods recover in one limit standard
SU(4) quantum Hall ferromagnetism, but open the possibility
of new physics beyond the SU(4) symmetry that can be
obtained analytically using the SO(8) Lie algebra. This is
the most important finding of this paper, and the remaining
sections will elaborate on this theme.

In Secs. X–XIII, it will be shown that in a particular
representation the fermion dynamical symmetry proposed for
graphene is isomorphic to an SO(8) dynamical symmetry
already well known in nuclear structure physics. It will then
be shown in Sec. XIV that in a different representation
more naturally adapted to the physics of graphene many
already-known results from the nuclear SO(8) can be adapted
immediately to the graphene problem (since matrix elements
calculated from Lie algebras are invariant under a change
of representation for the algebra). This will complete the
development of the formal SO(8) description of graphene in a
magnetic field. The remainder of the paper will entail finding
solutions for the corresponding equations and interpreting
them physically.

In Secs. XV–XVIII, the methods of Lie algebras will be
used to obtain analytical solutions for the graphene SO(8)
states, first for exact many-body solutions in the dynamical
symmetry limits, and then for approximate Hartree-Fock-
Bogoliubov solutions obtained using generalized coherent
state methods valid even when dynamical symmetries are
broken. These methods will then be used to investigate possible
low-lying collective states and quantum phase transitions
among them for graphene in a magnetic field in Sec. XIX.
Section XX then presents an extensive discussion of the
potential implications of these findings for understanding the
nature of the ground state for graphene in a magnetic field,
possible experimental tests, and potential shortcomings of our
new methods. Finally, a summary is given in Sec. XXI.

III. LATTICE STRUCTURE OF GRAPHENE

Comprehensive reviews of graphene physics may be found
in Refs. [22,23]. The presentation here will recall only a select
set of features that will be relevant for subsequent discussion.
Undoped graphene is a two-dimensional semiconductor with
zero band gap. It has a bipartite honeycomb lattice structure
that corresponds to two interlocking triangular sublattices,
labeled A and B. The twofold degree of freedom specifying
whether an electron is on the A sublattice or B sublattice is a
spinlike quantum number termed the sublattice pseudospin.
The dispersion of energy with momentum for undoped
graphene in the absence of a magnetic field is illustrated in
Fig. 1.

The two inequivalent points K and K ′ are not connected by
reciprocal lattice vectors. The corresponding twofold K degree
of freedom is commonly termed the valley isospin because of
the valleylike structure in the dispersion of Fig. 1 around the
K points. For brevity, the valley isospin will sometimes be
termed simply isospin.

Near the Dirac cones (inset to Fig. 1), the dispersion is
linear, the density of electronic states tends to zero, and the
electrons are described by a massless Dirac equation in which
the Fermi velocity plays the role that the speed of light would
play in an actual relativistic system. Thus the low-energy
electrons for undoped graphene in zero magnetic field behave
to good approximation as massless chiral fermions, with
the chirality representing the projection of the sublattice
pseudospin on the direction of motion. The vanishing of the
density of states at the Dirac point (Fermi surface) implies that
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FIG. 1. Electronic dispersion of graphene calculated in a tight-
binding model with no magnetic field. Two inequivalent points in
the Brillouin zone are labeled K and K ′. Near these K points the
dispersion becomes linear, leading to Dirac cones, as shown in the
expanded view. For undoped graphene, the Fermi surface lies at
the apex of the cones, where the level density vanishes and the
effective electronic mass tends to zero. Thus low-energy electrons are
governed approximately by a Dirac equation for massless electrons.

the transport properties are different from either a metal or a
semiconductor.

IV. GRAPHENE IN A MAGNETIC FIELD

Our interest will be primarily low-energy states in a strong
magnetic field. For noninteracting electrons, the quantized
levels may be found by solving the Dirac equation for massless
fermions with a vector potential appropriate to the applied
magnetic field. The dispersion of energy with magnetic field
strength for massless Dirac electrons is illustrated in Fig. 2(a).
Consider the ν = 0 state, which corresponds to half-filling of
the fourfold-degenerate n = 0 LL in graphene, as illustrated in
Fig. 2(b). The graphene honeycomb lattice is bipartite, with A
and B sublattices. The n = 0 LL is located exactly at the Dirac
point corresponding to ε = 0. For low-energy excitations in
each valley labeled by K or K ′, the intervalley tunneling may
be ignored and the electrons in the valley reside entirely on
either the A or B sublattice. Hence, for the n = 0 LL labeling
with the valley isospin (indicating whether the electron is in
a K or K ′ valley) is equivalent to labeling with the sublattice
pseudospin (indicating whether the electron is on the A or
B sublattice). The resulting state is reminiscent of a Néel
state with spins on two different sublattices, with a Néel order
defined by the difference in spins on the A and B sublattices.

V. QUANTUM HALL EFFECTS IN GRAPHENE

A quantum Hall effect is signaled by a plateau in the Hall
conductance σxy having quantized values

σxy = νe2

h
, (1)
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FIG. 2. (a) Relativistic dispersion for massless Dirac electrons
as a function of magnetic field strength B. States are labeled by a
principle quantum number n and a quantum number λ indicating
particlelike (+) and holelike (−) states. Each Landau level labeled
by n has a high orbital degeneracy �k [see Eq. (21)], and an addi-
tional fourfold degeneracy associated with spin and valley isospin.
(b) One configuration for occupation of the n = 0 Landau level in
monolayer graphene. The splitting and occupation are schematic only.
The ground state would be a superposition of such configurations
and in the SU(4) symmetry limit (which obtains for Coulomb-only
interactions) the four levels shown labeled by valley K or K ′ and spin
up or down would be degenerate. In realistic cases the splitting often
is small, suggesting approximate SU(4) symmetry.

where the filling factor ν is defined by

ν = ne

nB

= hne

eB
, (2)

with ne the charge-carrier density, B the magnetic field
strength, and nB = B/(h/e) the magnetic flux density in units
of the fundamental flux quantum h/e. These plateaus indicate
formation of an incompressible quantum liquid. This is a
compact way to say that the ground state is separated from
excited states by an energy gap, which inhibits compression
because of the energy required for excitation across the gap.

A. Integral quantum Hall states

The integral quantum Hall effect (IQHE) in graphene
is similar to the integral quantum Hall effect for nonrel-
ativistic electrons in that it corresponds to the formation
of incompressible states resulting from the complete filling
of Landau levels by weakly interacting electrons. However,
there are two important differences between the IQHE states
observed in graphene and those observed in conventional 2D
semiconductor heterostructures.

(1) In addition to the twofold spin degeneracy (in the
absence of Zeeman splitting), there is a twofold valley
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degeneracy associated with the distinct K and K ′ points in
the first Brillouin zone. Thus the filling factor changes in steps
of four between plateaus in the Hall resistance for graphene.

(2) For graphene, the filling factor ν defined in Eq. (2)
vanishes at the Dirac point for particle-hole symmetric half-
filling of the graphene lattice, since the electron density ne

tends to zero there. Hence, in the absence of a Zeeman effect
or strong electronic correlations, there is no integral quantum
Hall effect in graphene for ν = 0.

In graphene, the analog of the integral quantum Hall effect
was first observed at filling factors

ν = ±2,±6,±10, . . . (3)

by sweeping the field or the carrier density through the Landau
levels [5,6]. This implies Hall resistance quantization for filling
factors in the sequence

ν = hne

eB
= 4

(
n + 1

2

)
= 4n + 2, (4)

where ne is the charge carrier density and n is the Landau level
index [5,9]. This sequence is quite different from the integral
quantum Hall effect sequence observed in other 2D electron
gases. However, it likely results from the same basic physics
as the normal IQHE, modified by the fourfold spin-valley
degeneracies of noninteracting, massless Dirac electrons.

The period �ν = 4 in Eq. (4) is a consequence of the
approximate fourfold degeneracy of the graphene Landau
level, and the added 1/2 (which is not present in nonrelativistic
2D systems) is a Berry phase effect that results from the
special status of the n = 0 state for massless Dirac fermions: a
quantum phase arises at the band degeneracy point associated
with precession of the pseudospinor describing the twofold
sublattice degree of freedom, which modifies the quantization
condition for electronic orbits [6,24,25]. The fourfold near
degeneracy of the Landau level follows because the Zeeman
energy is small compared with the interaction energy, and
the pseudospin degree of freedom representing the two
inequivalent Dirac cones at the corners of the Brillouin zone (K
and K ′) does not couple to external fields if the two sublattices
are equivalent.

B. Fractional quantum Hall states

Because of the Dirac-cone dispersion with the Fermi level
located at the apex of the cones (see Fig. 1), low-energy
excitations in graphene occur in regions of reduced electron
density, which disfavors electron correlations. But by placing
a strong perpendicular magnetic field on the system the
resulting Landau quantization (corresponding semiclassically
to requiring that an integral number of deBroglie wavelengths
wrap around a cyclotron orbit, and implying that an integral
number of magnetic flux quanta pass through the area bounded
by the orbit) leads to a bunching of levels into regions of locally
high degeneracy separated by gaps. These regions of locally
high level density may exhibit conditions more favorable for
the development of strong correlations between electrons.

Landau levels (LL) become strongly correlated when inter-
LL excitations are of sufficiently high energy that they may
be neglected and the low-energy excitations involve only
intra-LL transitions. Then the kinetic energy of the LL is a

constant that can be omitted. This limit of strong electronic
correlations has two important physical implications. (1) The
approximate fourfold spin-valley degeneracy of the graphene
Landau levels leads to quantum Hall ferromagnetic states that
will be discussed further below. (2) The strong correlations can
produce incompressible states at partial filling of the LL that
are reminiscent of the fractional quantum Hall effect (FQHE)
in semiconductor devices.

After the discovery of the integral quantum Hall effect in
graphene, experiments performed at higher magnetic field
strengths observed quantum Hall states at filling factors
0,±1,±4. The ±4 states are thought to be the result of
single-particle Zeeman splitting of the Landau levels but the
states at filling factors 0,±1 are thought to be caused by
electron-electron interactions breaking degeneracies of the
n = 0 Landau level [7]. The structure of these incompressible
states formed by electron-electron and electron-lattice corre-
lations in partially filled Landau levels are the primary focus
of this paper.

VI. QUANTUM HALL SYMMETRIES IN GRAPHENE

In the normal two-dimensional electron gas produced in
semiconductor devices, the Landau levels can contain eB/h

states, where e is the electronic charge and B is the magnetic
field. As has been seen, in graphene there is an additional
fourfold degeneracy associated with the spin and valley
degrees of freedom. It is common to unite these four degrees
of freedom in terms of an SU(4) symmetry that is termed
quantum Hall ferromagnetism (QHFM).

A. SU(4) quantum Hall states

SU(4) symmetry for graphene in a strong magnetic field is
expected when all four spin and valley levels are degenerate.
Two conditions must be satisfied for this condition to be ful-
filled. (1) Landau-level mixing caused by inter-LL electronic
transitions must be negligible. (2) Perturbations within a single
LL that break the fourfold spin-isospin symmetry must be
small. The resulting theory predicts quantum Hall states that
have no analog in semiconductor heterostructures.

The two-dimensional electronic spin degree of freedom and
the two-dimensional electronic valley (K) degree of freedom
are most elegantly expressed in terms of independent spin
and valley isospin states. For the spin, introduce the Pauli
matrix vector σ = (σx,σy,σz), with the standard representation
in terms of 2 × 2 matrices obeying an SU(2) Lie algebra.
The Pauli matrices are assumed to operate on a spinor basis
of spin-up and spin-down electrons denoted by |↑〉 and |↑〉,
respectively. A set of equations in the valley isospin space
completely analogous to those in the spin space results if one
defines the SU(2) Pauli-matrix representation for the valley
isospin operators τ = (τx,τy,τz), which operate on the valley
isospinor basis with components |K〉 and |K〉′. The operators
σ and τ may now be used to construct an effective low-energy
Hamiltonian having Landau-level and internal spin and valley
isospin degrees of freedom.

B. Effective low-energy Hamiltonian

The two largest energy scales for graphene in a strong
magnetic field are the Landau-level separation and the
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Coulomb energy. At the charge neutral point (Fermi energy
for undoped graphene), the LL separation is approximately
three times larger than the Coulomb energy, which is in turn
considerably larger than any additional terms in the interaction.
Therefore a strategy is adopted here of ignoring excitations
between Landau levels and projecting onto the n = 0 LL. At a
quantitative level the Landau level mixing cannot be ignored
(see the discussion in Ref. [26]), but such an approximation
gives the correct qualitative physics and the effect of excluded
Landau levels can be included to some degree by parameter
renormalization, which will be sufficient for our purposes.

Within this single Landau level, the Hamiltonian is assumed
to be dominated by a long-range Coulomb interaction that
is SU(4) symmetric, with shorter-range interactions in spin
and valley degrees of freedom (originating in both screened
electron-electron interactions and electron-phonon interac-
tions) causing SU(4) symmetry breaking. To implement this, a
graphene Hamiltonian projected onto the n = 0 Landau level
is adopted that was proposed in Ref. [26] and employed further
in Ref. [27],

H = HC + Hv + HZ, (5)

where the valley-independent Coulomb interaction HC may be
expressed as

HC = 1

2

∑
i �=j

e2

ε|r i − rj | , (6)

Hv is the short-range, valley-dependent interaction,

Hv = 1

2

∑
i �=j

[
gzτ

i
z τ

j
z + g⊥

(
τ i
xτ

j
x + τ i

yτ
j
y

)]
δ(r i − rj ), (7)

where the Pauli matrices τα operate on the valley isospin and
gz and g⊥ are coupling constants, and the Zeeman energy HZ

is given by

HZ = −μBB
∑

i

σ i
z , (8)

where μB is the Bohr magneton, B is the magnetic field
strength, the Pauli matrices σα operate on the electronic spin
degrees of freedom, and the z direction for the spin space is
chosen to be aligned with B.

C. Symmetries of the effective Hamiltonian

Letting α = (x,y,z), β = (x,y), and using mk to label
Landau states, the set of 15 operators,

Sα =
∑
mk

∑
τσσ ′

〈σ ′|σα|σ 〉c†τσ ′mk
cτσmk

, (9a)

Tα =
∑
mk

∑
σττ ′

〈τ ′|τα|τ 〉c†τ ′σmk
cτσmk

, (9b)

Nα = 1

2

∑
mk

∑
σσ ′τ

〈τ |τz|τ 〉〈σ ′|σα|σ 〉c†τσ ′mk
cτσmk

, (9c)

�αβ = 1

2

∑
mk

∑
σσ ′ττ ′

〈τ ′|τβ |τ 〉〈σ ′|σα|σ 〉c†τ ′σ ′mk
cτσmk

, (9d)

is closed under commutation, defining an SU(4) Lie algebra
that commutes with the Coulomb interaction HC [26,27].
Thus, if Hv and HZ are small compared with HC in Eq. (5),
the Hamiltonian will have an approximate SU(4) invariance.
The operator SSS represents the total spin and the operator T
represents the total valley pseudospin. In the n = 0 Landau
level for graphene there is an equivalence between valley and
sublattice degrees of freedom, so N can be viewed as a Néel
vector in the n = 0 Landau level measuring the difference in
spins on the A and B sublattices. The operators �αβ coupling
spin and valley isospin will be discussed further below.

D. Explicit symmetry breaking

The occurrence of SU(4) symmetry and its explicit
symmetry-breaking pattern depend on the values of the ef-
fective coupling parameters gz and g⊥. For the lattice spacings
found in graphene, each can be estimated to be considerably
smaller than the SU(4)-symmetric Coulomb term, so one may
expect SU(4) to be broken only weakly by explicit terms
in realistic systems. Four basic explicit symmetry-breaking
patterns have been identified [26,27].

(1) For arbitrary nonzero values of gz and g⊥, the symmetry
is broken to

SU(4) ⊃ SU(2)s × U(1)v ⊃ U(1)s × U(1)v, (10)

where SU(2)s is associated with global conservation of spin
and U(1)s with conservation of its z component, and U(1)v

is associated with conservation of the Tz component of the
valley isospin. (Conservation of Tz implies physically that
the difference in electronic densities between the K and K ′
sites is invariant, which might be expected to be true for
low-energy states having minimal scattering between valleys).
In the absence of Zeeman splitting, spin is conserved, but only
the z component of the valley isospin is conserved. The full
Hamiltonian (5) including the Zeeman term conserves only
the z components of the spin and valley isospin.

(2) If g⊥ = 0 but gz �= 0, the symmetry is broken to

SU(4) ⊃ SU(2)Ks × SU(2)K
′

s × U (1)v

⊃ U(1)Ks × U(1)K
′

s × U(1)v. (11)

In the absence of Zeeman splitting, this corresponds to
conserving independent spin rotations for the wave function
in each valley labeled by K and K ′, but breaking of the
valley isospin to U(1)v. The full Hamiltonian (5) including
the Zeeman term conserves only the z components of the spin
in each valley separately, and the z component of the valley
isospin.

(3) If gz = g⊥ �= 0, the symmetry is broken to

SU(4) ⊃ SU(2)s × SU(2)v ⊃ U(1)s × SU(2)v, (12)

corresponding to full spin and valley isospin rotational
symmetry in the absence of Zeeman splitting. The complete
Hamiltonian (5) including the Zeeman term conserves the
SU(2) isospin symmetry but only the z component of the spin.

(4) If g⊥ = −gz �= 0, the Hamiltonian commutes with
�αβ,SSS, and Tz, and these ten operators generate the Lie group
SO(5), so [27]

SU(4) ⊃ SO(5) ⊃ U(1)s × SU(2)z, (13)
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FIG. 3. Explicit symmetry-breaking structure for SU(4) quantum Hall ferromagnetism described by the Hamiltonian (5).

where the SU(2)z symmetry is generated by (Tz,�zx,�zy).
Thus, in the absence of Zeeman splitting, the system exhibits
an SO(5) symmetry involving both spin and valley isospin.
The full Hamiltonian (5) including the Zeeman term conserves
the z component of spin and the SU(2)z symmetry. The
SO(5) subgroup plays the role of a transitional symmetry
connecting the Néel-like states associated with Nα and the
states associated with valley degrees of freedom Tx and Ty .

The subgroup structure for these four patterns of explicit
SU(4) symmetry breaking is illustrated in Fig. 3. These
symmetries and explicitly broken symmetries have proven
extremely useful in understanding the states of graphene in
a strong magnetic field [26,27] .

VII. FERMION DYNAMICAL SYMMETRIES

Let us now consider using symmetries in an even more
powerful way than that discussed in the preceding section.
Specifically, let us attempt to describe the quantum Hall
ferromagnetic behavior of graphene using fermion dynamical
symmetries of an effective Hamiltonian operating in a highly
truncated collective subspace. This has the potential to pre-
scribe dynamics as well as taxonomy and conservation laws,
within a many-body model having analytical solutions that
illuminate the physics of quantum Hall states in graphene.

As noted in the Introduction and elaborated in Refs. [16–
20], application of these methods requires identifying on
physical grounds a highest symmetry, constructing associated
group generators expressed in terms of second-quantized
fermionic operators, identifying subgroup chains of physical
relevance and the invariant Casimir operators associated with
those subgroup chains, and specifying a convenient description
of the basis wave functions in the Hilbert subspace that is
selected by the dynamical symmetry truncation. In addition,
for the specific problem being considered here it is important to
elucidate how the description of graphene in a strong magnetic
field in the dynamical symmetry formalism is related to prior
SU(4) quantum Hall ferromagnet descriptions of the same

problem. These will be developed in Secs. VII–XIV, and used
beginning in Sec. XV to find dynamical symmetry solutions
for the graphene problem.

A. Symmetry generators

For clarity of discussion, a valence space will be assumed
corresponding to a single Landau level. To avoid cluttered
notation, the index n labeling the Landau level is suppressed
and the fermion creation operator c

†
τσmk

and the corresponding
hermitian conjugate cτσmk

are introduced. The index τ takes
one of two values (±) labeling the valley isospin projections
corresponding to valleys K or K ′, the electron spin polarization
σ takes one of two values (↑↓) labeling spin up or spin down,
and mk is a quantum number distinguishing degenerate states
within a given Landau level (typically, an angular momentum
in symmetric gauge or a linear momentum in Landau gauge).
By virtue of the anticommutation of the fermionic operators,
the c†α create a fermion in the state labeled by α, the cα

annihilate a fermion in the same state, and nα = c†αcα counts
the number of fermions in the state labeled by α.

The four states representing possible combinations of τ and
σ are displayed in Table I, and correspond physically to the
four possible combinations of the electron being in either the
K or K ′ valley with either spin up or spin down [see Fig. 2(b)].
For brevity the label a = 1,2,3,4 displayed in the last column
of the table will often be used to distinguish these states. The

TABLE I. Quantum numbers.

Valley τ σ mi a

K + ↑ + 3
2 1

K + ↓ + 1
2 2

K ′ − ↑ − 1
2 3

K ′ − ↓ − 3
2 4
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=1 =2 

=3 =4 

FIG. 4. The four isospin-spin basis vectors |a〉 of Table I.

four basis states labeled by a are illustrated graphically in
Fig. 4.

Table I also displays a unique mapping of these four states
to a label mi that takes the four possible projection quantum
numbers {± 1

2 , ± 3
2 } of a fictitious angular momentum i = 3

2 ;
the motivation for this mapping will become apparent later.

Let us now introduce an operator A
†
ab that creates a pair

of electrons, one in the a = (τ1,σ1) level and one in the b =
(τ2,σ2) level, with the total mk of each pair coupled to zero
term by term,

A
†
ab =

∑
mk

c†amk
c
†
b−mk

, (14)

and its hermitian conjugate Aab, which annihilates a corre-
sponding electron pair. Each index a or b ranges over four
values, implying 16 components in Eq. (14). However, the
pair wave function must satisfy the Pauli principle which,
upon expanding the indices a and b using Table I, eliminates
the four diagonal (a = b) possibilities. Furthermore, because
of the antisymmetry requirement the pair creation operators
are constrained by A

†
ab = −A

†
ba, implying that only half of

the remaining 12 operators A† are independent. Thus Eq. (14)
defines six independent operators A†, with six independent
hermitian conjugates A. Let us introduce in addition to these
pairing operators the 16 particle-hole operators Bab through

Bab =
∑
mk

c†amk
cbmk

− 1

4
δab�, (15)

where δab is the Kronecker delta and � is the total degeneracy
of the single Landau level [see Eq. (22)]. The commutators for
the 28 operators A,A†, and B are found to be [28]

[Aab,A
†
cd ] =−Bdbδac − Bcaδbd + Bcbδad + Bdaδbc, (16a)

[Bab,Bcd ] = δbcBad − δadBcb, (16b)

[Bab,A
†
cd ] = δbcA

†
ad + δbdA

†
ca, (16c)

[Bab,Acd ] =−δacAbd − δadAcb, (16d)

which is isomorphic to an SO(8) Lie algebra. Thus the 28
members of the operator set (A,A†,B) exhibit SO(8) symmetry
under commutation.

B. Relationship with standard graphene SU(4) symmetry

The SU(4) generators (9) may be expressed in terms of
the operators (15) by utilizing the equivalences in Table I to
expand the indices for Bab from Eq. (15). As an example,
consider the spin operator Sy . From Eq. (9a),

Sy =
∑
mk

∑
τσσ ′

〈σ ′|σy |σ 〉c†τσ ′mk
cτσmk

=
∑
mk

( − ic
†
+↑mk

c+↓mk
+ ic

†
+↓mk

c+↑mk

− ic
†
−↑mk

c−↓mk
+ ic

†
−↓mk

c−↑mk

)
= −iB12 + iB21 − iB34 + iB43.

By such methods one finds that the spin operators (9a) may be
expressed in terms of the Bab generators of SO(8) as

Sx = B12 + B21 + B34 + B43, (17a)

Sy = −i(B12 − B21 + B34 − B43), (17b)

Sz = B11 − B22 + B33 − B44, (17c)

the valley isospin operators (9b) as

Tx = B13 + B31 + B24 + B42, (18a)

Ty = −i(B13 − B31 + B24 − B42), (18b)

Tz = B11 + B22 − B33 − B44, (18c)

The Néel vector of Eq. (9c) as

Nx = 1

2
(B12 + B21 − B34 − B43), (19a)

Ny =− i

2
(B12 − B21 − B34 + B43), (19b)

Nz = 1

2
(B11 − B22 − B33 + B44), (19c)

and the operators �αβ of Eq. (9d) as

�xx = 1

2
(B14 + B41 + B23 + B32), (20a)

�yx = − i

2
(B23 − B32 + B41 − B14), (20b)

�zx = 1

2
(B13 + B31 − B24 − B42), (20c)

�xy = − i

2
(B32 − B23 + B41 − B14), (20d)

�yy = −1

2
(B41 + B14 − B23 − B32), (20e)

�zy = − i

2
(B31 − B13 − B42 + B24). (20f)

The inverse transformations expressing the Bab in terms
of the {Sα, Tα,Nα,�αx,�αy} are given in Appendix. Hence
the SU(4) algebra generated by the operators in Eq. (9)
is a subalgebra of the SO(8) algebra, with its generators
corresponding to particular linear combinations of the subset
of SO(8) generators defined by the particle-hole operators Bab

in Eq. (15).

115117-7



LIAN-AO WU, MATTHEW MURPHY, AND MIKE GUIDRY PHYSICAL REVIEW B 95, 115117 (2017)

TABLE II. Pair degeneracies � for magnetic field strengths B.

Domain size B = 2 T B = 10 T B = 50 T

5 μm × 5 μm 24,150 120,750 603,750
10 μm × 10 μm 96,660 483,000 2.145 × 106

VIII. PAIR REPRESENTATIONS

Pairs of fermions often afford a convenient basis for
discussing collective states, so let us consider some possible
configurations involving pairs of electrons in graphene.

A. Degeneracies and level filling

Consider the degeneracies of undoped graphene placed in
a strong magnetic field, confining the discussion to the case
of a single Landau level for simplicity. The single-particle
states within the Landau level will be assumed labeled by the
quantum numbers (n,mk), where n is the principle quantum
number indicating the Landau level and mk is a quantum
number distinguishing the degenerate states within the Landau
level. In the absence of spin and valley degrees of freedom,
the states (n,mk) of the Landau level are assumed to hold a
maximum of 2�k electrons. From the solution of the Dirac
equation in a magnetic field

2�k = BS

(h/e)
, (21)

where B is the strength of the magnetic field, S is the area
of the two-dimensional sample and h/e = 4.136 × 10−15 Wb
defines the magnetic flux quantum. But graphene has in
addition four internal degrees of freedom associated with the
|spin〉 ⊗ |isospin〉 space. Thus there are four copies of each
Landau level in graphene and the total electron degeneracy
2� is given by

2� = 4(2�k) = 4BS

(h/e)
. (22)

Some pair degeneracies calculated from Eq. (22) as a function
of domain size and magnetic field strength are displayed in
Table II, where it is assumed that the collective wave function
is delocalized over the entire domain size.

The fractional occupation f of the single Landau level [not
to be confused with the filling factor ν given in Eqs. (2) and
(25)] may be defined as

f ≡ n

2�
= N

�
, (23)

where n is the number of electrons and N = 1
2n is the number

of electron pairs. For half-filling of the n = 0 Landau level
located at the Fermi surface (corresponding to the ground state
of undoped graphene) the electron number ngs is then

ngs = � = 2BS

(h/e)
. (24)

These degeneracies and occupation numbers are just the
standard results for relativistic Landau levels in a 2D electron
gas subject to a strong perpendicular magnetic field, but
modified by the graphene spin and valley degeneracies.

Graphene exhibits both integral and fractional quantum
Hall effects but the filling factors are anomalous relative to
those for standard quantum Hall effects in semiconductor
heterostructures. This is because of (1) the fourfold degeneracy
associated with the spin and valley degrees of freedom and (2)
the nature of the Dirac solution, illustrated in Fig. 2, for which
the negative-energy solutions may be interpreted as electron
holes, the positive-energy solutions as electrons, and the n = 0
level is unique, being half-filled in the neutral ground state.

Because of the particle-hole symmetry, the charge carriers
change sign near the Dirac points and the Hall conductivity
vanishes at charge neutrality (the electron number density
tends to zero at a Dirac point). For this reason, the filling factor
for graphene must be defined relative to the charge-neutral
state. At charge neutrality the n = 0 Landau level is half-filled
and when the n = 0 LL is completely full the filling factor
is 4 × 1

2 = 2, from Eq. (4). The quantum Hall filling factor
ν may be related to the Landau level fractional occupation f

employed in the present formalism by

ν = 4

(
f − 1

2

)
= 4

(
n

2�
− 1

2

)
. (25)

Therefore half-filling of the n = 0 Landau level corresponds
to a fractional occupation f = 1

2 but to a filling factor ν =
0, ν = −2 corresponds to f = 0 (completely empty), ν = −1
corresponds to f = 1

4 filling, ν = +1 corresponds to f = 3
4

filling, and ν = +2 corresponds to f = 1 (completely full).

B. Many-pair states

Consider the states created by repeated application of
the pair creation operator A

†
ab defined by Eq. (14) to the

pair vacuum. It is useful to classify states according to a
senioritylike quantum number u defined to be the number of
particles in the system not coupled to one of the pairs defined
in Eq. (14). The u = 0 subspace will be of particular interest
since it will contain states of maximal collectivity with respect
to the pairs (14). An N -pair state in the u = 0 subspace is
given by

(A†
12)N12 (A†

13)N13 (A†
14)N14 (A†

23)N23 (A†
24)N24 (A†

34)N34 |0〉, (26)

where the total pair number N is

N = 1
2n = N12 + N13 + N14 + N23 + N24 + N34, (27)

with n giving the total number of electrons and Nab giving
the number of electron pairs created by A

†
ab operating on the

vacuum state. For our discussion here it will always be assumed
that one is dealing with u = 0 states, corresponding physically
to no broken pairs.

C. States in SO(8) ⊃ SU(4) irreducible representations

From Eq. (16), the 16 operators Bab are closed under
commutation and form a U(4) ⊃ U(1) × SU(4) subalgebra of
the SO(8) algebra (16). Let us now investigate the irreducible
representations (irreps) that are associated with the SO(8) ⊃
SU(4) subgroup chain in the u = 0 representations.
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1. The highest-weight state

For u = 0 at half-filling, the number of pairs is N = 1
2� =

2k + 1 and the highest-weight U(4) representation is given by
(�

2 ,�
2 ,0,0). Let us define a highest-weight (HW) state in the

u = 0 space, and choose it to correspond to the pair state with
maximal value of mi from Table I, which results from placing
one electron in the a = 1 state and one electron in the a = 2
state. Thus, for N = 2k + 1 pairs, the highest weight state is
given by

|HW〉 = 1

(2k + 1)!
(A†

12)2k+1|0〉

= 1

(2k + 1)!

(∑
mk

c
†
1mk

c
†
2,−mk

)2k+1

|0〉, (28)

where the sum runs over the 2k + 1 states in the Landau level
labeled by the mk = (−k, − k + 1, . . . ,k − 1,k) quantum
number. The other states of the irreducible representation
may then be created by the Cartan-Dynkin algorithm, which
consists of using raising and lowering operators in the weight
space to construct successively all the other states beginning
with the highest weight state [29].

The state in Eq. (28) appears to have a quite complex
form, involving a sum with number of terms equal to the
pair degeneracy of the Landau level raised to a power equal to
the pair degeneracy (with the pair degeneracy typically a very
large number). However, the actual structure of this state is
considerably simpler than Eq. (28) would suggest because of
the Pauli principle. As an illustrative example of this assertion,
let us construct explicitly the highest-weight state for the case
k = 1, corresponding to 2k + 1 = 3 pairs in a single Landau
level. Writing the sum over mk = (−1,0,+1) in Eq. (28) out
term by term gives

|HW〉 = 1

3!
(c†1,−1c

†
21 + c

†
10c

†
20 + c

†
11c

†
2,−1)3|0〉

= c
†
10 c

†
20 c

†
11 c

†
21 c

†
1,−1 c

†
2,−1 |0〉 =

mk=+k∏
mk=−k

c
†
1mk

c
†
2mk

|0〉,

where in raising the sum of operators inside the parentheses to
the 2k + 1 = 3 power, all products containing two or more
creation operators with the same index vanish because of
the Pauli principle. Similar considerations apply for arbitrary
values of k and in general the highest-weight state is given by

|HW〉 = 1

N !
(A†

12)N |0〉 = 1

N !

(∑
mk

c
†
1mk

c
†
2−mk

)N

|0〉

=
mk=+k∏
mk=−k

c
†
1mk

c
†
2mk

|0〉, (29)

where the simplification in the last step is a consequence of
the antisymmetry of the fermion creation operators (the Pauli
principle). Thus the highest-weight state is a product state of
pairs, one pair for each of the N = 2k + 1 levels labeled by
mk in the Landau level.

2. Other SO(8) ⊃ SU(4) states

By the Cartan-Dynkin algorithm, other states in the u = 0
subspace can be constructed by applying successively to
the highest-weight state appropriate lowering and raising
operators. These will be functions of the generators Bab, so for
an arbitrary state |ψ〉 in the weight space one has schematically
|ψ〉 = F (Bab)|HW〉, where the function F (Bab) is specified
by the Cartan-Dynkin procedure. As an example, consider
the action of the valley isospin lowering operator T− on the
highest-weight state. From Eqs. (18) and (15),

T− ≡ 1

2
(Tx − iTy) =

∑
mk

(
c
†
K ′↑mk

cK↑mk
+ c

†
K ′↓mk

cK ′↓mk

)
.

Thus the state |ψ〉 created by applying T− to |HW〉 is

|ψ〉 =
∏
mk

[∑
nk

(
c
†
K ′↑nk

cK↑nk
+ c

†
K ′↓nk

cK ′↓nk

)]
c
†
K↑mk

c
†
K↓mk

|0〉

=
∏
mk

(
c
†
3mk

c
†
2mk

+ c
†
4mk

c
†
1mk

)|0〉, (30)

where the simplifications are because the only terms that
survive correspond to those where an annihilation operator
in a factor inside the square brackets is exactly balanced by a
creation operator from the factor outside the square brackets.
Likewise, the other states of the u = 0 representation can be
constructed by using successive applications of raising and
lowering operators fashioned from the generators defined in in
Eqs. (17)–(20).

D. Equivalence of pair and product wave functions

From the preceding, for N = 1
2� states may be written as

|ψ〉 = F (Bab)|HW〉

=
∏
mk

[ ∑
τστ ′σ ′

�∗
τστ ′σ ′c

†
τσmk

c
†
τ ′σ ′mk

]
|0〉, (31)

where τ,τ ′ denote valley isospin projection quantum numbers
and σ,σ ′ denote spin projection quantum numbers. This is
the same form as the most general collective pair state used
by Kharitonov [26] in his classification of possible broken
symmetry states for the n = 0 Landau level in graphene. Thus,
for undoped graphene, the general pairing wave function (26)
characteristic of the SO(8) ⊃ SU(4) dynamical symmetry is in
fact equivalent to the product form (31) employed in standard
discussion of quantum Hall ferromagnetism, for which the
summations are over the internal (τ,σ ) rather than Landau
(mk) degrees of freedom. The equivalence of Eqs. (31) and
(26), despite their superficially very different forms, is a
fundamental consequence of the Pauli principle acting in
the collective fermionic pair subspace, which greatly restricts
allowed pair configurations.

IX. BEYOND QUANTUM HALL FERROMAGNETISM

The preceding discussion has established that the fermion
dynamical symmetry method applied to undoped graphene
in a strong magnetic field has one dynamical symmetry
chain SO(8) ⊃ SU(4) that recovers exactly SU(4)-symmetric
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quantum Hall ferromagnetism. Since the Bab operators in-
troduced in Eq. (15) form an SU(4) subgroup of SO(8) that
is in one-to-one correspondence with the operators used to
formulate the effective low-energy Hamiltonian (5), Sec. VII
implies that all of the physics associated with this effective
Hamiltonian that has been discussed in the prior literature (see
Refs. [26,27] and references cited therein) is implicit in the
present formalism.

Furthermore, the discussion of Sec. VIII shows that the
pair basis (26) of the truncated collective subspace for the
SO(8) fermion dynamical symmetry is in fact identical to the
most general wave function (31) that has been proposed [26]
for collective states breaking the SU(4) symmetry, despite
its superficially very different form. Thus the Hilbert-space
truncation implied by the collectively paired SO(8) subspace
(26) recovers the understanding in the existing literature of the
classes of states to be expected from spontaneous breaking of
the SU(4) symmetry by valley-dependent correlations.

However, the existing discussions of these collective states
in terms of broken SU(4) symmetry have been largely
qualitative, and have turned to numerical simulations to discuss
the actual structure and energy of the states. It will now be
demonstrated that the present formalism is capable not only
of classifying, but also of addressing the quantitative nature
of those collective states in analytical fashion. This is simpler
than numerical simulation, easier to visualize conceptually,
and avoids errors associated with use of small bases in
numerical simulations done to date. Furthermore, it will be
shown that the SO(8) highest symmetry implies subgroup
chains in addition to SO(8) ⊃ SU(4) that are associated with
spontaneous breaking of the symmetry by correlations and
have not been discussed in the previous literature and that may
play a role in graphene.

Let us begin that discussion by first transforming to
a more convenient representation of the SO(8) generators.
This new representation will be physically equivalent to the
original representation, but will offer some advantages in
interpretation, and will expose an unexpected relationship
between graphene physics and that of a very different field,
nuclear structure physics.

X. COUPLED REPRESENTATIONS

For the pair creation operators defined in Eq. (14), each elec-
tron creation operator c† carries both spin and valley isospin;
hence the products c†c† correspond to a Clebsch-Gordan series
representing sums of terms having different values of total spin
and total isospin. Likewise, in the particle-hole operators of
Eq. (15) each creation operator c† and annihilation operator
c carries spin and isospin, so the product c†c in Eq. (15)
represents a superposition of states carrying different total spin
and total valley isospin. These representations with indefinite
spin and isospin will be termed uncoupled representations.

On physical grounds, the spin is expected to be conserved
(if the Zeeman term in the Hamiltonian is neglected) and
the valley isospin is expected to be approximately conserved
for low-energy excitations. Thus it is desirable to use the
uncoupled representation of the pairing and particle-hole
operators to construct new coupled representations that have

good total spin and good total valley isospin quantum numbers
for bilinear operators.

A. Coupled representation for pairing operators

Using standard angular momentum coupling theory [30],
an electron pair creation operator coupled to good spin and
valley isospin may be defined by

A
†ST

MSMT
≡

∑
m1m2n1n2

C
SMS
1
2 m1

1
2 m2

C
T MT
1
2 n1

1
2 n2

c†m1n1mk
c
†
m2n2−mk

, (32)

where S is the total spin of the pair with MS its projection, T

is the total valley isospin of the pair with MT its projection,
and CJM

j1m1j2m2
are Clebsch-Gordan coefficients for the angular

momentum sum j1 + j2 = j that couple the pair to good total
spin or total valley isospin. Antisymmetry implies that the pair
wave function can have only S = 1, T = 0; or S = 0, T =
1 (spin-triplet, isospin-singlet; or spin-singlet, isospin-triplet
pairs). Explicitly the possibilities are

A
†10
00 = A

†
14 − A

†
23, A

†10
10 =

√
2A

†
12, A

†10
−10 =

√
2A

†
34

(33)
A

†01
00 = A

†
14 + A

†
23, A

†01
01 =

√
2A

†
13, A

†01
0−1 =

√
2A

†
24,

with the Hermitian conjugates of Eq. (33) giving the six corre-
sponding pair annihilation operators in coupled representation.
It is useful to define an alternative set of six coupled pairing
operators S† and D†

μ(μ = 0,±1,±2) according to

S† = 1√
2

A
†10
00 = 1√

2
(A†

14 − A
†
23),

D
†
0 = 1√

2
A

†01
00 = 1√

2
(A†

14 + A
†
23),

(34)

D
†
1 = 1√

2
A

†01
01 = A

†
13, D

†
−1 = 1√

2
A

†01
0−1 = A

†
24,

D
†
2 = 1√

2
A

†10
10 = A

†
12, D

†
−2 = 1√

2
A

†10
−10 = A

†
34,

and the six corresponding hermitian conjugates S and Dμ.
The physical meaning of these pairs may be deduced by
constructing the corresponding electronic configurations. As
an example, consider D

†
2. From Eqs. (34) and (14),

D
†
2 = 1√

2
A

†10
10 = A

†
12 =

∑
mk

c
†
1mk

c
†
2−mk

=
∑
mk

c
†
K↑mk

c
†
K↓−mk

,

where in the last step the correspondence between the index
a = 1,2,3,4 and the valley (K or K ′) and spin (↑↓) labels
in Table I has been invoked. This implies that D

†
2|0〉 creates

a state with one spin-up and one spin-down electron on
each equivalent site K in the Brillouin zone, as illustrated
schematically in Fig. 5.

This is a component of a lattice-scale charge density wave,
since the charge differs by two electronic units between
adjacent sites. Likewise, one finds that D

†
−2|0〉 creates a

charge density wave as in Fig. 5, but with the spin-singlet
pairs on the K ′ sites. The pair configurations produced by all
generators of Eq. (34) operating on the pair vacuum |0〉 are
summarized in Fig. 6.

115117-10



SO(8) FERMION DYNAMICAL SYMMETRY AND STRONGLY . . . PHYSICAL REVIEW B 95, 115117 (2017)

D2  =0 

K

KK'

K'

K K'

FIG. 5. The action of the pair creation operator D
†
2 on the vacuum

state is to create a charge density wave with a spin-singlet pair on
each site K and no electrons on the K ′ sites.

Also shown are the configurations generated by the linear
combinations

|Q±〉 = Q
†
±|0〉 ≡ 1

2 (S† ± D
†
0)|0〉 = 1

2 (|S〉 ± |D0〉), (35)

which will be useful in later discussion.
Kharitonov has given a general classification of low-lying

collective modes for the n = 0 Landau level of graphene in
terms of collective pairs [26]. The collective pairs created by
the SO(8) pair generators in Fig. 6 are similar physically to the
pairs identified by Kharitonov, as will now be described.

(1) The configuration generated by S†|0〉 is proportional
to the difference of two terms, each with alternating spin up
and spin down on adjacent sites, implying that all spins on the
A sublattice (identified with valley K) point in one direction
and all spins on the B sublattice (identified with valley K ′)
point in the opposite direction. Each term corresponds to a
spin density wave (AF order), with a Néel vector defined by
the difference in total spins on the two sublattices serving as an
order parameter, but because of the difference of the two terms
the net AF order for this configuration is zero (see Sec. XIV A
and Table III).

D-1  =0D-2  =0 D2  =0

D1  =0 =0D0  +1
2

−S  =0 1
2

K

K

KK'

K'

K'

Valley
isospin
labels

=0Q+  
1
2

=0Q-  
-1
2

FIG. 6. Configurations created by the S† and D†
μ pair creation

operators of Eq. (34), and for the linear combinations Q± of Eq. (35),
operating on the pair vacuum |0〉. The upper left box illustrates the
valley isospin labeling. A total of six valence electrons as assumed to
be distributed on sites in the Brillouin zone. In each pair configuration,
location of the dots (K or K ′ site) indicates the valley isospin, spin-up
electrons are indicated by up arrows, and spin-down electrons are
indicated by down arrows.

TABLE III. Order parameters for states in Fig. 6.

State 〈Sz〉 〈Tz〉 〈Nz〉
|S〉 = S†|0〉 0 0 0

|D−2〉 = D
†
−2|0〉 0 −1 0

|D2〉 = D
†
2|0〉 0 1 0

|D−1〉 = D
†
−1|0〉 −1 0 0

|D1〉 = D
†
1|0〉 1 0 0

|D0〉 = D
†
0|0〉 0 0 0

|Q+〉 = 1
2 (|S〉 + |D0〉) 0 0 1

|Q−〉 = 1
2 (|S〉 − |D0〉) 0 0 −1

(2) The configurations generated by D
†
±2|0〉 correspond

to spin-singlet charge density waves, with alternating charges
of two and zero units on adjacent sites. An appropriate order
parameter is the difference in charge between the A and B
sublattices.

(3) The configurations generated by D
†
±1|0〉 have one spin

on each site, all pointing in the same direction; this is a
ferromagnetic state, with the net spin as an order parameter.

(4) The configuration generated by D
†
0|0〉 is the same as that

generated by S†|0〉, except for a positive sign for the second
term. This also implies alternating spins on adjacent sites and
AF order for each term, but the total AF order vanishes because
of the contribution of the two terms.

(5) The configurations corresponding to Q
†
±|0〉 are states

with AF order characterized by the difference in spins on the
two sublattices labeled by K and K ′.

Therefore it may be concluded that the pairs carrying good
spin and valley isospin in Eq. (34) represent physical degrees
of freedom already discussed in the literature as candidate
collective modes representing spontaneous breaking of the
SU(4) graphene symmetry by interactions in a single partially
filled Landau level.

B. Coupled representation for particle-hole operators

It is desirable to express the particle-hole generators of
Eq. (15) in coupled representation. Let us begin by introducing
a set of operators

P r
μ =

∑
mj ml

(−1)
3
2 +m�C

r μ
3
2 mj

3
2 m�

Bmj −m�
, (36)

with the definition

Bmj −m�
≡

∑
mk

c†mj mk
c−m�mk

− 1

4
δmj −m�

�, (37)

where mj and m� take the values of the fictitious angular
momentum projection mi in Table I, providing a labeling
equivalent to that of a and b in Bab, with mj or m� values
{ 3

2 , 1
2 ,− 1

2 ,− 3
2 } mapping to a or b values {1,2,3,4}, respectively.

For example, from Table I, Bab = B12 and Bmj m�
= B3/2,1/2

label the same quantity, which is defined in Eq. (15). From the
standard selection rules for coupling of angular momentum
in Eq. (36), the index r can take the values r = 0,1,2,3, with
2r + 1 projections μ for each possibility, which gives a total
of 16 operators P r

μ. By inserting the explicit values of the
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Clebsch-Gordan coefficients the 16 independent P r
μ may be

evaluated in terms of the Bab to give

P 0
0 = 1

2
(B11 + B22 + B33 + B44)

= 1

2
(n1 + n2 + n3 + n4 − �) = 1

2
(n − �),

P 1
0 =

√
9

20
(B11 − B44) +

√
1

20
(B22 − B33)

=
√

9

20
(n1 − n4) +

√
1

20
(n2 − n3),

P 1
1 = −

√
3

10
B12 −

√
4

10
B23 −

√
3

10
B34,

P 1
−1 =

√
3

10
B21 +

√
4

10
B32 +

√
3

10
B43,

P 2
0 = 1

2
(B11 − B22 + B44 − B33)

= 1

2
(n1 − n2 + n4 − n3),

P 2
1 = 1√

2
(B34 − B12), P 2

−1 = 1√
2

(B21 − B43),

P 2
2 = − 1√

2
(B13 + B24), P 2

−2 = − 1√
2

(B31 + B42),

P 3
0 =

√
1

20
(B11 − B44) +

√
9

20
(B33 − B22)

=
√

1

20
(n1 − n4) −

√
9

20
(n2 − n3),

P 3
1 = −

√
1

5
B12 +

√
3

5
B23 −

√
1

5
B34,

P 3
−1 =

√
1

5
B21 −

√
3

5
B32 +

√
1

5
B43,

P 3
2 =

√
1

2
(B24 − B13) P 3

−2 =
√

1

2
(B42 − B31),

P 3
3 = −B14 P 3

−3 = B41, (38)

where the

ni = Bii =
∑
mk

c
†
imk

cimk
− 1

4
� (39)

are number operators for each of the four states and the total
particle number n is the sum over the four states labeled by
a in Table I, n = n1 + n2 + n3 + n4 = total particle number.
It will be convenient notationally to sometimes replace the
operator P 0

0 with the operator S0, according to the relationship

S0 ≡ 1
2 (n − �) = P 0

0 , (40)

where 2� is the degeneracy of the space for the particles that
participate in the SO(8) symmetry. Physically, S0 = 1

2 (n −
�) is one-half the particle number measured from half-filling
(which corresponds to n = �).

C. Lie algebra for coupled operators

Because the six operators defined by Eq. (34), their
six hermitian conjugates, and the 16 operators defined by
Eq. (36) are independent linear combinations of the SO(8)
generators defined in Eqs. (14) and (15), the 28 operators
{S, S†,Dμ,D†

μ, P �
μ} also close an SO(8) algebra under com-

mutation. The SO(8) commutation relations for the coupled
representation {S, S†,Dμ,D†

μ, P �
μ} are given explicitly by

[18,31]

[S,S†] = −2S0, (41a)

[Dμ′ ,D†
μ] = −2δμμ′S0 +

∑
t odd

(−1)μ
′

×C
t,μ−μ′

2,−μ′2μ

{
2 2 t
3
2

3
2

3
2

}
P t

μ,−μ′ , (41b)

[
D†

μ,S
] = P 2

μ, (41c)[
P r

μ,S†] = 2δr2D
†
μ + 2δr0δμ0S

†, (41d)

[P r
μ′ ,D

†
μ] = 2(−1)μ

′
δr2δ−μμ′ − 4

√
5(2r + 1)

×C
2,μ+μ′
rμ′2μ

{
2 2 r
3
2

3
2

3
2

}
D

†
μ+μ′, (41e)

[
P r

μ′ ,P
s
μ

] = 2(−1)r+s
√

(2r + 1)(2s + 1)
∑

t

C
t,μ+μ′
rμ′sμ

× [1 − (−1)r+s+t ]

{
r s t
3
2

3
2

3
2

}
P t

μ+μ′ , (41f)

where S0 is defined in Eq. (40) and { } denotes the Wigner 6-j
symbol [30] for the recoupling of three angular momenta to
good total angular momentum.

XI. COLLECTIVE SUBSPACE

The action of the SO(8) pair creation operators on the pair
vacuum N times creates a 2N -particle state [31],

|NsNd〉 = (S†)Ns (D†)Nd |0〉, (42)

where the total number of pairs is N = NS + ND . The portion
of the full Hilbert space that is spanned by the states (42) will
be termed the collective subspace. It will play an important role
in subsequent discussion where it will be shown that the SO(8)
symmetry may be used to construct effective Hamiltonians that
are diagonal in this space, and that the generators of SO(8) do
not couple the subspace to the remainder of the space.

XII. ANALOGY WITH SO(8) SYMMETRY IN NUCLEI

The reason for our alternative labeling of the states in
Table I in terms of the index mi , and our particular choices
of phases and normalizations in equations, can now be made
clear. With these labelings and choices the six coupled particle-
particle operators S† and D†

μ defined in Eq. (34), their six
hermitian conjugates S and Dμ, and the 16 coupled particle-
hole operators P �

μ defined in Eq. (36), are mathematically
in one-to-one correspondence with the 28 generators for
the Ginocchio SO(8) model [31] and the SO(8) fermion
dynamical symmetry model [16,17,32]. These have found
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broad application in nuclear structure physics [18] and may
be viewed as a microscopic justification for the interacting
boson model (IBM) [33], which is one of the most commonly
used phenomenological models in nuclear structure physics.

This correspondence has three important implications: (1)
Mathematically, the group-theoretical methodology obtained
for SO(8) already in nuclear physics applications may be ap-
propriated for use in the graphene problem. (2) Physically, the
nature of the generators for the nuclear physics and graphene
SO(8) symmetries are fundamentally different, but analogs of
physical interpretations applied already for nuclear physics
SO(8) symmetries may shed light on the graphene problem.
(3) Philosophically, the SO(8) correspondence between
graphene and nuclear structure physics implies a satisfying
convergence of mathematical reasoning and physical abstrac-
tion in two completely different scientific subfields. The third
point will be elaborated in other papers; in this paper we
concentrate on elucidating the first two points.

XIII. NUCLEAR ANALOG SUBGROUP CHAINS

The SO(8) group has various subgroups (subsets of gen-
erators closed under commutation) and these in turn may
have other subgroups. These sequences of subgroups define
subgroup chains. These chains will be discussed first in terms
of the nuclear physics basis {S, S†,Dμ,D†

μ, P �
μ}, and then in

terms of a new basis that is mathematically equivalent but is
physically better suited to describing the physics of graphene.

In the nuclear physics, basis P 0 is the particle number
and generates a group U(1)c, while P 1 is proportional to the
total angular momentum and generates a group SO(3)L. In
the nuclear physics context the total angular momentum and
the particle number are expected to be conserved exactly for all
physical states. Thus one seeks subgroup chains of SO(8) that
end in the subgroup SO(3)L × U(1)c corresponding to charge
and angular momentum conservation. Three SO(8) subgroup
chains satisfy these conditions.

A. SO(5) × SU(2)p subgroup chain

From Eq. (41a), the quasispin generators (S,S†,S0) close
an SU(2)p algebra that is a subalgebra of SO(8), and from
Eq. (41d), the operators P r

μ with r = 1,3 close an SO(5)
algebra and commute with these SU(2) quasispin generators.
Thus one subgroup of SO(8) is

SO(8) ⊃ SO(5) × SU(2)p,

where SO(5) is generated by the ten operators (P 1
μ,P 3

μ), where
μ takes the 2r + 1 values μ = (−r,−r + 1, . . . ,r − 1,r)
and the quasispin group SU(2)p is generated by (S,S†,S0),
where S0 = P 0. Furthermore, the three generators P 1

μ are
components of the total angular momentum L and generate an
SO(3)L subgroup of SO(5), and S0 generates a U(1)c subgroup
of SU(2)p corresponding to conservation of charge. Thus one
subgroup chain is

SO(8) ⊃ SO(5)
{P 1, P 3}

× SU(2)p
{S, S†, S0}

⊃ SO(3)L
{P 1}

× SU(2)p
{S, S†, S0}

⊃ SO(3)L
{P 1}

× U(1)c
{S0}

, (43)

where the generators of each subgroup are indicated in brackets
below the subgroup and the product group on the last line
corresponds to conservation of total angular momentum and
particle number.

B. SO(6) ∼ SU(4) subgroup chain

The groups SU(4) and SO(6) share the same Lie algebra.
In nuclear physics it is more common to refer to this group as
SO(6), but to maintain a parallel with the ensuing treatment
of graphene it will be labeled SU(4) in the present discussion.
From Eq. (41f), the 16 operators P r

μ(r = 0,1,2,3) are closed
under commutation, corresponding to

SO(8) ⊃ U(4) ⊃ U(1)c × SU(4),

where the generator of U(1)c is P 0 = S0 and the 15 operators
P r

μ(r = 1,2,3) are the generators of SU(4). Furthermore, the
subset of P r with odd r are generators of the SO(5) symmetry
discussed above and so generate an SO(5) subgroup of this
SU(4) group. Hence a second subgroup chain is

SO(8) ⊃ U(4)
{P 0, P 1, p2, P 3}

⊃ U(1)c
{S0}

× SU(4)
{P 1, p2, P 3}

⊃ SO(5)
{P 1, P 3}

× U(1)c
{S0}

⊃ SO(3)L
{P 1}

× U(1)c
{S0}

, (44)

where Eq. (40) has been used to replace P 0
0 with S0.

C. SO(7) subgroup chain

From Eqs. (41b), (41e), and (41f), the 21 operators
{S0,D

†
μ,Dμ, P 1

μ, P 3
μ} close an SO(8) ⊃ SO(7) subalgebra of

SO(8) and the subset {P 1, P 3, S0} closes an SO(5) × U(1)c
subalgebra of SO(7). Thus a third subgroup chain is given by

SO(8) ⊃ SO(7)
{S0,D†, D, P 1, P 3}

⊃ SO(5)
{P 1, P 3}

× U(1)c
{S0}

⊃ SO(3)L
{P 1}

× U(1)c
{S0}

. (45)

The relationships of the nuclear analog SO(8) subgroup chains
described above are summarized in Fig. 7.

XIV. GRAPHENE SO(8) SUBGROUP CHAINS

The subgroup chains in Sec. XIII were expressed in terms
of the nuclear physics basis {S, S†,Dμ,D†

μ, P �
μ}. This basis

demonstrates the deep connection between graphene quantum
Hall physics and nuclear structure physics, and is suitable
mathematically to describe graphene quantum Hall effects.
However, it is not well suited physically to interpreting the
graphene quantum Hall effects for three reasons.

(1) The relationship between the generators of the SO(8) ⊃
SU(4) subgroup in the nuclear physics basis and those of the
SU(4) quantum Hall ferromagnetism basis defined in Eq. (9)
is not clear, which hinders interpretation of the present results
in terms of preceding results found in the graphene literature.

(2) Charge and electronic spin are expected to be conserved
in graphene (if the Zeeman term is neglected), but none
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SO(8)

SO(7) U(1)c x SU(4)

   P1, P2, P3, 
S0, S, S , D, D

   P1, P3, S0, D, D P1, P3 S0, S, S

P1, P3 S0

P1 S0

SO(5) x SU(2)p

SO(5) x U(1)c

SO(3)L x U(1)c

   P1, P2, P3S0

FIG. 7. Nuclear analog SO(8) subgroup chains with generators in
the coupled representation {P 0, P 1, P 2, P 3, S, S†,Dμ, D†

μ} given by
Eqs. (36) and (34) and obeying the Lie algebra of Eq. (41). Generators
are indicated below each group factor and S0 and P 0 ≡ P 0

0 may be
interchanged using Eq. (40). The subgroup structure expressed in
this basis is in one-to-one correspondence with the SO(8) fermion
dynamical symmetry model [17] of nuclear structure physics.

of the generators {S, S†,Dμ,D†
μ, P �

μ} can be interpreted as
spin in the application to graphene (instead, spin is a linear
combination of these generators). For physical applications,
it is desirable to employ a basis in which the relevant
conservation laws are manifest.

(3) In addition to the exact conservation laws expected
for charge and spin in graphene, it is expected on physical
grounds that for low-energy excitations the scattering between
valleys is strongly suppressed and the difference in electron
densities between neighboring valleys should be very nearly
conserved. This difference is expressed by the z component
of the valley isospin Tz, and the corresponding approximate
invariance is reflected in a U(1)v symmetry generated by Tz.
But Tz is not proportional to any of the P r generators (it is a
linear combination of these generators), so this approximate
invariance is not manifest in the nuclear SU(4) basis.

Thus a new basis will be employed for the SO(8) generators
in application to graphene for which the particle number
(charge) operator n or S0 and the 12 pairing operators
{Dμ,D†

μ, S, S†} are retained, but the 15 SU(4) generators
{P 1, P 2, P 3} in the nuclear representation are replaced with
the 15 SU(4) generators {Sα, Tα,Nα,�αx,�αy} with α =
x,y,z defined in the graphene representation given in Eq. (9),

{P 1, P 2, P 3, S0, S, S†,Dμ,D†
μ}Nuclear SO(8) −→

{Sα, Tα,Nα,�αx,�αy, S0, S, S†,Dμ,D†
μ}Graphene SO(8).

The transformation from the {P 1, P 2, P 3} generators to the
{Sα, Tα,Nα,�αx,�αy} generators is given in Appendix.

A. Order parameters

In the new basis, it will be convenient to take as order
parameters

〈Sz〉 = 〈n̂1〉 − 〈n̂2〉 + 〈n̂3〉 − 〈n̂4〉, (46a)

〈Tz〉 = 〈n̂1〉 + 〈n̂2〉 − 〈n̂3〉 − 〈n̂4〉, (46b)

〈Nz〉 = 〈n̂1〉 − 〈n̂2〉 + 〈n̂4〉 − 〈n̂3〉, (46c)

where n̂i is the number operator counting particles in basis
state |i〉 and the expectation value is taken with respect to
the collective wave function. Physically, (1) the net spin is
measured by 〈Sz〉, which characterizes ferromagnetic order.
(2) The difference in charge between the A and B sublattices
is measured by 〈Tz〉, which characterizes charge density
wave order. (3) The difference in spins between the A
and B sublattices is measured by 〈Nz〉, which characterizes
antiferromagnetic (Néel or spin density wave) order. The order
parameters evaluated for the states of Fig. 6 are displayed in
Table III.

B. Conserved quantities

In the new basis, it will be assumed that both charge
and spin are exactly conserved for the physical states of the
model in the absence of the Zeeman term HZ, that the charge
and the z component of spin are exactly conserved if the
Zeeman term is included in the Hamiltonian, and that Tz is
conserved, where appropriate. Neglecting the Zeeman term,
the spin-charge symmetry corresponds to a group structure
SU(2)σ × U(1)c, where SU(2)σ is generated by the spin
operators and U(1)c is generated by the particle number
operator. Thus one seeks subgroup chains of SO(8) that
end in the subgroup SU(2)σ × U(1)c corresponding to charge
and spin conservation, and in some of these chains a U(1)v

subgroup implying conservation of Tz will also be required.
The group and subgroup structure in the new basis is illustrated
in Fig. 8, where seven nontrivial subgroup chains may be
identified that begin with SO(8) and end with the symmetry
U(1)c × U(1)s corresponding to conservation of charge and
z-component of the spin in the magnetic field

SO(8) ⊃ SU(4) ⊃ SO(5) ⊃ SU(2), (47a)

SO(8) ⊃ SU(4) ⊃ SU(2)Kσ × SU(2)K
′

σ ⊃ SU(2), (47b)

SO(8) ⊃ SU(4) ⊃ SU(2)σ × SU(2)v ⊃ SU(2), (47c)

SO(8) ⊃ SU(4) ⊃ SU(2), (47d)

SO(8) ⊃ SO(5) × SU(2)p ⊃ SO(5) ⊃ SU(2), (47e)

SO(8) ⊃ SO(5) × SU(2)p

⊃ SU(2)σ × SU(2)p ⊃ SU(2), (47f)

SO(8) ⊃ SO(7) ⊃ SO(5) ⊃ SU(2), (47g)

where for brevity all U(1) factors are dropped in the notation
and SU(2) means SU(2)σ corresponding to conservation of
spin. Each of these corresponds to a different dynamical
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SO(8)

SO(7) U(1)c  x SU(4)

S, T, N, Πx , 
Πy , S 0

S, T, N, Πx , Πy

S0 , S, S , D, D

SO(5) x SU(2)p

SO(5) x U(1)cSU(2)σ  x SU(2)p
x U(1)c

SU(2)σ  x SU(2)v
x U(1)c

SU(2)σ  x U(1)c

S, Tz , Πx , Πy  , S0

S, Tz , Πx , Πy ,
S0 , S, S

S, S0

S, Tz , Πx , Πy

S0 , D, D

S, S0 , S, S S, Tz , N, S0 S, T, S0

SU(2)σ  x U(1)v
x U(1)c

S, Tz , S0

SU(2)σ  x SU(2)σ
x U(1)c x U(1)v

K K'

FIG. 8. SO(8) subgroup chains with generators in a representation more suitable than that of Fig. 7 for interpreting graphene physics.
Group generators are indicated in each box. The boxes shown with shading and dashed boundaries and are relevant for interpreting the SU(4)
quantum Hall ferromagnetism illustrated in Fig. 3. In this classification, the Zeeman term has been neglected so all subgroup chains end in the
group SU(2)σ × U(1)c corresponding to the conservation of total spin and total charge. If the Zeeman term is included, it will influence directly
only the spin sector and break all SU(2)σ factors down to U(1)σ generated by the z component of the spin, Sz.

symmetry that is realized for particular choices of parameters
for the SO(8) Hamiltonian, and that yields exact many-body
solutions using the dynamical symmetry methodology. Let us
now discuss in more detail three subgroup chains of SO(8).

C. The graphene SO(5) × SU(2) subgroup chains

The quasispin generators (S, S†, S0) close an SU(2)p
algebra that is a subalgebra of SO(8), and the operators
{Sα,�αx,�αy, Tz} close an SO(5) algebra and commute with
these SU(2) quasispin generators. Putting this together, one
subgroup of SO(8) is SO(8) ⊃ SO(5) × SU(2)p, Furthermore,
the three generators Sα are components of the total spin and
generate an SU(2)σ subgroup of SO(5), and S0 generates a
U(1)c subgroup of SU(2)p corresponding to conservation of
charge. Thus one subgroup chain is

SO(8) ⊃ SO(5) × SU(2)p ⊃ SU(2)σ × SU(2)p

⊃ SU(2)σ × U(1)c, (48)

where the product group on the last line corresponds to
conservation of spin and charge. This subgroup chain with its
corresponding generators is illustrated in Fig. 8. Alternatively,
SO(5) may be broken according to the pattern

SO(8) ⊃ SO(5) × SU(2)p ⊃ SO(5) × U(1)c

⊃ SU(2)σ × U(1)c, (49)

which also conserves spin and charge, and is illustrated in
Fig. 8.

D. The graphene SU(4) subgroup chains

A U(4) ⊃ U(1)c × SU(4) subgroup of SO(8) may be
obtained by removing the 12 pairing operators from the SO(8)
generator set. The U(1)c subgroup is generated by the particle
number (charge) and the SU(4) subgroup is generated by the 15
remaining operators, which are defined in Eq. (9) in the current
basis. There are several options for chains corresponding to
further subgroups.

(1) The subset {Sα,�αx,�αy, Tz} defines generators of
the SO(5) symmetry discussed above and so forms an SO(5)
subgroup of this SU(4) group. Hence one SU(4) subgroup
chain is

SO(8) ⊃ U(4) ⊃ U(1)c × SU(4)

⊃ SO(5) × U(1)c ⊃ SU(2)σ × U(1)c, (50)

which is displayed in Fig. 8.
(2) Physically, the total spin is conserved. If there

is little intervalley scattering one may also assume the
spin within each K valley and each K ′ valley to
be separately conserved, corresponding to a SU(2)Kσ ×
SU(2)K

′
σ symmetry. Thus a second SU(4) subgroup chain
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TABLE IV. Properties of SO(8) and its subgroups.a

Groupa Dim Generators Quantum numbersb Casimir operators Cg Casimir eigenvaluesc

SO(8) 28 P 1,P 2,P 3,S0,S,S†,D,D† ρ1,ρ2,ρ3,ρ4
1
2 (S†S + D† ·D) + CSU(4) + S0(S0 − 6) 1

4 (� − u)(� − u + 12) + φ(ρi)

SO(7) 21 {P 1,P 3,S0,D,D†} or θ1,θ2,θ3
1
2 D† · D + S0(S0 − 5) + CSO(5)

1
2 (� − w)(� − w + 10) + ζ (θi)

{�x,�y,SSS,τz,S0,D,D†}
SO(5) 10 {P 1,P 3} or τ,ω P1 · P1 + P3 · P3 = τ (τ + 3) + 1

2 ω(ω + 4) + τω

{�x,�y,SSS,τz} �x ·�x + �y ·�y + 1
4 SSS ·SSS + 1

4 τz

U(4) 16 P 0,P 1,P 2,P 3 n,σ1,σ2,σ3 P0 · P0 + P1 · P1 + P2 · P2 + P3 · P3 n2 + σ (σ + 4)

SU(4) 15 {P 1,P 2,P 3} or σ1,σ2,σ3 P1 · P1 + P2 · P2 + P3 · P3 = σ (σ + 4)

{�x,�y,N,SSS,τ } �x ·�x + �y ·�y + N · N + 1
4 (SSS ·SSS + τ ·τ )

SU(2)p 3 S0,S,S† ν S†S + S0(S0 − 1) 1
4 (� − ν)(� − ν + 2)

SU(2)σ 3 SSS s 1
4 SSS ·SSS s(s + 1)

SU(2)τ 3 T τ 1
4 T ·T T (T + 1)

U(1)c 1 S0 n S0
1
2 (n − �)

aSU(4) ∼ SO(6) (they share the same Lie algebra). S0 = P 0 = 1
2 (n − �), where n is particle number. Components of spin SSS are functions of

P 1 and P 3. The shorthand notation �β ≡ �αβ has been employed.
bThe quantum numbers {ρi}, {σi}, {θi}, and (τ,ω) are Dynkin labels [29] for the irreps of SO(8), SU(4), SO(7), and SO(5), respectively; see
Ref. [28]. The SO(7) quantum number w appearing in the Casimir eigenvalue is the number of particles that do not form D pairs (see the D†

μ

creation operators defined in Eq. (34). The seniority quantum number ν is the number of particles that do not form S pairs.
cThe number of particles not coupled to S or D pairs is u. The functions φ(ρi) and ζ (θi) are given by [18]

φ(ρ1,ρ2,ρ3) = 1
2

(
ρ2

1 + ρ2
2

) + 1
4 (ρ1 + ρ3)(ρ1 + ρ3 + 4ρ2 + 12) + ρ2(ρ2 + 4)

ζ (θ2,θ3) = θ2(θ2 + 3) + 1
2 θ3(θ3 + 4) + θ2θ3

They are nonzero only if u �= 0.

corresponds to

SO(8) ⊃ U(4) ⊃ U(1)c × SU(4)

⊃ SU(2)Kσ × SU(2)K
′

σ × U(1)c × U(1)v

⊃ SU(2)σ × U(1)c, (51)

where U(1)v is generated by Tz. This chain also is displayed
in Fig. 8.

(3) Finally, one can imagine that SU(4) is broken into
subgroups corresponding to simultaneous conservation of both
spin and valley isospin, giving a third SU(4) subgroup chain,

SO(8) ⊃ U(4) ⊃ U(1)c × SU(4)

⊃ SU(2)σ × SU(2)v × U(1)c ⊃ SU(2)σ × U(1)c,

(52)

as illustrated in Fig. 8.
Comparing Fig. 8 with Fig. 3, it is apparent that the

three SO(8) ⊃ SU(4) subgroup chains defined in this section
correspond to the three symmetry-breaking patterns described
in Sec. VI and discussed in Refs. [26,27] for the SU(4)
quantum Hall ferromagnetism model. The portion of the
SO(8) subgroup structure leading to SU(4) quantum Hall
ferromagnetism is indicated by the shaded boxes with dashed
outer boundaries in Fig. 8. Thus it is seen explicitly that the
special case corresponding to the SO(8) ⊃ SU(4) subgroup
chains of the present model imply the results of Refs. [26,27].

E. The graphene SO(7) subgroup chain

The 21 operators {Sα,�αx,�αy, Tz, S0,D
†
μ,Dμ} close an

SO(8) ⊃ SO(7) subalgebra of SO(8), and the subset of genera-

tors {Sα,�αx,�αy, Tz, S0} close an SO(5) × U(1)c subalgebra
of SO(7). Thus a third subgroup chain is given by

SO(8) ⊃ U(4) ⊃ U(1)c × SU(4)

⊃ SO(7) ⊃ SO(5) × U(1)c ⊃ SU(2)σ × U(1)c,

(53)

as illustrated in Fig. 8. This subgroup chain is of particular
interest because it will define a critical dynamical symmetry
that represents an entire phase exhibiting critical behavior and
interpolating between two other phases.

XV. DYNAMICAL SYMMETRY LIMITS

Let us use the subgroup structure of the preceding section to
obtain exact solutions of the correlated many-body problem in
these dynamical symmetry limits. The basic idea is to use the
Casimir invariants of the subgroup chains like those described
in Sec. XIV and illustrated in Fig. 8 to label states. Then model
Hamiltonians constructed only from the Casimir invariants
of a single subgroup chain permit analytical solution of the
effective Schrödinger equation in that symmetry limit [18].
Specifically, if a Hamiltonian H = f (C1,C2, . . . ,Cn) can be
expressed as a function of the Casimir invariants of some
subgroup chain G1 ⊃ G2 ⊃ · · · ⊃ Gn, where the Ci represent
Casimir operators for the groups Gi , then the system is said to
possess a dynamical symmetry associated with the subgroup
chain.

The discussion will be simplified by restricting to the
lowest-order Casimir invariant for each group, which cor-
responds physically to omitting n-body interactions with
n > 2. Elementary properties of Lie groups then permit the
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eigenvalues E and eigenfunctions � of this Hamiltonian to be
expressed in closed form as

E = f (C1(ν1),C2(ν2), . . . ,Cn(νn)) � = |ν1,ν2, . . . ,νn〉,
where the νi stand for the quantum numbers required to specify
the irreducible representations (irreps) of the groups Gi . The
physical properties of the corresponding states can then be
elucidated by using the methods of Lie groups and Lie algebras
to evaluate matrix elements for observables. In this way, one
generally finds that the dynamical symmetries associated with
subgroup chains of some highest symmetry define collective
(emergent) states that correspond to particular patterns of
spontaneous symmetry breaking.

The Casimir operators that appear in each of these sub-
groups chains and the relevant quantum numbers labeling
the states for each dynamical symmetry are summarized in
Table IV. In the next section, these results for the Casimir
operators will be used to construct the most general Hamil-
tonian permitted in the truncated collective space for specific
dynamical symmetries.

A. Most general dynamical symmetry Hamiltonian

As has been seen, in a particular dynamical symmetry
limit the most general Hamiltonian can be constructed from
a sum of Casimir invariants for the groups contained in
the corresponding subgroup chain. For SO(8) dynamical
symmetries, the most general Hamiltonian in the absence of
the Zeeman term is represented by the linear combination

H = H0 + aCSO(8) + bCSU(4) + cCSO(5)

+ dCSU(2)p + eCSU(2)σ ,

where H0 is assumed constant in the symmetry limit, the
Casimir operators Cg have been summarized in Table IV, and
CSO(7) does not appear explicitly because it has been eliminated
by the constraint [17]:

CSO(7) = CSO(8) − CSU(4) + CSO(5) − S†S + S0. (54)

Hamiltonians representing specific dynamical symmetry limits
then correspond to particular choices of the coefficients
a,b, . . . in this general expression. It may be shown that the
most general Hamiltonian can also be expressed in the compact
form (see Eqs. (4.1) of Ref. [17])

H = H ′
0 + G0S

†S + G2D
† ·D +

∑
r=1,2,3

BrP
r ·P r, (55)

where H ′
0 is assumed constant in a symmetry limit and where

the different dynamical symmetry limits correspond to specific
choices for the values of the parameters G0,G2, and Br . The
last term is expressed in terms of the P r from the nuclear basis.
It can be converted to the graphene basis by inverting Eq. (A1)
of Appendix to solve for the P r .

Let us now discuss each of the SO(8) dynamical symmetries
and their physical interpretations. For brevity, let us refer to the
following. (1) The dynamical symmetry structure associated
with Eqs. (48) and (49) as the SO(5) × SU(2) dynamical
symmetry. (2) The dynamical symmetry structure associated
with Eqs. (50)–(52) as the SU(4) dynamical symmetry. (3) The
dynamical symmetry structure associated with Eq. (53) as the
SO(7) dynamical symmetry.

Initially, the role of the Zeeman term (which would
break the full spin symmetry down to conservation of its z

component) will be ignored and it will be assumed that the
chains end in the subgroup SU(2)σ × U(1)c corresponding to
the physical requirement that spin and charge be conserved
exactly.

B. The SO(5) × SU(2) dynamical symmetry

The dynamical symmetry chains given in Eqs. (48)–(49)
and illustrated in Fig. 8 correspond to two alternative ways of
choosing subgroups of SO(5) × SU(2)p:

⊃ SU(2)σ ×SU(2)p ⊃
SO(5)×SU(2)p SU(2)σ ×U(1)c⊃

SO(5) × U(1)c ⊃.

In the upper branch of the middle step, the SO(5) symmetry is
broken to its SU(2) spin subgroup, with SU(2)p unbroken.
Physically, this corresponds to conservation of the spin
associated with the Sα angular momentum algebra and the
pseudospin associated with the {S, S†, S0} pair algebra, but
not the full SO(5) symmetry. In the lower branch of the middle
step, the SO(5) symmetry remains intact and S-pair pseudospin
SU(2) is broken to U(1) charge. In the final subgroup of
both chains, only the spin and charge remain as conserved
quantities.

The Hamiltonian in the SO(5) × SU(2) dynamical sym-
metry limit corresponds to Eq. (55) with the restriction that
G2 = B2 = 0,

HSO(5) = G0S
†S +

∑
r=1,3

Br P r ·P r

= �x ·�x + �y ·�y + 1

4
SSS ·SSS + 1

4
τ 2
z

= 1

4

∑
σ i ·σ j

(
τ i
xτ

j
x + τ i

yτ
j
y

)
+ 1

4

∑
σ i ·σ j + 1

4

∑
τ i
z τ

i
z , (56)

where terms that are constant within a given representation
have been omitted and �β ≡ �αβ .

The most general SO(8) state in the u = 0 collective sub-
space is given by Eq. (42) and corresponds to a superposition
of S and Dμ pairs. Schematically,

|SO(8)〉 = (S†)N−Nd (D†)Nd |0〉, (57)

with S† and D† defined in Eq. (34) and Nd � N , where N

is the total pair number. On the other hand, the most general
states corresponding to the various subgroup chains illustrated
in Fig. 8 correspond to pair superpositions having specific
constraints on the relative contribution of S and D pairs. The
collective subspace for the SO(5) × SU(2)p subgroup of SO(8)
is of the form (see Eq. (9.13) of Ref. [31])

|SO(5) × SU(2)p〉 = (S†)N |0〉, (58)

implying that it is a superposition of S pairs. Conceptually,
the wave function of the SO(5) × SU(2)p subgroup chain for
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-

SDW with spin-up
on A lattice sites

SDW with spin-up
on B lattice sites

A B A B

FIG. 9. The collective state corresponding to the SO(8) ⊃
SO(5) × SU(2) ground state. The state is an antisymmetric com-
bination of a spin density wave with spin up on the A lattice sites and
spin down on the B sites, and a spin density wave with spin up on the
B sites and spin down on the A sites.

u = 0 is obtained from the most general state in the collective
subspace by converting all of its D pairs to S pairs.

As was seen in Sec. X A and Fig. 6, the S and D pairs
correspond to coherent superpositions of particular electronic
distributions in spin and valley pseudospin. Thus specific S and
D pair content for SO(8) dynamical symmetry subgroup chains
implies specific collective modes associated with coherent
distribution of the electrons in spin and valley space. It has been
noted above that in the SO(5) × SU(2) dynamical symmetry
limit the ground states correspond to a superposition of S pairs.
The nature of this collective state may be inferred from Fig. 6
and is illustrated in Fig. 9.

C. The SU(4) dynamical symmetry

The SU(4) dynamical symmetry corresponds to the three
SO(8) subgroup chains

U(1)c × SU(4) ⊃ SO(5) × U(1)c ⊃ SU(2)σ × U(1)c,

U(1)c × SU(4) ⊃ SU(2)Kσ × SU(2)K
′

σ × U(1)c × U(1)v

⊃ SU(2)σ × U(1)c,

U(1)c × SU(4) ⊃ SU(2)σ × SU(2)v × U(1)c

⊃ SU(2)σ × U(1)c,

that were introduced in Eqs. (50)–(52) and Fig. 8. As already
noted, these three dynamical symmetry chains are in one
to one correspondence with the explicit symmetry breaking
patterns that have been identified for SU(4) quantum Hall
ferromagnetism. The most general SU(4) wave function for N

pairs in the u = 0 collective SO(8) subspace is given by [31]

|SU(4)〉 =
N/2∑
p=1

βp(S†)N−2p[(S†)2 − D† ·D†]p|0〉, (59)

which corresponds physically to a restriction of the general
SO(8) wave function (57) to a specific superposition of S and
D pairs. The wave function for the SO(5) × U(1)c subgroup
of SU(4) is given by Eq. (58). The wave function of the
parent SU(4) group is a superposition of S and D pairs but
the SO(5) × SU(2) subgroup has a wave function containing
only S pairs.

D. The SO(7) dynamical symmetry

The SO(7) dynamical symmetry corresponds to the SO(8)
subgroup chain

SO(7) ⊃ SO(5) × U(1)c ⊃ SU(2)σ × U(1)c

that was introduced in Eq. (53) and displayed in Fig. 8.
The Hamiltonian in the SO(7) dynamical symmetry limit
corresponds to Eq. (55) with the restriction that G0 = B1 =
B2 = B3 = 0,

HSO(7) = G0S
†S +

∑
r=1,3

Br P r ·P r, (60)

where terms have been dropped that are constant within a given
representation.

From the nuclear physics analog SO(8) symmetry [18],
it may be surmised that SO(7) will play the role of a
critical dynamical symmetry interpolating smoothly between
the collective states corresponding to the SU(4) dynamical
symmetry and the collective states corresponding to SO(5)
dynamical symmetry. Such critical dynamical symmetries
have been discussed previously in both nuclear physics
[18,34,35] and for the strongly correlated electrons leading
to cuprate and iron-based high-temperature superconductivity
[19,20]. They may be viewed as the generalization of a
quantum critical point to an entire quantum critical phase,
and may represent a fundamental organizing principle for
quantum critical behavior. The physical implications of this
SO(7) critical dynamical symmetry for graphene quantum Hall
physics will be discussed further below.

XVI. GENERALIZED COHERENT STATES

The dynamical symmetry limits discussed above repre-
sent special solutions resulting from particular choices of
the coupling parameters appearing in the Hamiltonian. For
arbitrary choices of the coupling parameters the solutions
will correspond generally to superpositions of the different
symmetry-limit solutions and will not have exact analytical
forms. In this more general case, it is quite feasible to obtain
solutions numerically, since the collective subspace is highly
truncated relative to the full Hilbert space. However, there is a
powerful alternative approach: the generalized coherent state
approximation, which permits analytical solutions for arbi-
trary choices of the coupling parameters in the Hamiltonian.

For the SO(8) Lie algebra introduced in this paper for
graphene, the Gilmore-Perelomov algorithm [36–40] may be
implemented to obtain solutions in terms of a set of generalized
coherent states. These solutions represent the most general
Hartree-Fock-Bogoliubov theory that can be formulated in
the space, subject to a dynamical symmetry constraint [32].
The solutions of this Symmetry-Constrained Hartree-Fock-
Bogoliubov (SCHFB) theory correspond to determining the
stable points of energy surfaces, which represent the coherent-
state expectation values of the effective Hamiltonian on the
coset space. Thus the coherent state solutions also represent a
microscopically derived implementation of Ginzburg-Landau
theory. These coherent state solutions are uniquely well suited
to study the interplay of competing spontaneous symmetry
breaking in determining the ground state of the system and
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SO(8)

SO(7) U(1)c x SU(4)

S, T, N, Πx, 
Πy, S0

S, T, N, Πx, Πy

S0, S, S , D, D

SO(5) x SU(2)p

SO(5) x U(1)c
S, Tz, Πx, Πy , S0

S, Tz, Πx, Πy,
S0, S, S

S, Tz, Πx, Πy

S0, D, D

FIG. 10. Subgroup chains included in the present coherent state
analysis.

its properties, and have been shown to give quantitative
descriptions of data in a variety of fields [18,40].

A. Constructing SO(8) coherent states

The coherent states associated with the full set of subgroup
chains in Fig. 8 will be discussed in future work. In this
paper, the power of the method will be illustrated succinctly by
restricting to the coherent states associated with the subgroup
chains of SO(8) that contain the SO(5) subgroup, as illustrated
in Fig. 10. Thus the corresponding coherent state solutions
will represent a superposition of the symmetry-limit solutions
for the

SO(8) ⊃ SO(5) × SU(2)p ⊃ SO(5),

SO(8) ⊃ SU(4) ⊃ SO(5), SO(8) ⊃ SO(7) ⊃ SO(5)

dynamical symmetries. These coherent state solutions will be
seen to have the following properties. (1) The SO(7) dynamical
symmetry will play the role of a critical dynamical symme-
try interpolating between SU(4) and SO(5) symmetry-limit
solutions. (2) Because of fundamental symmetries obeyed
by the wave function, the coherent state solutions may be
parameterized in terms of a single collective parameter β

that governs the mixture of the S and D pairs defined in
Eq. (34) contributing in the ground state. (3) The collective
parameter β may also be interpreted physically in terms of the
pair configurations displayed in Fig. 6. The SO(8) coherent
states corresponding to the symmetry structure in Fig. 10 have
been developed previously in Ref. [35] for nuclear physics
applications and will be adapted extensively to development
of the present formalism.

B. SO(8) coherent state energy surfaces

Let us now consider the energy surfaces that may be
computed from the coherent states, which link the SO(8)
solutions to Ginzburg-Landau theory. Within the coherent state
formalism the ground state energy may be determined through
the variational requirement δ〈η|H |η〉 = 0, where |η〉 is the

coherent state, H is the SO(8) Hamiltonian,

H = H ′ + G0S
†S +

∑
r=1,2,3

brP
r ·P r, (61)

and the coefficients G0 and br are functions of the effective
interaction. For the dynamical symmetry chains having SO(5)
as a subgroup the energies take the general form [35]

Eg(n,β) = Ng[Agβ
4 + Bg(n)β2 + Cg(n) + Dg(n,β)], (62)

where the group-dependent parameters Ng, Ag, Bg(n), Cg(n),
and Dg(n,β) are given in Table V.

Our primary interest in this discussion is in the ground state
properties of graphene in a strong magnetic field. The ground
states in the coherent state approximation at fixed n/2� will
be given by those values of β ≡ β0 that correspond to minima
of the energy surface E(n,β). These are determined by the
values of β satisfying

∂Eg(n,β))
∂β

= 0
∂2Eg(n,β))

∂β2
> 0. (63)

Evaluating these constraints for the energy surfaces (62), one
finds that the minima β

g
0 are given by [35]

β
SU(2)×SO(5)
0 = β

SO(7)
0 = 0 β

SU(4)
0 = ±

√
n

4�
. (64)

The coherent state energy surfaces for the SO(5) × SU(2),
SO(7), and SU(4) symmetry limits computed from Eq. (62)
using the entries in Table V are shown as functions of β for
several values of the fractional occupation f in Fig. 11. There
one sees that indeed the minima for the SO(5) × SU(2) and
SO(7) limits are at β0 = 0, and the minima for the SU(4) limit
are at β0 = ±√

n/4�.
Although the minimum energies for both the SO(5) ×

SU(2) and SO(7) limits are consistent with β0 = 0, Fig. 11
shows that these symmetries differ fundamentally in the
localization of the minimum. For SO(5) × SU(2), the energy
surface has a deep minimum at β0 = 0 but for SO(7) the
energy surface is very flat around β0 = 0, with a broad range
of β giving essentially the same ground state energy. This
highly degenerate SO(7) ground state has significant physical
implications that will be discussed further below.

XVII. ELEMENTARY CONSERVATION LAWS

The SO(8) generalized coherent state is equivalent to the
Hartree-Fock-Bogoliubov (HFB) approximation subject to a
symmetry constraint. Since HFB is a BCS-type approximation
married to a Hartree-Fock mean field, its solutions correspond
to symmetry-breaking intrinsic states. In particular, the BCS-
like state conserves the physical particle number only on
average, and the Hartree-Fock mean field may break both
translational and rotational invariance. Let us address these
issues for the SO(8) coherent state.

The fractional uncertainty in electron number �n for the
SO(8) coherent state is given by [35]

(�n)2 = 〈n̂2〉 − 〈n̂〉 = 2n − n2

�
+ 16�β4

0 − 8nβ2
0 , (65)

where β0 is the value of β at the minimum energy, given by
Eq. (64) in the symmetry limits. Expressing Eq. (65) in terms
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TABLE V. Parameters for the energy surfaces Eg(n,β) defined in Eq. (62).

g Ng A B(n) C(n) D(n,β)†a

SU(2) G0 2�(� − 2) −n(� − 2) n
(
� − 1

2 n + n

�

)
/4 1

2 �2F (n,β)

SO(5) b3 −8� 4n n
(
1 − n

2�

) −2�F (n,β)

SU(4) b2 −4�(� + 3) 2n(� + 3) 5
4�

(2� − n) 0

SO(7) G2 2�(� + 4) −n(� + 4) − n

4

(
� − n

2 − 2n

�
+ 4

) + �

4 (� + 10) − 1
2 �(� + 4)F (n,β)

aThe function F (n,β) is defined by F (n,β) ≡ ( n

2�
− 2β2)[(1 − n

2�
)2 − 4( n

2�
− β2)β2]1/2.

of the fractional occupation f = n/2�, in the SO(5) × SU(2)
and SU(4) limits, respectively, one obtains

[
�n

n

]
SO5×SU(2)

=
√

1 − f

f �
,

[
�n

n

]
SU4

=
√

1 − 2f

f �
. (66)

These results illustrate two important things. (1) The fluc-
tuation in particle number is large at low degeneracy � but
decreases with increasing �. (2) If SU(4) symmetry is realized
�n/n decreases with increasing f and vanishes identically
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FIG. 11. Coherent state energy surfaces as a function of the order
parameter β for three of the SO(8) dynamical symmetry limits. The
curves are labeled by the fractional occupation f = n/2� defined
in Eq. (23), where n is the particle number and 2� is the maximum
number of particles that can be accommodated in the Landau level.
The formalism is particle-hole symmetric so curves for fractional
occupations with f > 1

2 are equivalent to those shown above, but
with the fractional occupation counted in terms of number of holes.
For example, the curves for f = 0.4 and 0.6 are equivalent. For
the direct product group SU(2) × SO(5) the energy surface is the
sum of contributions to Eq. (62) from SU(2) and SO(5). As will be
demonstrated later, the SU(2) contribution typically dominates that
of SO(5).

at f = 1
2 for any �, which corresponds to the fractional

occupation for the ground state of undoped graphene.
Thus it is expected that the current theory applied to

graphene has negligible particle number fluctuation �n/n

in the SU(4) limit. In the SO(5) × SU(2) limit, the particle
number fluctuation �n/n remains finite for all f but it
becomes very small as � becomes large, particularly near
f = 1

2 . Thus it too may be neglected in the large-� limit.
Comparison with Table II suggests that graphene quantum Hall
experiments involve sufficient degeneracy that particle number
fluctuation in the coherent state solution is not significant.

The coherent state approximation represents a mean field
localized in spatial position and orientation, so it violates
translational and rotational invariance. However, because the
crystal is generally macroscopic, the net symmetry violation
may be expected to be negligible. One concludes that for
applications of coherent state methods to graphene, violations
of particle number conservation, rotational invariance, and
translational invariance are negligible in realistic systems.

XVIII. COHERENT-STATE WAVE FUNCTIONS AND
ORDER PARAMETERS

The generalized coherent state method has been used
above to calculate total energy surfaces for quantum Hall
states in graphene, but one also may use the coherent state
wave functions and appropriate operators to calculate matrix
elements of other relevant observables. This section addresses
the nature of the wave function and the matrix elements that
can serve as order parameters.

A. Order parameters

A significant consequence of the SO(8) dynamical sym-
metry structure displayed in Fig. 10 is that the phases may
be distinguished in terms of a single order parameter and
its fluctuations, which may be taken to be β. Let us now
characterize in more depth the physical meaning of this order
parameter. In Sec. XIV A, an antiferromagnetic order param-
eter 〈Nz〉 was defined. In the coherent state approximation the
onset of AF order is signaled by an energy-surface minimum
at a finite value of β. Because Nz = P 2

0 [see Eq. (A1i)],
the antiferromagnetic order parameter 〈Nz〉 is related to the
coherent state AF order parameter β by the intrinsic state
matrix element of P 2

0 [35],

〈Nz〉 = |b2|〈int,β,γ,n|P 2
0 |int,β,γ,n〉

= 2�|b2|(f − β2)1/2 β, (67)
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where b2 is the coupling strength for the P 2 ·P 2 term in the
Hamiltonian. Each value of β corresponds to a unique value
of 〈Nz〉, so β is a measure of antiferromagnetic order.

The location of the maxima may be obtained by setting the
derivative with respect to β of Eq. (67) equal to zero, which
yields that 〈Nz〉max for a given n occurs at a β of

β =
√

n

4�
= β

SU(4)
0 , (68)

where Eq. (64) was used to make the identification in the last
step. Thus, if β �= 0, the maximum value of 〈Nz〉 maps to a
value of β that corresponds to a minimum of the energy surface
(a ground state) in the SU(4) limit. Substituting Eq. (64) for β

in Eq. (67), for β �= 0, ground states the AF order parameter
〈Nz〉 depends on the electron number n as

〈Nz〉max = 2�|b2|
( n

4�

)
= �|b2|f. (69)

The SO(8) model is particle-hole symmetric so n or f count
electrons up to half-filling and holes for greater than half-
filling. Hence the maximum AF collectivity occurs for half-
filling of the single valence Landau level.

B. Coherent State wave functions

As was discussed in Sec. XVII, the coherent state wave
function corresponding physically to N = 2n pairs conserves
particle number only on average and so is a superposition
of terms having different numbers of pairs. In Eq. (5.27) of
Ref. [35], the SO(8) coherent state is decomposed into terms
of definite pair number p according to

|β〉 =
∑

p

Cp(S† + κD
†
0)p|0〉, (70)

where |β〉 denotes an intrinsic state with order parameter β and
closed forms for Cp and κ are given in Ref. [35]. According
to Eq. (5.28) of Ref. [35], the values of κ that correspond to
the minima of the potential energy surface at β = 0 for the
SO(5) × SU(2) limit and β = ±√

n/4� for the SU(4) limit
[see Eq. (64)], respectively, are

κSO5×SU2 = 0, κSU(4) = ±1, (71)

so the SO(8) coherent state wave function (70) in the SO(5) ×
SU(2) and SU(4) limits, respectively, becomes

|SO5 × SU2〉 =
∑

p

Cp(S†)p|0〉,

|SU4〉 =
∑

p

Cp(S† ± D
†
0)p|0〉 = 2

∑
p

Cp(Q†
±)p|0〉,

(72)

where Eq. (35) was used.
As discussed in Sec. XVII, fluctuations in particle number

are negligible in the large-� limit for SO(8) coherent states,
implying that the summations in Eq. (72) become dominated
by terms with p � N . Thus, for large �, the coherent state

_

_
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Critical fluctuations
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(c)

Spontaneous
symmetry breaking

FIG. 12. Ground-state energy surfaces in coherent state approx-
imation for three of the SO(8) dynamical symmetry limits. (a) The
SO(5) × SU(2) limit. (b) The SO(7) limit. (c) The SU(4) limit. The
diagrams indicate schematically the corresponding wave functions,
as suggested by Eqs. (70)–(73) and Fig. 6.

wave functions are well approximated up to a normalization
by

|SO5 × SU2〉 � (S†)N |0〉, (73a)

|SU4〉 � (Q†
±)N |0〉. (73b)

As seen from Table III, the SU(4) state of Eq. (73b) is a
coherent superposition of Q− or Q+ pairs, each contributing
vanishing ferromagnetic order 〈Sz〉 and charge density wave
order 〈Tz〉, but nonzero AF order 〈Nz〉. Conversely, the
SO(5) × SU(2) state of Eq. (73a) is a coherent superposition
of S pairs, each with vanishing 〈Sz〉, 〈Tz〉, and 〈Nz〉.

Thus the SO(5) × SU(2) and SU(4) limits of the SO(8)
symmetry are distinguished by the order parameter 〈Nz〉,
which is zero in the SO(5) × SU(2) state and is nonzero in the
SU(4) state. Equivalently, the coherent state order parameter
β vanishes in the pure SO(5) × SU(2) limit and is equal to
±√

n/4� in the pure SU(4) limit [see Eq. (64) and Fig. 11].
Equation (62) depends only on even powers of β so the sign
for the two possible spontaneously broken symmetry solutions
does not affect the energy.

For undoped graphene the Fermi surface corresponds to
the f = 0.5 curves of Fig. 11. These are shown in Fig. 12
for the SO(5) × SU(2), SO(7), and SU(4) limits. (1) The
SO(5) × SU(2) limit in Fig. 12(a) has its minimum β0 at β = 0.
It corresponds to states of the form (73a), with vanishing
expectation values of Sz, Tz, and Nz. (2) The SU(4) limit of
Fig. 12(c) corresponds to states of the form (73b), with minima
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located at

β0 = ±
√

n

4�
= ±1

2
.

When the symmetry is broken spontaneously by choosing one
of these possibilities the resulting state has 〈Sz〉 = 〈Tz〉 = 0
(no spin or isospin order), but 〈Nz〉 �= 0 (spin density wave or
AF order). (3) The SO(7) limit of Fig. 12(b) corresponds to
a critical dynamical symmetry that interpolates between the
SO(5) × SU(2) and SU(4) states through critical fluctuations
in the antiferromagnetic order. Thus the SO(8) dynamical
symmetry limits illustrated in Fig. 12 represent a rich set of
collective states that can be distinguished by the expectation
value and fluctuations associated with the order parameter β.

XIX. SO(8) QUANTUM PHASE TRANSITIONS

The SO(8) coherent state solution can be used to study
transitions among the phases defined in Fig. 12. For the u = 0
space (no broken pairs) assumed here, H ′ yields a constant
that is neglected and Eq. (61) may be expressed as

H = G0S
†S + b2P

2 · P 2 + b3CSO(5) + b1 − b3

5
CSU(2).

(74)

The last two terms yield constants when evaluated in a given
representation, and CSO(5) is found to contribute negligibly
to the total energy compared with CSU(4). Therefore it will
be instructive to set b1 = b3 = 0 and study the approximate
SO(8) Hamiltonian

H = G0S
†S + b2P

2 ·P 2. (75)

From Table IV, one finds that

〈S†S〉 ∼ 〈CSU(2)〉, 〈P 2 ·P 2〉 ∼ 〈CSU(4)〉,
〈S†S〉 + 〈P 2 ·P 2〉 ∼ 〈CSO(7)〉,

if constants are neglected. Thus the model Hamiltonian (75)
may be tuned to favor the SO(5) × SU(2), SO(7), or SU(4)
phases by varying the ratio of the coupling parameters G0 and
b2.

A. Tuning quantum phase transitions

To study the quantum phase transitions of the SO(8) model
with the approximate Hamiltonian (75), it is convenient to
define a parameter q ≡ b2/G0 and to rewrite Eq. (75) as

H = G0(S†S + qP 2 ·P 2). (76)

Thus the value of q tunes the Hamiltonian (76) between
SU(2) × SO(5) and SU(4) phases via an intermediate SO(7)
phase exhibiting quantum critical behavior. (1) If q � 1 the
ground-state energy surface is approximated by Fig. 12(a),
with a minimum at β = 0, no antiferromagnetic order, and
SU(2) × SO(5) symmetry. (2) If q � 1 the ground-state
energy surface is approximated by Fig. 12(c), with an energy
minimum at β �= 0 implying SU(4) symmetry and antiferro-
magnetic order. (3) If q ∼ 1, the ground-state energy surface
is approximated by Fig. 12(b) and the system exhibits SO(7)
critical dynamical symmetry, with large fluctuations in the
AF order parameter β. Let us now use the Hamiltonian (76) to
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FIG. 13. Quantum phase transitions with coupling strength as
control parameter: coherent state energy surface as a function of the
control parameter q ≡ G0/b2 for a degeneracy parameter � = 50 and
a fractional occupation f = n/2� = 0.5. The solid green curves from
q ∼ 0–0.5 correspond to approximate SO(5) × SU(2) symmetry, the
solid blue curves for q � 1.5 correspond to approximate SU(4)
symmetry. The dashed red curves near q ∼ 1 correspond to an
approximate SO(7) symmetry mediating the quantum phase transition
from SO(5) × SU(2) to SU(4) symmetry.

study the quantum phase transitions and spontaneously broken
symmetry of the SO(8) model.

B. Energy surfaces and quantum phase transitions

If terms involving 〈P 1 ·P 1〉 and 〈P 3 ·P 3〉 are ignored (as
justified above), Eq. (62) with the parameters in Table V imply
that

ESU(2) + ESU(4) − ESO(5) � G0〈S†S〉 + b2〈P 2 ·P 2〉.
Hence the energy surfaces corresponding to the Hamiltonian
(76) may be expressed as

E(n,β) = 〈H 〉 = G0〈S†S〉 + b2〈P 2 ·P 2〉
� ESU(2)(n,β) + ESU(4)(n,β) − ESO(5)(n,β),

� ESU(2)(n,β) + ESU(4)(n,β). (77)

The variation of the energy surface computed from Eq. (77)
with the control parameter q = G0/b2 for half-filling (ground
state for undoped graphene) is shown in Fig. 13.

By tuning the control parameter from q = 0 to q � 1, one
sees that the system undergoes a quantum phase transition near
q = 1 from an approximate SO(5) × SU(2) state with energy
minimum at β = 0 [see Fig. 12(a)] to an approximate SU(4)
state having energy minima at β = ±(n/4�)1/2 [see Fig. 12(c)
and Eq. (64)]. For q ∼ 1 the system has an approximate SO(7)
dynamical symmetry [see Fig. 12(b)], with no well-defined
minimum for the energy as a function of β, but with large
fluctuations in β implied by a highly degenerate ground state.

For fixed values of the coupling parameters G0 and b2,
phase transitions may be mediated by changing the particle
occupancy. Figure 14 illustrates for different values of n/2�

at fixed b2 = 2.5G0. One sees that as the particle number
is increased the system makes a transition from approximate
SO(5) × SU(2) symmetry with β = 0 to SU(4) symmetry with
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FIG. 14. Quantum phase transitions with particle number as
control parameter: coherent state energy surfaces for different filling
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SO(5) × SU(2) symmetry, the solid blue curves for n/2� ∼ 0.3–0.5
correspond to approximate SU(4) symmetry. Curves near n/2� ∼
0.25 (dashed red) correspond to an approximate SO(7) symmetry
mediating the quantum phase transition from SO(5) × SU(2) to SU(4)
symmetry.

β �= 0 through a critical SO(7) symmetry for which the energy
is highly degenerate in β.

XX. DISCUSSION

In the coherent state approximation, the dynamical sym-
metry structure of Fig. 10 has been examined and not the
full group structure given in Fig. 8. For the group chains that
contain the SO(5) subgroup, the only physical implication is to
omit the effect of Zeeman splitting from dynamical symmetry
Hamiltonian [which would break the SO(5) subgroup down
into a U(1) subgroup generated by the z component of the
physical spin]. Our primary concern in this discussion is the
structure associated with the n = 0 Landau level, for which
the effect of the Zeeman term is expected to be small (see
Sec. XX). Thus one may view the effect of the Zeeman term
as a perturbation on the results obtained thus far that will act
only on the spin part of the wave function. As Kharitonov [26]
has already discussed, the competition of the Zeeman term
with the valley interactions will convert the antiferromagnetic
solution into a canted antiferromagnetic solution.

The SU(4) symmetry of quantum Hall ferromagnetism
gives rise to a ground state symmetry reflected in the SU(4)-
symmetric Hamiltonian (5) and a possible symmetry breaking
structure that has been outlined in Sec. VI. However, the
symmetry-breaking patterns illustrated in Fig. 3 represents
perturbations around the symmetric ground state (explicit
symmetry breaking). They cannot capture the nature of
these possible spontaneously broken symmetry states, since
the broken-symmetry states may differ fundamentally from
the possible states in Fig. 3: the states corresponding to
the most general linear combination (31) represent a complex
superposition of many SU(4)-symmetric components and
generally cannot be classified by pure or any simple linear

combination of SU(4) irreducible representations. The broken-
symmetry states have typically been studied numerically, or
by effective field theory methods. However, as has been
shown, the kinds of collective configurations that have been
proposed as candidates for low-lying broken-symmetry states
in graphene (see Fig. 6 and [26]) bear strong resemblance
to eigenstates of SO(8) dynamical symmetry chains. Thus
the present SO(8) symmetry holds the promise of providing
analytical solutions for possible broken-symmetry states in
graphene. This is the most important result of the present
paper.

At specific filling factors the ground state of graphene will
be determined by the competition among the SU(4) symmetry
breaking terms. The most obvious SU(4)-anisotropic effect
is the Zeeman term, which favors a spin-polarized state,
but the graphene sublattice structure introduces additional
interactions that favor ground states without spin polarization
that are characterized by spin density wave or charge density
wave order at the lattice scale. The competition between
Zeeman-term spin polarization and the lattice-scale polariza-
tions can be studied by changing the in-plane component of
the magnetic field relative to the perpendicular component,
since this changes the Zeeman energy but not the orbital
energies [41]. Such studies indicate that for the higher-energy
Landau levels the Zeeman term is dominant, producing spin
ferromagnets that have skyrmionic excitations at half-filling,
but in the n = 0 Landau level the lattice-scale interactions
dominate the Zeeman interaction and drive the system into a
spin-unpolarized state [42].

The remainder of this discussion will concentrate on these
spin-unpolarized collective states that are candidates for the
ground state in the n = 0 Landau level for charge-neutral
graphene, with the Zeeman interaction viewed as a perturba-
tion on a collective structure that is dominated by lattice-scale
interactions. Consideration in this paper will be restricted
further to those states that can arise from the dynamical
symmetries of Fig. 8 that contain the SO(5) subgroup (those
displayed in Fig. 10), with other states considered in future
work.

It has been shown that SO(8) describes analytically a
number of spontaneously broken-SU(4) candidates for the
states observed in modern experiments such as those described
in Refs. [9,10,41,42]. These solutions provide a spectrum of
excited states as well as ground states. The excited states will
not be discussed here, except to note that all ground state
solutions have a gap to electronic and collective excitations
and so correspond to incompressible states. The general theory
to be discussed in forthcoming papers can accommodate
FM, CDW, and AF states, but for the dynamical symmetries
containing SO(5) that were the focus here, all solutions may
be classified by a single parameter β measuring AF order:
SU(4) states have finite AF order but no CDW or FM order,
SO(5) × SU(2) states have no AF, CDW, or FM order, and
SO(7) states correspond to a critical dynamical symmetry
interpolating between SU(4) and SO(5) × SU(2) with large
AF fluctuations but no static AF order, and with no CDW or
FM order.

In a strong magnetic field, the zero-energy state of graphene
has fourfold spin and valley degeneracy per Landau level,
and (neglecting the lattice-scale interactions) near the sample
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boundary one might expect the zero Landau level to split into
one positively dispersing (electronlike) and one negatively
dispersing (holelike) mode for each spin projection. This
would suggest a ground state having a bulk energy gap at
charge neutrality but with electronlike and holelike states of
opposite spin polarization crossing at the edge of the sample
(with the edge-state structure being analogous to the quantum
spin Hall effect) [41,43,44]. However, experiments indicate
that the ground state of charge-neutral graphene becomes
strongly insulating at high magnetic fields [11]. The detailed
nature of this state remains uncertain, but it is generally
expected to correspond to a spontaneously broken symmetry
caused by the strong Coulomb interactions among the electrons
in the zero Landau level.

Transport properties are not manifest in the algebraic
solutions presented here but the coherent state approxima-
tion is equivalent to symmetry-constrained Hartree-Fock-
Bogoliubov (HFB) theory [32,40], suggesting that SO(8)
theory can be mapped onto Hartree-Fock (HF) transport
calculations. HF calculations for armchair nanoribbons found
that AF and CDW states similar to ours have no edge currents
[12]. It may be speculated that our AF states also are insulating
and thus strong candidates for the high-field ground state, but
confirmation requires more work.

Solutions depend on G0 and b2 in Eq. (75), which define
effective interactions in the truncated space [highly renormal-
ized relative to parameters in Eq. (5)]. They may be fixed by
systematic comparison with data, enabling a robust prediction
for the nature of the ground and other low-energy states.
Modest impurity levels are expected to modify the effective
interaction parameters but to leave dynamical symmetries
intact. It may also be noted in this context that whereas it has
been shown that graphene in a magnetic field, many collective
nuclear states, and high-temperature cuprate superconductors
can all exhibit SO(8) dynamical symmetry, one expects the
fundamental differences between these systems to appear in
their different effective interactions.

Finally, let us gather in one place the potential new
capabilities and physics implied by the formalism introduced
here. (1) The SO(8) dynamical symmetry chains reproduce
the states expected from SU(4) quantum Hall ferromagnetism,
but suggest that there are additional strongly collective states
related to SU(4) states by quantum phase transitions that are
not discussed in the previous literature but are potential ground
states for graphene in a magnetic field. It is already clear that
some of these states have unusual properties; for example,
the SO(7) phase discussed further below. This qualitative
statement can be turned into a quantitative one in future work
by determining the effective interaction for the truncated space
using the methodologies established in Refs. [16–20], which
will permit expected experimental signatures to be calculated
for these states.

(2) The SO(8) formalism predicts a spectrum of excited
states for each of the possible ground states implied by the
subgroup chains in Fig. 8. Is it possible to find experimental
evidence for these either as discrete states, or as virtual
intermediate states contributing to processes like scattering?

(3) As noted above, the predicted SO(7) subgroup chain
is unusual. It represents a critical dynamical symmetry giving
rise to a quantum critical phase. Evidence for such quantum

critical phases has been found in heavy nuclei [34] and in
high-temperature superconductors [19,20], where it is found
that they produce systems exhibiting very strong complexity
(extreme sensitivity to initial conditions) and fluctuatations
[45]. These systems are described by dynamical symmetries
having Lie algebras very similar to the graphene case. It will
be of large interest to see whether such effects can be observed
for graphene in strong magnetic fields.

(4) The global similarities among the Lie algebras de-
scribing collective states in high-temperature superconductors,
heavy nuclei, and graphene in a magnetic field that was alluded
to above suggests a deep mathematical analogy among these
very different fields. There is no space to discuss this here
but we note one interesting possibility: can these analogies
be used to predict new behavior for graphene based on
known behavior in nuclei and superconductors? One such
analogy has already been suggested in previous work: the
dynamical symmetry description of quadrupole collectivity
in nuclei is analogous mathematically to the dynamical sym-
metry description of antiferromagnetism in high-temperature
superconductors, which is in turn analogous mathematically
to the dynamical symmetry description of the the lattice-scale
“antiferromagnetic” states in graphene discussed in Sec. X A.

XXI. SUMMARY

The well-known quantum Hall ferromagnetic SU(4) sym-
metry of graphene in strong magnetic fields has been extended
by adding to the particle-hole operators that generate SU(4)
a set of six creation and six annihilation operators that create
or destroy fermion pairs in either a total valley isospin triplet,
total spin singlet state, or a total valley isospin singlet, total
spin triplet state (the only possibilities allowed by the Pauli
principle). This extended set of operators is shown to close
an SO(8) algebra under commutation, which is formally
analogous to the SO(8) algebra of the fermion dynamical
symmetry model of nuclear structure physics. This permits
immediate adaptation of mathematical tools developed in
nuclear physics to the graphene problem.

The previously known SU(4) quantum Hall ferromagnetism
symmetry is recovered as one subgroup, but one finds a
richer set of low-energy collective modes associated with
the full subgroup structure of SO(8). By exploiting the
established methodology of fermion dynamical symmetries,
it was possible to decouple a collective-pair subspace from the
full Hilbert space of the problem, permitting exact, analytical,
many-body solutions to be obtained in several physically
interesting limits. In addition to exact solutions in specific
dynamical symmetry limits, a generalized SO(8) coherent state
approximation has been introduced that permits a broad range
of solutions to be obtained even when not in the dynamical
symmetry limits.

The pairs spanning the collective subspace are shown to
be analogous to pairs that have already been discussed at a
qualitative level in the graphene literature [26] as defining the
possible broken-symmetry ground states in the presence of
strong electron-electron and electron-phonon correlations in
the n = 0 Landau level. The development here places these
pairs on a firm, unified mathematical footing and permits
analytical solutions to be developed that explore the possible
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collective states that previously required numerical simulation
for their quantitative description [26].
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APPENDIX: TRANSFORMATIONS BETWEEN BASES

This appendix collects some useful transformations among
the several bases that have been employed in this paper. For
brevity, in the following {P 1,P 2,P 3,S0,S,S†,Dμ,D†

μ}
will be termed the nuclear SO(8) basis and
{Sα, Tα,Nα,�αx,�αy,S0,S,S†,Dμ,D†

μ} will be termed
the graphene SO(8) basis.

In transforming from the nuclear SO(8) basis to the
graphene SO(8) basis the particle number (charge) operator
n or S0 and the 12 pairing operators {Dμ,D†

μ, S, S†} are
retained, but the 15 SU(4) generators {P 1, P 2, P 3} in the
nuclear representation are replaced with the 15 SU(4)
generators {Sα, Tα,Nα,�αx,�αy} defined in the graphene
representation of Eq. (9). The explicit transformation from
the {P 1, P 2, P 3} generators to the {Sα, Tα,Nα,�αx,�αy}
generators is given by

Sx =
√

6

5

(
P 1

−1 − P 1
1

) + 2√
5

(
P 3

−1 − P 3
1

)
, (A1a)

Sy = i

(√
6

5

(
P 1

1 + P 1
−1

) + 2√
5

(
P 3

1 + P 3
−1

))
, (A1b)

Sz = 2√
5
P 1

0 + 4√
5
P 3

0 = n1 − n2 + n3 − n4, (A1c)

Tx = −
√

2
(
P 2

2 + P 2
−2

)
, (A1d)

Ty = i
√

2
(
P 2

2 − P 2
−2

)
, (A1e)

Tz = 4√
5
P 1

0 − 2√
5
P 3

0 = n1 + n2 − n3 − n4, (A1f)

Nx = 1√
2

(
P 2

−1 − P 2
1

)
, (A1g)

Ny = i√
2

(
P 2

−1 + P 2
1

)
, (A1h)

Nz = P 2
0 = n1 − n2 + n4 − n3, (A1i)

�xx = 1

2

[
P 3

−3 − P 3
3

+
√

2

5

(
P 1

−1 − P 1
1

) +
√

3

5

(
P 3

1 − P 3
−1

)]
, (A1j)

�yx = i

2

[√
2

5
P 3

−3 + P 3
3

+
√

2

5

(
P 1

−1 + P 1
1

) −
√

3

5
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P 3

1 + P 3
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, (A1k)

�zx = − 1√
2

(
P 3

2 + P 3
−2

)
(A1l)

�xy = i
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√
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√
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, (A1m)

�yy = 1
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−P 3

−3 + P 3
3

−
√

2

5

(
P 1

1 − P 1
−1

) +
√

3

5

(
P 3

1 − P 3
−1

)]
, (A1n)

�zy = − i√
2

(
P 3

2 − P 3
−2

)
. (A1o)

In Eqs. (17)–(20), the graphene basis {Sα, Tα,Nα,

�αx,�αy} has been expressed in terms of the generators Bab

defined in Eq. (15). The inverse transformations giving the Bab

in terms of the {Sα, Tα,Nα,�αx,�αy} are

B12 = 1

2
Nx + 1

2
iNy + 1

4
Sx + 1

4
iSy, (A2a)

B13 = 1

4
Tx + 1

4
iTy + 1

2
�zx − 1

2
i�zy, (A2b)

B14 = 1

2
�xx − 1

2
i�yx − 1

2
i�xy − 1

2
�yy, (A2c)

B23 = 1

2
�xx + 1

2
i�yx − 1

2
i�xy + 1

2
�yy, (A2d)

B24 = 1

4
Tx + 1

4
iTy − 1

2
�zx + 1

2
i�zy, (A2e)

B34 = 1

4
Sx − 1

2
iNy − 1

2
Nx + 1

4
iSy, (A2f)

B11 = 1

4
Sz + 1

4
Tz + 1

2
Nz + 1

4
(n − �), (A2g)

B22 = −1

4
Sz + 1

4
Tz − 1

2
Nz + 1

4
(n − �), (A2h)

B33 = 1

4
Sz − 1

4
Tz − 1

2
Nz + 1

4
(n − �), (A2i)

B44 = −1

4
Sz − 1

4
Tz + 1

2
Nz + 1

4
(n − �), (A2j)

where the unlisted operators may be obtained from Bba = B
†
ab

and the diagonal operators have been assumed to obey the U(4)
constraint

B11 + B22 + B33 + B44 = n − �, (A3)

with n = n1 + n2 + n3 + n4 the total particle number and �

the total pair degeneracy given by Eq. (22).
Since from Eq. (46) the order parameters for the quantum

Hall ground states are functions of the expectation values for
the number operators na specifying the population of the four
basis states in Table I and Fig. 4 labeled by the index a, it is
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useful to have explicit expressions for them in terms of the P r
μ

operators. These are

n1 = 1

4
n + 3

√
5

10
P 1

0 + 1

2
P 2

0 +
√

5

10
P 3

0 , (A4a)

n2 = 1

4
n +

√
5

10
P 1

0 − 1

2
P 2

0 − 3
√

5

10
P 3

0 , (A4b)

n3 = 1

4
n −

√
5

10
P 1

0 − 1

2
P 2

0 + 3
√

5

10
P 3

0 , (A4c)

n4 = 1

4
n − 3

√
5

10
P 1

0 + 1

2
P 2

0 −
√

5

10
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where the total number operator n is

n = 1
2N = n1 + n2 + n3 + n4 = 2

(
P 0

0 + 1
2�

)
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