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Coherent control of the dynamics of a single quantum-dot exciton qubit in a cavity
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In this paper we demonstrate theoretically how to use an external laser field to control the population inversion
of a single quantum dot exciton qubit in a nanocavity. We consider the Jaynes-Cummings model to describe the
system, and the incoherent losses were taken into account by using Lindblad operators. We have demonstrated
how to prepare the initial state in a superposition of the exciton in the ground state and the cavity in a coherent
state. The effects of exciton-cavity detuning, the laser-cavity detunings, the pulse area, and losses over the qubit
dynamics are analyzed. We also show how to use a continuous laser pumping in resonance with the cavity mode
to sustain a coherent state inside the cavity, providing some protection to the qubit against cavity loss.
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I. INTRODUCTION

Quantum information processing (QIP) has become one of
the most promising applications of quantum mechanics [1,2].
The first criterion to be fulfilled for actual implementation
of QIP [3,4] is the successful manipulation of a qubit, the
basic unit for encoding quantum information [5]. In this
context, manipulation means coherent control of the quantum
dynamics of the chosen qubit. The density matrix formalism
is the perfect tool [6] to explore those quantum dynamics,
particularly when dealing with multipartite systems [7]. For
open quantum systems, being in contact with a reservoir, this
formalism provides a theoretical environment to describe the
action of decoherence [8–10].

Since the general state of one qubit is defined as a quantum
superposition on a two-dimensional basis, it is natural to
describe it as a 1/2 spin system [2]. Coupling such a system
with electromagnetic radiation is one of the paths to implement
a coherent manipulation of the qubit, and the theoretical
models to describe this interaction must take into the account
the classical or quantum nature of the radiation [11]. When
considering quantum radiation, the Jaynes-Cummings model
[12] is one of the most successful theoretical descriptions of
the spin-boson interaction and subsequent dynamics [13–15].

Thinking about physical implementations, semiconductor
nanostructures have become potential candidates for applica-
tions in QIP and quantum computing [16,17]. Specifically, rel-
evant contributions arise from the study of physical properties
of quantum dots (QDs), often recognized as artificial atoms, in
front of the discrete character of the energy spectrum due to the
confinement of carriers [18,19]. A qubit can be encoded inside
a QD by using the charge [20,21], the spin [22–25], as well
as excitonic states [26–29] of the confined particle. One of the
advantages of the QDs is the versatility on the experimental
manipulation of the (valence-conduction) band gap, with the
subsequent customization of its optical properties.

The unique characteristics of quantum states in a QD are
behind the advantages of coupling a QD qubit with quantum
light [30], particularly involving nanocavities [31]. Once the
QDs are created using semiconductor materials, it is possible
to confine carriers in order to maximize the dipole-dipole
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interaction, coupling the nanostructure strongly with a chosen
mode of the electromagnetic field of the cavity [32,33].
The crescent interest on such an experimental setup lies on
its potential for the miniaturization of the cavity quantum
electrodynamics (CQED), as found in an atomic physics
context [34]. Once a typical setup is smaller than a micrometer
[22,30], one can consider the implementation of an on-chip
CQED [35] using this kind of arrangement.

The rich optical response of quantum dots inside nanocavity
includes nonlinearities [36] and nontrivial emission spectra
[37,38]. Several groups concentrate efforts on developing
applications of a QD-cavity setup such as quantum light
emitters [39–43], exploring quantum dynamics in a similar
way of successful procedures for production of quantum
states of light in atomic CQED [44]. Another approach,
directly related to QIP, is the use of quantum light for the
coherent manipulation of the QD qubit. Typical phenomena
of coherent dynamics such as Rabi oscillations [22,45,46],
entanglement between a spin QD qubit and photons [47–49],
and exciton-photon entanglement [50] have been observed on
QD-cavity systems.

In this paper, we propose encoding a qubit using an
excitonic state, interacting with a coherent state of light
prepared in a nanocavity. The Jaynes-Cummings model is
used to study the interaction between the quantum dot and the
nanocavity and we consider photon losses in our treatment. We
calculate the density matrix operator dynamics, once we are
dealing with a multipartite open quantum system. Instead of
a resonant condition between the quantum dot and the cavity
[45], we assume a nonresonant, self-trapped dynamics.

To create and maintain a coherent state inside the cavity
we use a continuous laser field applied in resonance with
the cavity mode. To control the qubit rotations, the coherent
manipulation of the system is done by applying external laser
pulses. To find the best set of parameters for the coherent
manipulation, we calculate the average occupation of the
exciton state as a function of two detunings: laser-cavity and
exciton-cavity. The effect of the pulse area is also evaluated
and the residual effect of the pulses over the cavity state is
surveyed by checking the average number of photons and
photon distribution. We explore the behavior of the QD qubit
by studying the population inversion, the dynamics over the
Poincaré sphere, and the purity of the qubit, the last one using
von Neumann entropy.
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II. THEORY

Our system is composed of a QD, treated here as a two-level
system, coupled to a single mode nanocavity. To explore this
physical setup, we use the Jaynes-Cummings model [12] under
the rotating wave approximation (RWA) [38,51–53]. To model
the external lasers we use the dipole and RWA approximations
[11] and assume that the pulsed laser only interacts with the
QD while the continuous laser only interacts with the cavity.
The Hamiltonian can be written as (h̄ = 1)

H = ωxσ+σ− + ωca
†a + g(σ+a + σ−a†)

+ �(t)

2
(e−iωptσ+ + eiωptσ−)

+ J (e−iωl t a† + eiωl t a), (1)

where σ± are the pseudospin operators for the QD exciton
qubit; a† and a are the creation and annihilation operators
for photons inside the cavity; ωx, ωc, ωp, and ωl are the
frequencies of the exciton, cavity mode, pulsed laser, and
continuous laser field, respectively; �(t) = μE(t)/h̄ is the
Rabi frequency that describes the exciton-laser interaction,
with μ being the electric dipole strength of the exciton
transition and E(t) the amplitude of the electric field of the
laser, which can be constant or have different shapes in the
pulsed excitation; and J contains information about the laser
field amplitude and the cavity transmission coefficient.

We encode a quantum bit using the QD exciton state, |0〉
being the state with no exciton and |1〉 the exciton state,
and the cavity is described by the usual Fock basis, |n〉.
The Hamiltonian basis is depicted as |i,n〉 with i = 0 or 1,
indicating the state of the QD qubit and n being the number of
photons in the cavity.

To obtain the dynamics of our physical system, we
numerically solved the time-dependent density matrix in the
Lindblad form

dρ

dt
= −ı[H,ρ] + κD[a] + γD[σ−] + φD[σz] (2)

where H is the full Hamiltonian [Eq. (1)] andD[L] = LρL† −
1
2 (L†Lρ + ρL†L) is the Lindblad superoperator, which con-
tains the incoherent terms of the density matrix and assumes
a Markovian approximation. Here κ is the photon loss rate of
the cavity, γ is the decay rate of the QD, and φ is the pure
dephasing rate of the QD.

In order to get a deeper understanding on the QD qubit
dynamics we use the Poincaré-sphere representation, an
analogy of the Bloch-sphere representation for mixed states
[45]. The use of this representation is common in the context
of cavity quantum electrodynamics [54]. The QD qubit treated
here is not in a pure state: when losses are not considered (κ
and γ null), the QD qubit is one of the parts of a bipartite
system, and has some degree of entanglement with the cavity.
In contrast, when considering losses, one can say the QD qubit
exchanges just a portion of its information with the cavity, once
the bipartite system is now open. To obtain the components
X, Y , and Z of the Bloch vector we first compute the reduced
density operator for the QD qubit by doing the partial trace
over the cavity variables,

ρ̂QD = Tr[ρ̂]cav, (3)

then

X = 2Re
(
ρ̂

QD
01

)
,

Y = 2Im
(
ρ̂

QD
10

)
, (4)

Z = ρ̂
QD
00 − ρ̂

QD
11 .

On the Poincaré sphere, the Z component of the mixed Block-
like vector coincides with the population inversion. The value
of the azimuthal angle is known as the relative phase which
corresponds to φ in the pure qubit represented as C0 |0〉 +
eiφC1 |1〉, with Ci being related to the population of the state
|i〉. A Bloch vector with a null azimuthal angle lies on the YZ

plane [2].
To quantify the purity of the QD qubit, we use the von

Neumann entropy S, which is defined as [2]

S(ρ̂QD) = −Tr[ρ̂QD log2(ρ̂QD)]. (5)

From the definition, S = 0 indicates that the QD qubit is a pure
system, described by a state separated from the cavity and the
reservoir. If losses are not considered on the description of
the system, the maximal degree of entanglement between the
qubit with the cavity corresponds to S = 1.

III. RESULTS AND DISCUSSION

To analyze the dynamics of a QD qubit we parametrize all
frequencies in units of g, so it is easy to convert the values
obtained here to real experimental situations. For example, in
a photonic crystal nanocavity h̄g is of the order of 0.1 meV
[38]. This parametrization also allows our results to be applied
to other cavity systems, which we will not discuss here. To
solve the time-dependent master equation we carefully choose
the size of the photon basis to describe accurately the cavity
state according to its mean occupation, taking into account
the effects of interaction between the QD, cavity, and external
lasers. In most of the cases studied, a Fock basis of nmax = 70
was sufficient, so we set this value for all simulations presented
here.

To get some insight into what we can do, let us first ignore
the incoherent effect (κ,γ,φ = 0) and consider the initial state
of our system as a direct product of a coherent state |α〉 in the
cavity and the QD in the ground state |0〉, thus |
(0)〉 = |0〉 |α〉.
The coherent state can be represented in the basis of Fock states
as

|α〉 = exp(−|α|2/2)
∑

n

αn

√
n!

|n〉 , (6)

where |α|2 = 〈n〉 is the mean number of photons. A coherent
state in the cavity can be created by sending a laser in resonance
with the cavity mode for a short period of time (J �= 0 and
ωj = ωc in our Hamiltonian).

Figure 1 illustrates several aspects of the QD qubit
dynamics when interacting with the cavity without the action
of any external laser field (J,� = 0) and neglecting the
incoherent effect (κ,γ,φ = 0). We consider that the exciton
state is resonant with the cavity mode, δx = ωx − ωc = 0, and
an initial cavity state with 〈n〉 = 25. Figure 1(a) shows the
behavior of the population inversion, Z(t), with the apparition
of collapses and revivals around an average value 〈Z〉 = 0,
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FIG. 1. Dynamics of a QD qubit inside a cavity considering full
resonant condition given by δx = 0 and in the absence of lasers fields.
(a) Population inversion and cavity occupation (dashed blue line) as
a function of gt . (b) Von Neumann entropy as a function of gt . Upper
panel shows the evolution of a QD qubit over the Poincaré sphere.

in agreement with the predictions of the Jaynes-Cummings
model. Notice that the average occupation of the cavity stays
almost constant at a value around 〈n〉 � 25.

The dynamics of the QD qubit on the Poincaré sphere is
shown in the upper panel of Fig. 1, illustrated by constructing
a vector the components of which are defined by Eq. (4). In
this figure, a scale of colors and arrows helps to visualize the
temporal evolution. First, the QD qubit starts from the pure
state |0〉, indicated by the purple curves at the north pole of the
Poincaré sphere. Then, at short times, the QD qubit performs
a rotation around the X axis, which is restricted to the YZ

plane (X = 0), showing that the relative phase is null under
the evolution. It is also observed that the norm shrinks as time
increases, which becomes evident at long times, as shown by
green, yellow, and red arrows.

The QD qubit dynamics restricted to a small region inside
the Poincaré sphere is connected with a high degree of entan-
glement with the cavity. This behavior is better understood by
checking the evolution of the von Neumann entropy S(ρ̂QD),
Eq. (5), shown in Fig. 1(b). The initially pure QD qubit
(S = 0 at gt = 0) performs oscillations between high and
low entangled states, with an almost complete purification at
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FIG. 2. Dynamics of a QD qubit inside a cavity considering
nonresonant condition with δx = −18g and in the absence of lasers
fields. (a) Population inversion and cavity occupation (dashed blue)
as a function of gt . (b) Von Neumann entropy as a function of gt .
Upper panel shows the evolution of a QD qubit over the Poincaré
sphere.

gt � 15 associated with the collapse on population inversion.
This behavior repeats subsequent collapses (not shown). As
time further increases, the degree of entanglement increases
and approaches the maximal entangled states indicated by
S(ρ̂QD) � 1.

It is also important to explore the behavior of the system
under a nonresonant condition between the QD qubit and
cavity. Figure 2 shows the same theoretical tools used on the
description of the QD qubit resonant dynamics but considering
δx = −18g. Figure 2(a) shows that the population inversion
does not perform complete oscillations between the QD qubit
states, although collapses and revivals around the average
value 〈Z〉 � 0.75 are still present. This phenomenon is called
self-trapping or population trapping and is a well-known
aspect of nonresonant dynamics concerning two-level systems.
The average occupation of the cavity stays constant at the
value of 〈n〉 = 25 over the evolution as seen by the blue line
linked to the right axis. The self-trapping is more evident
in the upper panel of Fig. 2, once the mixed state vector
is confined in a restricted region on the north hemisphere
of the Poincaré sphere. It is worth noting that the mixed
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FIG. 3. Lower panel: False color plot of the average occupation
of the exciton states P1 after the system being prepared in the state
|
(0)〉 = |0〉 |α〉 for a constant laser with � = 2g as functions of
detunings δx = ωx − ωc and δp = ωp − ωc with J = 0. Dark regions
correspond to energy configurations where the qubit exciton state |1〉
is being populated. Dashed red line illustrates the condition δp =
−20g, where individual average occupations are shown in the upper
panel. Dotted gray line in the upper panel corresponds to δx = −18g,
being the best condition for population inversion.

vector performs rotations around the Z axis. Thinking in terms
of a general qubit state written as |
〉 = C0 |0〉 + eiφC1 |1〉,
changes in the relative phase φ are connected with changes
with the value of the azimuthal angle of the qubit Bloch vector.
Thus, the nonresonant dynamics brings a gain of relative
phase of the mixed vector, which oscillated between zero
and 2π . Figure 2(b) shows the von Neumann entropy, where
differently from Fig. 1 the entanglement of the QD qubit suffers
a stabilization, having an asymptotic value around S � 0.3.
Notice also that an increase of the purification appears at the
revival of oscillations in the population inversion, indicating
that the system tries to recover its initial state. In general, the
nonresonant condition preserves the purity of the QD qubit,
once it prevents the qubit from interacting in an efficient way
with the cavity.

After checking the basic aspects of QD qubit-cavity
dynamics, we are ready to understand the action of the external
lasers and incoherent effects. The main problem here is to find
the right parameters to send the laser pulses as the coupling
between the QD and cavity modifies its interaction with the
laser. A practical and fast way to survey the effect of this
new ingredient can be done through calculations of the av-
erage occupation Pi,n = limτ→∞ 1

τ

∫ τ

0 Pi,n(t)dt of basis states
|i,n〉 as a function of some physical parameters neglecting
incoherent process and assuming a constant laser excitation
[�(t) constant], which allows us to use the time-independent

Schrödinger equation to compute the time evolution. As we
are interested in the qubit dynamics and want to investigate
where the population inversion occurs, we write the average
occupation of the ith QD qubit state as Pi = ∑

n Pi,n. Here
we choose to seek the best exciton-cavity δx = ωx − ωc and
laser-cavity δp = ωp − ωc detunings and the reason for this
choice is that the cavity frequency ωc is usually fixed by
construction, making our procedure very similar to what one
would do in an experimental setup.

Figure 3 (lower panel) shows the average occupation of
the exciton state as functions of δx and δp for our system
under a constant laser excitation with � = 2g interacting
with the QD, keeping J,κ,γ,φ = 0. The initial state is again
|
(0)〉 = |0〉 |α〉 with 〈n〉 = 25. Bright regions indicate low
population of the exciton state in opposition to dark areas,
therefore, dark areas are good candidates for laser induced
population inversion. In the upper panel of Fig. 3 we show a
cut in the false color plot for δp = −20g (red dashed line in the
lower panel), showing the average occupation of the two QD
qubit components. Gray dotted lines at δx = −18g indicate
the maximum value of P1, being a good candidate to present
a high degree of population inversion under pulsed excitation.

In order to gain a fine control of the dynamics in realistic
situations, we check the effect of the pulse parameters more
closely. We proceed with the simulations using a single
Gaussian pulse of duration gtp = 0.7, which in a typical
strong-coupled QD-cavity system would be a pulse with
duration of the order of 4 to 5 ps, centered at gtp = 10,
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FIG. 4. (a) Average of the population inversion 〈Z〉 as a function
of the pulse area � after the application of a single Gaussian pulse
at gt1 = 10 with duration of gtp = 0.7 and detunings δx = −18g

and δp = −20g. (b) Average of the population inversion 〈Z〉 as a
function of δp for a pulse with same parameters as in (a) with an area
� = 1.07π .
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with optimal parameters obtained from Fig. 3 (δx = −18g and
δp = −20g). We observed that the average of the population
inversion 〈Z〉 after the pulse is strongly dependent on the pulse
area, defined as � = ∫ ∞

−∞ �(t)dt , as we can see in Fig. 4(a).
The maximum change in 〈Z〉 is obtained for � � 1.07π

and 3.3π . The dependence of 〈Z〉 with � shows that the
self-trapped dynamics, initially fixed at some polar angle over
the Poincaré sphere, can be set up on demand by the action
of a prearranged laser pulse. It is interesting to note that high
values of the pulse area bring nonlinear effects, linked with
the increase of the pulse intensity and resulting in a lack of
control of the dynamics. This is indicated by nontrivial values
of 〈Z〉 for � > 4.

We now simulate the behavior of 〈Z〉 as a function of the
laser detuning to the cavity frequency considering a laser pulse
with area � = 1.07π , corresponding to the first minimum in
Fig. 4(a). As we can see in Fig. 4(b), 〈Z〉 changes drastically
for values around δp = −20g, in accord with the predictions
for the continuous laser as shown in Fig. 3. It is also interesting
to notice that there is a dip of 〈Z〉 around δp = −20.6g, in a
range of ≈5δp, meaning the effects of the pulse on dynamics
permits some flexibility over the exact value of δp . For practical
applications, once we establish an adequate value of δp (using
the survey of populations), a specific pulse can be set up on
demand in order to perform controlled self-trapped dynamics
of the QD qubit. This set of parameters, δx = −18g, δp =
−20.6g, and � � 1.07π , will be kept constant for the rest of
the paper.

To corroborate our approach, we proceed to explore the
dynamics of population inversion, QD qubit on the Poincaré
sphere, and von Neumann entropy. We discuss the action of
a sequence of three pulses. We consider again the QD qubit
initialized at the ground state |0〉 and the cavity in the coherent
state |α〉 with 〈n〉 = 25 and the conditions described before.

Figure 5 shows the QD qubit dynamics under the action
of a sequence of three pulses, all with duration of gtp = 0.7
for the best detuning found before. The format of the pulse is
shown in Fig. 5(a). The population inversion, Fig. 5(b), shows
that the QD qubit initially (for gt < 5) performs self-trapped
oscillations around 〈Z〉 � 0.75. This can be better visualized
in the top panel of Fig. 5, where the dynamics is restricted to the
north hemisphere of the Poincaré sphere. After the application
of the first pulse at gt1 = 5 with pulse area �1 = 1.07π , the
population inversion starts an oscillation with a new structure
of collapses and revivals, oscillating around 〈Z〉 � −0.73,
still in a self-trapped dynamics as can also be seen in the
Poincaré sphere, moving the oscillation from the north to
the south hemisphere. After the application of the second
pulse at gt2 = 10 with the same pulse area �2 = 1.07π , the
self-trapping oscillations change to an average value around
〈Z〉 � 0.72, moving back to the north hemisphere of the
Poincaré sphere. Further control can be obtained with the
last pulse, applied at gt3 = 15 with a pulse area of half of
the previous case (�3 = 1.07π/2), creating a superposition
between exciton and ground state, showing that we can
control the QD qubit state reasonably well with this choice
of pulse sequence. Concerning the entanglement dynamics,
again explored using the von Neumann entropy plotted in
Fig. 5(b), it is worth noting that the first two pulses change
slightly the entanglement degree of the QD qubit, keeping
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FIG. 5. Dynamics of a QD qubit inside a cavity considering δx =
−18g, δp = −20.6g, neglecting losses and under the effect of three
Gaussian pulses, the first and second with the same pulse area � =
1.07π , and the last with � = 1.07π/2, applied at gt1 = 5, gt2 = 10,
and gt3 = 15, all with duration of gtp = 0.7. (a) Sequence of pulses
used in the simulation. (b) Population inversion and cavity occupation
(dashed blue) as a function of gt . (c) Von Neumann entropy as a
function of gt . Upper panel shows the evolution of a QD qubit over
the Poincaré sphere, with the color code and arrows indicating the
time sequence.

the value of the entropy below 0.5. The third pulse, on the
other hand, creates a situation similar to the full resonant case,
Fig. 1, where the entropy goes to maximum, and the inversion
exhibits oscillations around the average value of 〈Z〉 = 0.

One advantage of using the nonresonant condition is that
the QD lifetime increases from a few hundred picoseconds to
a few nanoseconds due to the reduction of fluctuations in the
vacuum of the electromagnetic field [33]. Taking the lower
limit, let us assume that the lifetime of the QD is about 0.7 ns,
which gives a decay rate of the order of γ = 0.01g. Since we
are proposing the manipulation the QD qubit in a time scale
of a few picoseconds, the effects of this decay rate can be
neglected in our analysis. We also consider a pure dephasing
rate of the same order of magnitude φ = 0.01g and, as we
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FIG. 6. Dynamics of a nonresonant QD qubit inside a cavity under
the effect of three Gaussian pulses for the same set of parameters used
in Fig. 5, but now considering decoherence. (a) Sequence of pulses
used in the simulation. (b) Population inversion and cavity occupation
(dashed blue line) as a function of gt for κ = 0.05g, γ = 0.01g, and
φ = 0.01g. (c) Same as (b) for κ = 0.5g.

shall see later, pure dephasing plays an important role in the
preparation of the initial state used in dynamics of the coupled
system.

Cavity loss is another term that cannot be neglected since
the average life span of a photon within a cavity may be as
small as a few picoseconds in a bad cavity. To understand the
effects of the cavity loss, in Fig. 6 we show the dynamics of the
system using the same parameters and sequence of pulses as
in Fig. 5, but now including incoherent effects. In Fig. 6(b) we
use γ = 0.01g, φ = 0.01g, and κ = 0.05g, while in Fig. 6(c)
we use γ = 0.01g, φ = 0.01g, and κ = 0.5g. As we can see
in this figure, even a small loss of the cavity is enough to break
the QD qubit manipulation. Notice that the average occupation
of the cavity photons decreases exponentially and we have
〈n〉 � 20, 15, and 12 when the first, second, and third pulses are
applied, respectively. Pure dephasing and exciton spontaneous
decay plays no role in this particular case as the time scale is
small. Notice that we have used (|
(0)〉 = |α〉 |0〉) as the initial
state, which is a pure state. For the case of κ = 0.5g, Fig. 6(c),
the occupation of the cavity goes to zero very quickly, being
zero before the second pulse, and the coherent manipulation
of the QD qubit is completely destroyed. Thus, even though
the cavity is out of resonance, the loss of the cavity plays an
important role in the QD qubit manipulation.

It is important to mention that the coherent state under
cavity loss will still be a coherent state, but with a lower
average of photons. The main problem here is that the
resonance condition (the best parameter we found in Figs. 3

0 20 40 60 80 100
gt

0

10

20

30

40

50

n

FIG. 7. (a) Evolution of the photon distribution in the cav-
ity for κ = 0.5g, γ = 0.01g, φ = 0.01g, and J = 1.28g assuming
|
(0)〉 = |0〉 |0〉 as initial state. Right panel shows the photon
distribution for the quantum state at gt = 100.

and 4) changes over time as the photon population decreases
and a complete control of the QD state will require a
previous evaluation of the best parameter for each pulse of
the pulse sequence to control its states. Experimentally, this
is challenging, as it requires sending pulses with different
frequencies and intensities in a short time scale.

To solve this problem, instead of using the laser described
by the coupling J to only prepare the initial coherent state
in the cavity, let us keep it as a constant pump to maintain
a steady coherent state in the cavity. In Fig. 7 we plot
the evolution of the photon distribution in the Fock basis
considering δx = −18g, δp = −20.6g, (same parameters used
before), ωj = ωc, J = 1.28g, κ = 0.5g, γ = 0.01g, and φ =
0.01g as a function of gt , assuming |
(0)〉 = |0〉 |0〉 as
the initial state. Here we choose j = 1.28g because that
produces a steady coherent state with 〈n〉 � 25.3, close to
the condition used in Fig. 5. The right panel is a view of the
photon distribution for gt = 100, showing a coherent photon
distribution.

Using the state at gt = 100 obtained with J = 1.28g as the
initial state of the system, in Fig. 8 we show the dynamics
of the system under the same pulse sequence and parameters
as in Fig. 6(c), with additional parameters ωj = ωc = 0, κ =
0.5g, γ = 0.01g, and φ = 0.01g. As we can see in Fig. 8(b),
we have now a better control of the inversion of population
with our pulse sequence as the cavity occupation is kept almost
constant over the evolution despite the application of the laser
pulses interacting with the QD. The value is very close to our
ideal situation (with no losses), with an average of photons
in the cavity around 〈n〉 � 25 as we initially planed. Notice,
however, that the range of population inversion is decreased;
this is due to the pure dephasing rate acting in the preparation of
the state of the cavity (the evolution during the pulse sequence
is too short for the pure dephasing and decay of the exciton
to play a role). The effect of the pure dephasing rate in the
initial state can also be seen in Fig. 8(c), where the initial
value of the von Neumann entropy is about 0.6. Despite the
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FIG. 8. Dynamics of a QD qubit inside a cavity under the effect
of three Gaussian pulses as in Fig. 5, now considering κ = 0.5g, γ =
0.01g, φ = 0.01g, and J = 1.28g and the initial state the state at
gt = 100, the photon distribution of which is shown in the right
panel of Fig. 7. (a) Sequence of pulses used in the simulation.
(b) Population inversion and cavity occupation (dashed blue line)
as a function of gt . (c) Von Neumann entropy as a function of gt .
Upper panel shows the evolution of a QD qubit over the Poincaré
sphere, with the color code indicating the time sequence.

initial difference, the evolution of the von Neumann entropy
is very similar to the case analyzed previously in Fig. 5(c).

Neglecting pure dephasing completely and keeping all
parameters as in Fig. 8 we obtain Fig. 9. These two figures
have similar general characteristics. The main differences are
in the range of the population inversion and the initial value
of the von Neumann entropy, which is a result of the different
initial state as we mentioned above. In the case with pure
dephasing, Fig. 8(b), the population inversion is restricted to
smaller absolute values, resulting in self-trapping close to the
central region of the Poincaré sphere, indicating that we have
a mixed state. This results in a large value of the von Neumann
entropy, indicating that the initial state prepared (Fig. 7 for
gt = 100) is not pure. Here it is important to mention that
pure dephasing in solid-state systems cannot be neglected,
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FIG. 9. Dynamics of a QD qubit inside a cavity under the effect of
three Gaussian pulses and parameters as in Fig. 8, now neglecting pure
dephasing and considering the initial state as the state at gt = 100 for
φ = 0.0. (a) Sequence of pulses used in the simulation. (b) Population
inversion and cavity occupation (dashed blue line) as a function of
gt . (c) Von Neumann entropy as a function of gt . Upper panel shows
the evolution of a QD qubit over the Poincaré sphere, with the color
code indicating the time sequence.

being always present due to the nature of the system and the
presence of phonons; in this way, the preparation of the initial
state in a solid-state system will always face this problem.
To minimize its effect, the exciton-cavity detuning can be
increased. In systems where pure dephasing can be safely
neglected, the result presented in Fig. 8 might be useful.

IV. SUMMARY

In this paper, we discuss the dynamics of an exciton in a
quantum dot which interacts with a coherent state, supported
by a cavity, under the action of a continuous laser, for
controlling the cavity losses, and external Gaussian laser
pulses, to control exciton-cavity dynamics. Our study is a
step towards the implementation of an on-chip cavity quantum
electrodynamics. We define a qubit using two levels on the
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quantum dot so |0〉 is the vacuum state (no exciton) and
|1〉 is the exciton state (QD qubit). We use the population
inversion, Z(t), and a mixed vector definition of a QD qubit
on the Poincaré sphere to study the system dynamics. We also
use the von Neumann entropy to analyze the entanglement
degree (closed system) and the degree of purity (open system)
between the qubit and the cavity mode.

The treatment without considering losses provides impor-
tant information: the average population is used to define an
efficient condition of qubit-cavity and pulse-cavity detunings
for populating the dressed states |i,n〉. The dynamics shows
self-trapping on population inversion, with oscillations of the
relative phase of the qubit. By including the pulses, we check
the effect of the pulse area on the dynamics, showing that
the central value of population inversion changes significantly
after the pulse. The sequence of pulses can be also used to
increase the entanglement degree between the qubit and the
cavity in the nonresonant ideal (no losses) condition.

We also discuss the effect of losses on our approach.
Because the QD qubit lifetime is long enough (and it can
be even longer in a nonresonant condition with the cavity),
we avoid the effects of spontaneous emission by choosing a
short time scale defined by gt < 25. The QD qubit dynamical
control, on demand, is attained by using a sequence of short
pulses. To protect the manipulation against cavity losses,

we explore the use of an additional continuous laser, which
maintains a steady coherent state inside the cavity. This
mechanism already sustains the QD qubit dynamics, assuring
the success of our proposal. We also analyzed the effects of
pure dephasing of the QD qubit in the dynamics, showing that it
produces no effects in the time evolution during our short pulse
sequence, but it might affect the preparation of the initial state.

In future papers, we intend to continue studying the
entanglement between the QD qubit and cavity by quantifying
the existence of quantum correlations when considering losses.
The goal is to explore the potential of this system as an
entanglement resource. A second issue is to engage a study
about production quantum light but with a focus other than
single photons.
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