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Diagrammatic extensions of dynamical mean-field theory (DMFT) such as the dynamical vertex approximation
(D�A) allow us to include nonlocal correlations beyond DMFT on all length scales and proved their worth for
model calculations. Here, we develop and implement an Ab initio D�A approach (AbinitioD�A) for electronic
structure calculations of materials. The starting point is the two-particle irreducible vertex in the two particle-hole
channels which is approximated by the bare nonlocal Coulomb interaction and all local vertex corrections. From
this, we calculate the full nonlocal vertex and the nonlocal self-energy through the Bethe-Salpeter equation. The
AbinitioD�A approach naturally generates all local DMFT correlations and all nonlocal GW contributions, but
also further nonlocal correlations beyond: mixed terms of the former two and nonlocal spin fluctuations. We
apply this new methodology to the prototypical correlated metal SrVO3.
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I. INTRODUCTION

Some of the most fascinating physical phenomena are ex-
perimentally observed in strongly correlated electron systems
and, on the theoretical side, only poorly understood hitherto.
This is particularly true for electronic structure calculations
of materials where the standard approach, density functional
theory (DFT) [1–4] in its local density approximation (LDA)
or generalized gradient approximation (GGA), only rudimen-
tarily includes such correlations. This calls for genuine many
body techniques [5].

One such method is Hedin’s GW approach [6] consisting of
the interacting Green’s function times the screened interaction
W , which physically describes a screened exchange, see Fig. 1,
top panel. In the last years, this approach has matured to
the point that material calculations are actually feasible and
various program packages are available. As a consequence,
semiconductors, in which the extended sp3 orbitals make
the nonlocal exchange contribution particularly important,
can be better described, especially their band gaps. From
the point of view of the exchange-correlation potential of
DFT, the GW approach mostly improves upon the LDA
or GGA regarding the exchange part. Via the inclusion of
screening, GW implicitly also includes correlation effects,
leading to renormalized quasiparticle weights and finite life
times. Nonetheless, in the presence of strong electronic corre-
lations, e.g., in transition metal oxides and f -electron systems,
the first-order expression GW of many-body perturbation
theory is largely insufficient and vertex corrections become
relevant.

For such strongly correlated materials, dynamical mean-
field theory (DMFT) [7–9] emerged instead as the state-of-
the-art. The reason for this is that DMFT accounts for a
major part of the electronic correlations, namely the local
correlations between electrons on the same lattice site. These
are particularly strong for transition metal oxides or heavy
fermion systems with d and f electrons, respectively, due
to the localized nature of the corresponding orbitals. Its
merger with LDA [10–13] or GW [14–22] allows for realistic
materials calculations and is more and more widely used.
Does the principal method development of electronic structure
calculations come to a standstill at this point? Or does

it merely advance towards ever more complex and bigger
systems?

In this paper, we show that a further big step forward is
possible. Let us, to this end, start by analyzing GW and DMFT,
which are both based on Feynman diagrams: GW simply takes
(besides the Hartree term) the exchange diagram (Fig. 1, top)
and much of its strengths result from the fact that this exchange
term is taken in terms of the screened Coulomb interaction
within the random phase approximation (RPA; Fig. 1, middle).
This screening results in a much better convergence of the
perturbation series of which actually only the first-order terms
are taken into account. DMFT, on the other hand, includes
all local (skeleton) diagrams for the self-energy in terms of
the interacting local Green’s function and Hubbard/Hund-like
local interactions (Fig. 1, bottom). While this reliably accounts
for the local electronic correlations, nonlocal correlations are
neglected in DMFT. The same holds for extended DMFT
[25,26] which treats the local correlations emerging from
nonlocal interactions. The nonlocal correlations are, however,
at the heart of some of the most fascinating phenomena
associated with electronic correlations such as (quantum)
criticality, spin fluctuations and, possibly, high-temperature
superconductivity.

In this paper, we develop, implement and apply a 21st
century method for the ab initio calculation of correlated mate-
rials. It is based on recent diagrammatic extensions of DMFT
[27–38], a development which started with the dynamical
vertex approximation (D�A) [28,29]. These dynamical vertex
approaches are quite similar and all based on the two-particle
vertex instead of the one-particle vertex (i.e., the self-energy)
in DMFT. This way, local dynamical correlations à la DMFT
are captured but at the same time strong electronic correlations
on all time and length scales are also included. In the context of
many-body models, D�A and related approaches have been
applied successfully to calculate, among others, (quantum)
critical exponents [39–42], and evidenced strong nonlocal
contributions to the self-energy beyond GW [43].

One can also consider the first-principles extension ab initio
D�A (AbinitioD�A) as a realization of Hedin’s idea [6] to
include vertex corrections beyond the GW approximation. All
vertex corrections which can be traced back to the irreducible
local vertex in the particle-hole channels and the bare non-
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FIG. 1. (Top) In addition to the Hartree term, GW takes into
account the (screened) exchange Feynman diagram (wiggled line:
Coulomb interaction V ; double wiggled line: screened interaction W ;
line: interacting Green’s function G; Ri , Rj indicate the lattice sites).
(Middle) Calculation of W as a screened Coulomb interaction within
the RPA. (Bottom) Feynman diagrams for the DMFT self-energy �.

local Coulomb interaction are included, see Fig. 2(b). This
seamlessly generates all the GW diagrams and the associated
physics, as well as the local diagrams of DMFT and nonlocal
correlations beyond both on all length scales. Through the

latter, we can describe, among others, phenomena such as
quantum criticality, spin-fluctuation mediated superconduc-
tivity, and weak localization corrections to the conductivity.
This is beyond DMFT, which is restricted to local correlations
as well as beyond GW , which is restricted to one screening
channel and the low-coupling regime [44]. Nonetheless, the
computational effort of AbinitioD�A is still manageable even
for materials calculations with several relevant orbitals, as we
demonstrate in this work.

In Sec. II, we introduce the AbinitioD�A method, including
all relevant equations. Section III, presents first results for the
testbed material SrVO3; and Sec. IV summarizes the work
and provides an outlook for future applications. An avenue to
AbinitioD�A was envisioned in Ref. [45]. Here we concretize
these ideas and fully derive and implement the approach.
Please also note the proposal of Ref. [46] to use the functional
renormalization group on top of the (extended) DMFT, and the
dual boson approach [47] to nonlocal interactions.

II. AbinitioD�A METHOD

Before we go into the detailed multi-orbital derivation of the
AbinitioD�A equations, let us briefly outline the rationale of
the method, as it is depicted in Fig. 2. As a starting point
we consider a general Hamiltonian written in terms of a
one-particle operator (Ĥ0), and a two-particle interaction with

(c) lattice Bethe-Salpeter equation

(b) the irreducible vertex

(d) Schwinger-Dyson equation of motion

(a) local Bethe-Salpeter equation

FIG. 2. Outline of the main equations of the AbinitioD�A approach. (a) The local Bethe-Salpeter equation allows extracting the local
irreducible vertex �loc from the local generalized susceptibility χloc. (b) The local irreducible vertex (which contains the local interaction U )
is supplemented by the nonlocal interaction V resulting in the momentum-dependent irreducible vertex �. (c) From this � the full vertex
F is obtained using the Bethe-Salpeter equation (shown is only the particle-hole channel, but the related contribution from the transversal
particle-hole channel is also included). (d) Finally, the self-energy is constructed via the Schwinger-Dyson equation consisting of the vertex
part (top), and the Hartree-Fock contribution (bottom). From this self-energy one can, in principle, determine an updated local vertex, closing
the loop. For details and the index convention, see Secs. II C and II D.
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a local (Û ) as well as a nonlocal (V̂ q) part:

Ĥ = Ĥ0 + Û +
∑

q

V̂ q. (1)

For AbinitioD�A calculations this Hamiltonian may contain
a large set of orbitals, e.g., the physical spdf orbitals in a
muffin-tin orbital basis set [48] or those obtained by a Wannier
function projection [49,50]. However, the approach can also be
applied to a more restricted set of orbitals for the low-energy
degrees of freedom such as the t2g orbitals for our SrVO3

calculation in Sec. III. In the latter case, the influence of orbitals
outside the energy windows of Ĥ0 and their effect on Ĥ0 have
to be taken into account, e.g., on the DFT or GW level. The
screening of the interactions Û and V̂ q needs to be included
as well, e.g., through constrained DFT [51–53] or constrained
RPA [54–56].

AbinitioD�A is a Feynman diagrammatic theory built
around the two-particle irreducible vertex which is approxi-
mated by the bare Coulomb interaction plus all local vertex
corrections, see Fig. 2(b). From this irreducible vertex many
additional Feynman diagrams are constructed. One has to
distinguish between (i) the fully irreducible vertex as a starting
point where these additional diagrams are constructed by the
parquet equations as in Refs. [37,38] and (ii) the irreducible
vertex in the particle-hole channel (and transversal particle
hole channel) where this is done by the Bethe-Salpeter equa-
tions (BSE) as in Refs. [28,29]. For our realistic multiorbital
calculations we here rely on (ii) which is numerically more
feasible.

To include the important local vertex corrections, first the
local irreducible vertex �loc is extracted from the local two-
particle Green’s function or from generalized susceptibilities
χloc [see Fig. 2(a)]. This is possible by solving an Anderson im-
purity model; and for multi-orbitals, continuous-time quantum
Monte Carlo simulations [57–60] are most appropriate to this
end. The resulting local irreducible vertices in the longitudinal
and transversal particle-hole channels are then combined with
the nonlocal interaction V q and finally dressed via the BSE
equation [see Fig. 2(c); Sec. II C]. Eventually, a new lattice
Green’s function is constructed using the k-dependent self-
energy calculated from the equation of motion [see Fig. 2(d);
Sec. II D].

In principle from the local projection of this new Green’s
function an updated local vertex can be calculated as indicated
by the arrow from Figs. 2(d) to Fig. 2(a). Such a self-consistent
scheme has been envisaged in Refs. [61–63] but not yet
implemented; it is of particular importance if the electron
density changes considerably in D�A because the vertex and
its asympotics depend strongly on the density. Beyond this,
also the DFT Hamiltonian or the constrained RPA interaction
and GW self-energy for the high energy degrees of freedom
should be updated through a charge [64–68] or hermitianized
self-energy [69,70] self-consistency, respectively. These steps
go beyond the one-shot calculation of the present paper where
the local vertex is fixed to the DFT+DMFT solution.

As the computationally most demanding part is the calcu-
lation of the local vertex, it is reasonable (in case of a large
set of orbitals) to calculate it only for the more correlated
(e.g., d and f ) orbitals, whereas the local vertex of the less

correlated (e.g., spd) orbitals may be taken as U + V in the
same way as the two V terms in Fig. 2(b). This includes all the
GW diagrams for these orbitals but also Feynman diagrams
beyond [71]. A frequency dependence of U (ω) when using
the constrained RPA as a starting point can also be included
for the more correlated orbitals in the same way, i.e., adding
U (ω) − U to the vertex.[72] Alternatively, one can calculate
the local vertex from U (ω) in CT-QMC.

Let us after these general considerations now turn to the
actual equations and technical details of the AbinitioD�A
approach. Figure 2 provides an overview, but the devil is in
the details and Fig. 2 is somewhat schematic: we have not
specified the spin indices and have only shown the longitu-
dinal (not the transversal) particle-hole channel; also, in our
implementation, we circumvent an explicit evaluation of �loc

as this quantity may contain divergencies; we also show how to
increase the numerical efficiency by a reformulation in terms
of three-leg quantities and by neglecting—as an additional
approximation—the k,k′ dependence of the irreducible vertex
in Fig. 2(b).

A. Coulomb interaction

The electron-electron Coulomb interaction Û full can in
general be expressed as

Û full = 1

2

∑
R1,R2,R3

ll′mm′
σσ ′

U full
lm′ml′ (R1,R2,R3)

× ĉ
†
R3m′σ ĉ

†
R1lσ ′ ĉR2mσ ′ ĉ0l′σ , (2)

where the Roman indices ll′mm′ denote the orbitals, σ the
spin, and R the lattice site. It fulfills the particle “swapping
symmetry,”

U full
lm′ml′ (R1,R2,R3) = U full

m′ll′m(R3 − R2, − R2,R1 − R2), (3)

which corresponds to an invariance under a swap of both the
incoming and the outgoing particle labels. Taking the Fourier
transform with respect to R yields

U
qkk′
lm′ml′ =

∑
R1,R2,R3

eikR1e−i(k−q)R2ei(k′−q)R3

×U full
lm′ml′(R1,R2,R3) , (4)

or for the interaction operator

Û full = 1

2

∑
qkk′

ll′mm′
σσ ′

U
qkk′
lm′ml′ ĉ

†
k′−qm′σ ĉ

†
klσ ′ ĉk−qmσ ′ ĉk′l′σ , (5)

where

ĉklσ =
∑

R

eikRĉRlσ . (6)

The k-point dependence of Û full can be simplified if the
orbital overlap between adjacent unit cells is neglected, so that
the creation and annihilation operators are paired up at site 0
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and R. This gives

Ulm′ml′ ≡ U full
lm′ml′(0,0,0), (7)

V
q
lm′ml′ ≡

∑
R�=0

eiRqU full
lm′ml′(R,R,0), (8)

which corresponds to a local interaction Û and a purely
nonlocal interaction V̂ q. In this case, the swapping symmetry
reduces to Ulm′ml′ = Um′ll′m and V

q
lm′ml′ = V

−q
m′ll′m.

B. Green’s functions

We begin with the basic definitions of the one- and two-
particle Green’s functions

Gk
σ,lm(τ ) ≡ −〈T [̂cklσ (τ )̂c†kmσ (0)]〉, (9)

G
qkk′

lmm′l′
σ1σ2σ3σ4

(τ1,τ2,τ3)

≡ 〈T [̂cklσ1
(τ1)̂c†k−qmσ2

(τ2)̂ck′−qm′σ3
(τ3)̂c†k′l′σ4

(0)]〉. (10)

where τ ∈ [0,β) denotes imaginary time and T is the time
ordering operator. In absence of spin-orbit interaction the spin
is conserved, which leaves six different spin combinations:

G
qkk′
σσ ′,lmm′l′ (τ1,τ2,τ3) ≡ G

qkk′

lmm′l′
σσσ ′σ ′

(τ1,τ2,τ3), (11)

G
qkk′

σσ ′,lmm′l′
(τ1,τ2,τ3) ≡ G

qkk′

lmm′l′
σσ ′σ ′σ

(τ1,τ2,τ3). (12)

There are only two independent spin configurations in the
paramagnetic phase, as the system then is SU(2) symmetric
with respect to the spin,

Gσσ ′ = G(−σ )(−σ ′) = Gσ ′σ , (13)

Gσσ = Gσ (−σ ) + Gσ (−σ ). (14)

As we will see in the next section, one particularly useful
choice for these two spin combinations is the density and
magnetic channel defined as

Gd = G↑↑ + G↑↓, (15)

Gm = G↑↑ − G↑↓ = G↑↓. (16)

The value of the two-particle Green’s function takes a step
of 1 whenever the τ arguments of a creation and an annihilation
operator become equal. These discontinuities can be canceled
out by subtracting pairs of one-particle Green’s functions,
giving the so-called connected part of the two-particle Green’s
function:

G
conqkk′
σσ ′,lmm′l′(τ1,τ2,τ3) = G

qkk′
σσ ′,lmm′l′(τ1,τ2,τ3)

− δq0G
k
σ,lm(τ1 − τ2)Gk′

σ ′,m′l′(τ3)

+ δσσ ′δkk′Gk
σ,ll′ (τ1)Gk−q

σ,m′m(τ3 − τ2).

(17)

The connected part is continuous in its τ arguments, but
it still shows cusps at equal times. We define the Fourier

transformation of Gcon with respect to τ in the same way
as for Û full and R,

G
conqkk′
σσ ′,lmm′l′ =

∫ β

0

∫ β

0

∫ β

0
dτ1dτ2dτ3e

iντ1e−i(ν−ω)τ2ei(ν ′−ω)τ3

×G
conqkk′
σσ ′,lmm′l′(τ1,τ2,τ3), (18)

where the bosonic compound index is q = (ω,q) and the
fermionic compound index k = (ν,k). In the chosen frequency
and momentum convention, the bosonic index (q) corresponds
to a longitudinal transfer of energy and momentum from one
particle-hole pair (ml) to the other (m′l′).

Gcon is by definition related to the fully reducible vertex F

as

G
conqkk′
r,lmm′l′ =

∑
nn′hh′

χ
qkk
0,lmhnF

qkk′
r,nhh′n′χ

qk′k′
0,n′h′m′l′ , (19)

where the bare two-particle propagator χ0 is defined as

χ
qkk′
0,lmm′l′ ≡ −βGk

ll′G
k′−q
mm′ δkk′ . (20)

The full vertex F is part of the definition of the Bethe-Salpeter
equation (BSE), and will thus be of major importance in the
diagrammatic extension outlined in the next section.

In order to improve the statistics of the two-particle
Green’s function, and reduce the computational resources
needed to perform the calculations, it is important to utilize
the symmetries of the system. In addition to the orbital
symmetries, the two-particle Green’s function also fulfills time
reversal symmetry,

G
qkk′
σσ ′,lmm′l′ = G

q̄k̄′k̄
σ ′σ,l′m′ml, (21)

where k̄ = {ν,−k}, and the crossing symmetries,

G
qkk′
σσ ′,lmm′l′ = −G

(k′−k)(k′−q)k′

σ ′σ,m′mll′
(22)

= −G
(k−k′)k(k−q)
σσ ′,ll′m′m

(23)

= G
(−q)(k′−q)(k−q)
σ ′σ,m′l′lm , (24)

where the last line corresponds to a full swap of the in-coming
and the outgoing particle labels. The symmetries (22)–(24)
can be understood from the fact that exchanging the position
of the “legs” does not alter the vertex but the q,k,k′ values it
corresponds to as visualized in Fig. 3. Finally, the two-particle
Green’s function transforms under complex conjugation as(

G
qkk′
σσ ′,lmm′l′

)∗ = G
(−q)(−k)(−k′)
σ ′σ,l′m′ml . (25)

FIG. 3. Diagrammatic representation of (a) the crossing symme-
try in Eq. (22) and (b) the swapping symmetry in Eq. (24).
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C. Diagrammatic extension

At the heart of the AbinitioD�A method is the two-particle
irreducible vertex � in the particle-hole channel,

�
qkk′
σσ ′,lmm′l′ ≡ �ωνν ′

σσ ′,lmm′l′ + Vqkk′
σσ ′,lmm′l′ , (26)

Vqkk′
σσ ′,lmm′l′ ≡ β−2

(
V

q
lm′ml′ − δσσ ′V k′−k

mm′ll′
)
, (27)

given by the local irreducible vertex �ωνν ′
supplemented with

the nonlocal interaction Vqkk′
written in the form of a fully

irreducible vertex, as shown in Fig. 2(b). For brevity, we omit
here and in the following in �ωνν ′

a “loc” subscript [which
is implied if the vertex depends on frequencies only; please
recall the convention q = (ω,q) and k = (ν,k)] and a “ph”
subscript (�’s and later φ’s without an explicit subscript refer
to the particle-hole channel). As already mentioned, � can be
extracted from the solution of an effective Anderson impurity
problem through the inversion of a local BSE, which relates
the local two-particle irreducible (�) and reducible (φ) vertices
in the particle-hole channel with the local full vertex

Fωνν ′
r,lmm′l′ = �ωνν ′

r,lmm′l′ + φωνν ′
r,lmm′l′ , (28)

φωνν ′
r,lmm′l′ =

∑
nn′hh′

ν ′′

�ωνν ′′
r,lmhnχ

ων ′′ν ′′
0,nhh′n′F

ων ′′ν ′
r,n′h′m′l′ . (29)

Here, r ∈ {d,m} denotes the (d)ensity or the (m)agnetic spin
combination as in Eqs. (15) and (16), which allows us to
decouple the spin components. The local full vertex F can
in turn be obtained via Eq. (19) from the local two-particle
Green’s function Gcon, which can be directly calculated
in continuous-time quantum Monte Carlo. Equivalently, �

can also be directly obtained from the local BSE of local
generalized susceptibilities,

χωνν ′
r,lmm′l′ = χωνν ′

0,lmm′l′δνν ′ +
∑

nn′hh′
ν ′′

χωνν
0,lmhn�

ωνν ′′
r,nhh′n′χ

ων ′′ν ′
r,n′h′m′l′ ,

(30)

as depicted in Fig. 2(a).
The BSE extends the “swapping” symmetry in Eq. (24) of

F to φ and �, but not the crossing symmetry in Eqs. (22) and
(23), i.e.,

φωνν ′
r,lmm′l′ = φ

(−ω)(ν ′−ω)(ν−ω)
r,m′l′lm , (31)

φωνν ′
r,lmm′l′ �= φωνν ′

ph,r,lmm′l′ , (32)

φωνν ′
ph,σσ ′,lmm′l′ = −φ

(ν ′−ν)(ν ′−ω)ν ′

σ ′σ ,m′mll′
(33)

= −φ
(ν−ν ′)ν(ν−ω)
σ ′σ ,ll′m′m

, (34)

where the transversal particle-hole channel (ph) by definition
is antisymmetric to the particle-hole channel with respect
to a relabelling of the two incoming or outgoing particles.
Applying the SU(2) symmetry relations in Eq. (14) to φph

gives the explicit relations

φωνν ′
ph,d,lmm′l′ = − 1

2φ
(ν ′−ν)(ν ′−ω)ν ′
d,m′mll′ − 3

2φ
(ν ′−ν)(ν ′−ω)ν ′
m,m′mll′ , (35)

φωνν ′
ph,m,lmm′l′ = − 1

2φ
(ν ′−ν)(ν ′−ω)ν ′
d,m′mll′ + 1

2φ
(ν ′−ν)(ν ′−ω)ν ′
m,m′mll′ , (36)

or in the case of a nonlocal BSE

φ
qkk′

ph,d,lmm′l′
= − 1

2φ
(k′−k)(k′−q)k′
d,m′mll′ − 3

2φ
(k′−k)(k′−q)k′
m,m′mll′ , (37)

φ
qkk′

ph,m,lmm′l′
= − 1

2φ
(k′−k)(k′−q)k′
d,m′mll′ + 1

2φ
(k′−k)(k′−q)k′
m,m′mll′ . (38)

From the starting point �
qkk′
r in Eq. (26), we now need

to construct the full vertex F
qkk′
r through a nonlocal BSE. In

the following we will focus on the longitudinal particle-hole
channel, but the final expressions will also contain the BSE
diagrams for the transversal particle-hole channel through the
use of Eqs. (37) and (38). The third channel, the particle-
particle channel, is considered here to be local in nature and
already well described by its local contribution in �ωνν ′

.
The nonlocal BSE in the particle-hole channel is given by

F
qkk′
r,lmm′l′ = �

qkk′
r,lmm′l′ +

∑
nn′hh′

k′′

�
qkk′′
r,lmhnχ

qk′′k′′
0,nhh′n′F

qk′′k′
r,n′h′m′l′ . (39)

A considerable simplification of this equation is possible if
�qkk′

does not depend on the momenta k and k′. Indeed, this
dependence arises only from the second (crossed) V k′−k term
in Eq. (27) which is neglected, e.g., in the GW approach. If we
follow GW and neglect this term or average it over k (which
gives zero since V was defined as purely nonlocal), the vertex
(now already in the two spin channels r ∈ {d,m}) reads

�
qνν ′
r,lmm′l′ = �ωνν ′

r,lmm′l′ + 2β−2V
q
lm′ml′δr,d . (40)

and the BSE becomes [see Fig. 2(c)]

F
qkk′
r,lmm′l′ = �

qνν ′
r,lmm′l′ +

∑
nn′hh′

k′′

�
qνν ′′
r,lmhnχ

qk′′k′′
0,nhh′n′F

qk′′k′
r,n′h′m′l′ . (41)

Since �r is now independent of k and k′, this will also be the
case for F in Eq. (41). The summation over k′′ hence yields

F
qνν ′
r,lmm′l′ = �

qνν ′
r,lmm′l′ + φ

qνν ′
r,lmm′l′ (42)

φ
qνν ′
r,lmm′l′ =

∑
nn′hh′

ν ′′

�
qνν ′′
r,lmhnχ

qν ′′ν ′′
0,nhh′n′F

qν ′′ν ′
r,n′h′m′l′ , (43)

χ
qνν

0,lmm′l′ =
∑

k

χ
qkk
0,lmm′l′ . (44)

By combining the left (right) orbital indices and fermionic
Matsubara frequencies into a single compound index {lm,ν}
({l′m′,ν ′}), Eq. (42) can be written as a matrix equation in
terms of these compound indices:

F q
r = �q

r + φq
r = �q

r + �q
r χ

q
0 F q

r . (45)

The full vertex F can now, in principle, be extracted from
Eq. (45) through a simple matrix inversion:

F q
r = [(

�q
r

)−1 − χ
q
0

]−1
. (46)

However, as recently shown in Ref. [74], the local � extracted
from a self-consistent DMFT calculation contains an infinite
set of diverging components. The numerical complications
associated with these diverging components can be avoided
by substituting the local � in Eq. (46) by the local F using
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Eqs. (28) and (29). After some algebra, this yields

F
q
d = (

Fω
d + 2β−2V q(1 + χω

0 Fω
d

))
× [

1 − χ
nl,q
0 Fω

d − 2β−2χ
q
0 V q(1 + χω

0 Fω
d

)]−1
, (47)

F q
m = Fω

m

[
1 − χ

nl,q
0 Fω

m

]−1
(48)

where the purely nonlocal χnl is defined as

χ
nl,q
0 ≡ χ

q
0 − χω

0 . (49)

This formulation is equivalent to Eq. (46) but circumvents the
aforementioned divergencies in the local �.

The nonlocal full vertices generated in Eqs. (47) and
(48) through only the particle-hole channel are not crossing
symmetric [the vertices are not antisymmetric with respect to
a relabelling of the two in-coming or outgoing particles, as
in Eqs. (22) and (23)]. The crossing symmetry is, however,
restored if we take the corresponding diagrams in the transver-
sal particle-hole channel into account as well, as done before
for a single orbital [28,29]. That is, in the parquet equation,
we add the reducible contributions in the particle-hole and
transversal particle-hole channel and subtract their respective
local contribution, which is already contained in the local F :

Fqkk′
d,lmm′l′ = Fωνν ′

d,lmm′l′ + Vqkk′
d,lmm′l′ + (

φ
qνν ′
d,lmm′l′ − φωνν ′

d,lmm′l′
)

+
(

φ
qkk′

ph,d,lmm′l′
− φωνν ′

ph,d,lmm′l′

)
. (50)

Here, we consider the particle-particle channel and all fully
irreducible diagrams, except Vqkk′

, to be local. The bare
nonlocal interaction vertex Vqkk′

defined in Eq. (27) has to
be added explicitly to the parquet equation since it is neither
part of the reducible vertices φph and φph, nor the local F .

Resolving Eqs. (28) and (42) for φ, Eq. (40) for �, and
taking the difference of the local and nonlocal φ yields(

φ
qνν ′
d,lmm′l′ − φωνν ′

d,lmm′l′
) = F

nl,qνν ′
d,lmm′l′ − 2β−2V

q
lm′ml′ , (51)

where the (full) nonlocal vertex Fnl is defined as

F
nl,qνν ′
r,lmm′l′ ≡ F

qνν ′
r,lmm′l′ − Fωνν ′

r,lmm′l′ . (52)

For the transversal particle-hole channel we can calculate the
same difference by subtracting Eq. (35) from Eq. (37) and
expressing all terms by F similar as in Eq. (51). This yields(

φ
qkk′

ph,d,lmm′l′
− φωνν ′

ph,d,lmm′l′

)

= − 1
2F

nl,(k′−k)(ν ′−ω)ν ′
d,m′mll′ − 3

2F
nl,(k′−k)(ν ′−ω)ν ′
m,m′mll′ + β−2V k′−k

m′lml′ .

(53)

Equations (51) and (53) can now be used in Eq. (50) to
finally give

Fqkk′
d,lmm′l′ = Fωνν ′

d,lmm′l′ + F
nl,qνν ′
d,lmm′l′ − 1

2F
nl,(k′−k)(ν ′−ω)ν ′
d,m′mll′

− 3
2F

nl,(k′−k)(ν ′−ω)ν ′
m,m′mll′ , (54)

where the nonlocal Fnl is defined in Eq. (52) with F q from the
reformulated BSEs (47) or (48).

It should be noted that the two noncrossing symmetric
contributions to the bare nonlocal interaction V in Eq. (51) and

(53) add up to become exactly V qkk′
as defined in Eq. (27).

This is unique to the simplification employed in Eq. (40).

D. Equation of motion

Besides the BSE, the equation of motion or Schwinger-
Dyson equation is the second central equation of the
AbinitioD�A approach. It allows us to calculate the self-energy
from the crossing symmetric full vertex (or the connected
two-particle Green’s function). For deriving the multiorbital
Schwinger-Dyson equation, we compare the τ derivative of
Gk

σ,lm(τ ) in the Heisenberg equation of motion with the Dyson
equation. This yields

[�G]k
σ,mm′ (τ ) = 〈

T
[[

Û full ,̂ckmσ (τ )
]̂
c
†
km′σ (0)

]〉
=

∑
lhnσ ′
qk′

(
Umlhn + Vq

mlhn

)

×〈T [̂c†k′−qlσ ′(τ )̂ck−qhσ (τ )̂ck′nσ ′(τ )̂c†km′σ (0)]〉
= lim

τ ′→τ+

∑
lhnσ ′
qk′

(
Umlhn + Vq

mlhn

)

×G
qk′k
σ ′σ,nlhm′ (τ,τ ′,τ ), (55)

where, in the second line, we have used the swapping
symmetry for Ulm′ml′ and Vq

lm′ml′ . The limit in Eq. (55) can
be taken by splitting the two-particle Green’s function into its
connected and disconnected parts using Eq. (17):

[�G]k
σ,mm′(τ ) =

∑
lhnσ ′
qk′

(
Umlhn + Vq

mlhn

)

× [
G

conqk′k
σ ′σ,nlhm′ (τ,τ,τ ) + δq0n

k′
σ ′,lnG

k
σ ′,hm′(τ )

− δσσ ′δkk′n
k−q
σ,lhGk

σ,nm′ (τ )
]
, (56)

where nmm′ = 〈̂c†mĉm′ 〉. Taking the Fourier transform with
respect to τ gives

[�G]k
σ,mm′ =

∑
lhh′nσ ′

qk′

(
Umlhn + Vq

mlhn

)

×
[∫ β

0
eiντG

conqk′k
σ ′σ,nlh′m′ (τ,τ,τ )dτ

+ δq0n
k′
σ ′,lnG

k
σ ′,h′m′ − δσσ ′δkk′n

k−q
σ,lhGk

σ,nm′

]
.

(57)

Since the connected part is continuous it is possible to obtain
the equal time component in Eq. (57) by simply summing up
the bosonic and the left fermionic Matsubara frequencies:

∫ β

0
dτeiντG

conqk′k
σ ′σ,nlh′m′(τ,τ,τ ) = 1

β2

∑
ων ′

G
conqk′k
σ ′σ,nlh′m′ . (58)
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Finally, multiplying with G−1 from the right yields the
multiorbital Schwinger-Dyson equation:

�k
σ,mm′ = �HFk

σ,mm′ + �conk
σ,mm′ , (59)

�conk
σ,mm′ = β−2

∑
ll′hn

σ ′qk′

(
Umlhn + Vq

mlhn

)
G

conqk′k
σ ′σ,nlhl′

[
Gk

σ

]−1
l′m′ , (60)

where �HF is the static Hartree-Fock contribution to the self-
energy.

Since we would like to calculate the self-energy starting
from F in Eq. (54), let us recall that we assume SU(2) sym-
metry and apply the relation between F and Gcon in Eq. (19).
This yields the multiorbital Schwinger-Dyson equation

�conk
mm′ = −β−1

∑
ll′nn′hh′

qk′

(
Umlhn + Vq

mlhn

)

×χ
qk′k′
0,nll′n′F

qk′k
d,n′l′h′m′G

k−q
hh′ , (61)

which finally determines the nonlocal AbinitioD�A self-
energy.

In the following, we present some implementation details.
That is, we split Eq. (61) into contributions of the particle-hole
and transversal particle-hole terms of Eq. (54) as well into the
U and Vq terms. This yields, suppressing the orbital indices
for clarity as they remain identical to those in Eq. (61):

�Uloc,k = − β−1
∑
qν ′

Uχ
qν ′ν ′
0 Fων ′ν

d Gk−q, (62)

�Vloc,k = − β−1
∑
qν ′

Vqχ
qν ′ν ′
0 Fων ′ν

d Gk−q, (63)

�ph,k = − β−1
∑
qν ′

(U + Vq)χqν ′ν ′
0 F

nl,qν ′ν
d Gk−q, (64)

�Uph,k = β−1
∑
qν ′

Ũχ
qν ′ν ′
0

×
(

1

2
F

nl,qν ′ν
d + 3

2
Fnl,qν ′ν

m

)
Gk−q, (65)

�V ph,k = β−1
∑
qν ′

Ṽ k′−kχ
qk′k′
0

×
(

1

2
F

nl,qν ′ν
d + 3

2
Fnl,qν ′ν

m

)
Gk−q, (66)

where Ũlm′l′m = Ulm′ml′ and similarly for V . The indices in the
terms originating from the transversal particle-hole channel
have been relabelled to make the full vertices F depend on q
instead of k′ − k. Indeed, the way Eq. (61) is written might
suggest that the particle-hole and transversal particle-hole
channels are treated differently. This is, however, not the
case since an application of the crossing symmetry of F

together with the swapping symmetry of the interaction leaves
Eq. (61) unchanged, but swaps the role of the particle-hole and
transversal particle-hole channels in F . In the BSE ladders,
we have, in Eq. (40) and similar to GW , included Vq but not
Vk′−k. Against this background, it is reasonable to omit �V ph

for consistency.

In the following, we will take advantage of the particular
momentum and frequency structure of the Schwinger-Dyson
equation to optimize the numerical calculation of the self-
energy. To this end, we define three three-legged quantities
(cf. Refs. [29,35]) with increasing order of nonlocal character:

γ ων
r,lmm′l′ ≡

∑
n′h′ν ′

χων ′ν ′
0,lmn′h′F

ων ′ν
r,h′n′m′l′ , (67)

γ
qν

r,lmm′l′ ≡
∑
n′h′ν ′

χ
nl,qν ′ν ′
0,lmn′h′F

ων ′ν
r,h′n′m′l′ , (68)

η
qν

r,lmm′l′ ≡
∑
n′h′ν ′

χ
qν ′ν ′
0,lmn′h′F

qν ′ν
r,h′n′m′l′ − χων ′ν ′

0,lmn′h′F
ων ′ν
r,h′n′m′l′ . (69)

Here, γ ων is strictly local and can be extracted directly from
the impurity solver [60,75]; γ qν contains the local full vertex
connected to a purely nonlocal bare two-particle propagator.
The vertex ηqν describes the full vertex connected to the bare
two-particle propagator, but with all purely local diagrams
removed. It can be calculated efficiently from Eqs. (47) and
(48) using a matrix inversion and γ ω

r :

ηq
r = (�1 + γ ω

r

)([
1 − χ

nl,q
0 Fω

r − 2β−2χ
q
0 Vq(�1 + γ ω

r

)
δrd

]−1

− 1
)
, (70)

where �1lmm′l′ = δll′δmm′ . The self-energy can now be written
in terms of γ and η:

�Uloc,k =�ν
DMFT − β−1

∑
q

Uγ
q
d Gk−q, (71)

�Vloc,k = − β−1
∑

q

Vq(γ q
d + γ ω

d

)
Gk−q, (72)

�ph,k = − β−1
∑

q

(U + Vq)
(
η

q
d − γ

q
d

)
Gk−q, (73)

�Uph,k = β−1
∑

q

Ũ

[
1

2

(
η

q
d − γ

q
d

) + 3

2

(
ηq

m − γ q
m

)]
Gk−q.

(74)

By gathering the terms and using the crossing symmetry of
the local F in γ q, one finally obtains for the AbinitioD�A
self-energy:

�D�A = �Uloc,k + �Vloc,k + �ph,k + �Uph

= �ν
DMFT − β−1

∑
q

(
U + Vq − Ũ

2

)
η

q
dG

k−q

+β−1
∑

q

3

2
Ũηq

mGk−q −

−β−1
∑

q

(
Vqγ ω

d − Uγ
q
d

)
Gk−q. (75)

In Sec. III, we will apply this AbinitioD�A algorithm to the
testbed material SrVO3.

E. Numerical effort

Before turning to the results for SrVO3, let us briefly
discuss the numerical effort of the method. The numerical
effort for calculating the local vertex in CT-HYB scales as
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roughly as β5(#o)4 with a large prefactor because of the Monte
Carlo sampling (#o is the number of orbitals; there is also an
exponential scaling in #o for calculating the local trace but only
with a β1 prefactor so that this term is less relevant for typical
#o and β). The β5(#o)4 scaling can be understood from the fact
that an update of the hybridization matrix is ∼β2 (the mean
expansion order is ∼β), and we need to determine (β)3(#o)4

different vertex contributions if the number of measurements
per imaginary time interval stays constant. However, since we
eventually calculate the self-energy, which depends on only
one frequency and two orbitals, a much higher noise level can
be permitted for larger #ω and #o. That is, in practice, a weaker
scaling on (#ω) and (#o) is possible. Outside a window of
lowest frequencies, one can also employ the asymptotic form
[38,97] of the vertex which depends on only two frequencies
so that its calculation scales as β4(#o)4. Without using these
shortcuts, calculating the vertex for SrVO3 with #o = 3 and
β = 10 eV−1 took 150 000 core h (Intel Xeon E5-2650v2,
2.6 GHz, 16 cores per node).

As for the AbinitioD�A calculation of the nonlocal Feyn-
man diagrams, a parallelization over the compound index
q = (ω,q) is suitable since q is an external index in the
nonlocal Bethe-Salpeter equation (45) and the equation of
motion (75). Obviously, this q-loop scales with the number
of q points #q and the number of (bosonic) Matsubara
frequencies #ω (which is roughly ∼β), and thus as #ω#q.
Within this parallel loop, the numerically most demanding
task is the matrix inversion in Eq. (70). Since the dimension
of the matrix that needs to be inverted is given by #ω(#o)2

the inversion scales ∼(#ω#o2)3. Altogether this part hence
scales as #q#ω4#o6. [The numerical effort for calculating the
self-energy via the equation of motion (75) is ∼#q2#ω2#o6

and becomes the leading contribution at high temperatures
and a large number of q points.] For the present AbinitioD�A
computation of SrVO3 with #o = 3, β = 10 eV−1 (#ω = 120)
and #q = 203, the total computational effort of this part was
3200 core h.

III. RESULTS FOR SRVO3

Strontium vanadate, SrVO3, is a strongly correlated metal
that crystallizes in a cubic perovskite lattice structure with
lattice constant a = 3.8 Å. It has a mass enhancement of
m∗/m ∼ 2 according to photoemission spectroscopy [76] and
specific heat measurements [77]. At low frequencies, SrVO3

further reveals a correlation induced kink in the energy-
momentum dispersion relation [78–81] if subject to careful
examination [80]. SrVO3 became the testbed material for the
benchmarking of new codes and the testing of new methods
for strongly correlated electron systems, see, e.g., Refs. [15–
18,21,24,76,78,82–86]. Besides academic interests, SrVO3

actually has a number of potential technological applications,
e.g., as electrode material [87], Mott transistor [88], or as a
transparent conductor [89].

Here, we first employ WIEN2K [91] band structure calcu-
lations in the generalized gradient approximation (GGA) [92]
and WIEN2WANNIER [49] to project onto maximally localized
Wannier functions [50] for the low-energy t2g orbitals of
vanadium. The momentum dispersion corresponding to these
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FIG. 4. Band structure and Fermi surface of SrVO3 within GGA.
Shown are the dispersion of the vanadium t2g states (left) and the
Fermi surface in the (kx,ky) plane for kz = 0 (right).

orbitals is shown in Fig. 4 (left) along with a cut of the Fermi
surface (right). For these low-energy orbitals the constrained
local density approximation yields an intraorbital Hubbard
U = 5 eV, a Hund’s exchange J = 0.75 eV and an interorbital
U ′ = U − 2J = 3.5 eV. [76,78] These interaction values were
shown to reproduce the experimental mass enhancement
within DMFT [76,78,82].

We use the Kanamori parametrization of the local inter-
action with the above values for U , U ′, and J and perform
DMFT calculations for the thus defined low-energy model at an
inverse temperature β = 10 eV−1. In DMFT, the lattice model
is self-consistently mapped onto an auxiliary single Anderson
impurity model (SIAM) [9]. In order to extract the local
dynamic four-point vertex function we use the W2DYNAMICS

package [93,94], which solves the SIAM using continuous-
time quantum Monte Carlo in the hybridisation expansion
(CT-HYB) [57,95]. When considering non-density-density in-
teractions (such as the Kanamori interaction), the multi-orbital
vertex function is only accessible by extending CT-HYB with
a worm algorithm [59]. To illustrate the complexity of this
quantity, we display in Fig. 5 the generalized susceptibility
χωνν ′

m,1111 [related to the vertex via Eq. (30)] as a function
of the two fermionic frequencies at zero bosonic frequency
and all orbital indices being the same. We sample a cubic
frequency box with 120 points in each direction. For relatively
high temperatures of β = 10 eV−1, this box is sufficiently
large, although we suggest an extrapolation to an infinite
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FIG. 5. Real (left) and imaginary (right) part of the generalized
susceptibility χωνν′

m,1111 in the magnetic (m) channel for the 1111 orbital
component at ω = 0. χ is related to the irreducible local vertex via
Eq. (30). By summing χωνν′

m over its two fermionic frequencies ν and
ν ′ one can obtain the physical local magnetic susceptibility χω

m , as,
e.g., in Ref. [90].
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frequency box for the self-energy in Eq. (62) or the use of
high frequency asymptotics [38,96,97] for future calculations.
While the CT-HYB algorithm is in principle numerically
exact, the four-point vertex function usually suffers from poor
statistics due to finite computation times. In an effort to limit,
the statistical uncertainties to an acceptable level, we further
make use of a sampling method termed “improved estimators”
[60,75]. This method redefines Green’s function estimators
of CT-HYB by employing local versions of the equation of
motion, resulting in an improved high-frequency behavior for
sampled quantities.

Following the AbinitioD�A approach developed in
Sec. II, we compute the momentum-dependent self-energy
�mm′(k,iν) for SrVO3 in the t2g subspace (m = xy,xz,yz).
Here, we employ a one-shot AbinitioD�A with the local vertex
from a DFT+DMFT calculation (using the constrained DFT
interaction) as a starting point. Concomitant to the restriction
to the t2g subspace and the DFT starting point, we do not
include the inter-site interaction Vq.

Let us note that recent GW+DMFT studies [15,18,21]
suggest t2g spectral weight above ∼1.5 eV to be of plasmonic
origin instead of stemming from the upper Hubbard bands
seen in previous (static) DFT+DMFT calculations. To include
this kind of physics one would need to use a frequency

dependent U (ω) from constrained RPA (or a larger window
of orbitals in AbinitioD�A taking at least U and Vq as a
vertex as discussed in Sec. II), as well as nonlocal interactions
Vq that compete with the bandwidth-narrowing effects from
U (ω) in GW+DMFT [18,98]. This goes beyond the scope
of the present work, where both aspects are not included,
and hence we cannot contribute to this controversy. Instead,
we focus on the nonlocal effects stemming from a local
frequency-independent U . These are other corrections to the
DFT+DMFT description of SrVO3.

The results for the self-energy are displayed in the two
top panels of Fig. 6 for three selected k points and are
compared to the momentum-independent DMFT self-energy.
We first discuss the self-energy via its low-frequency ex-
pansion: �(k,iν) = �(k,iν → 0) + i��(k,iν → 0) + (1 −
1/Zk)iν + O(ν2). From the local DMFT self-energy, we
extract [99] a quasiparticle weight ZDMFT = 0.49 and a
scattering rate γ DMFT ≡ −��DMFT(iν → 0) = 0.37 eV. The
imaginary parts of the AbinitioD�A Matsubara self-energy
(see Fig. 6 top panel) suggest a slight enhancement of the
quasiparticle weight Zk (smaller slope at low energy) for all
momenta and orbital components. Interestingly, we find for
the quasiparticle weight Zk an extremely weak momentum
dependence. Indeed, Zk varies by less than 2% within the
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Brillouin zone. This is also illustrated in Fig. 7(d), which
displays Zk of the dxy Wannier orbital in the kz = 0 plane.
The corresponding dependence of γk is displayed in Fig. 7(c).
Also here, we see only a small momentum differentiation of
at most 10%.

The momentum dependence of the D�A self-energy
in general further allows for an orbital differentiation of
correlation effects in this locally degenerate system [100]. For
Zk and γk, which are both obtained from the imaginary part
of the Matsubara self-energy, only a small difference between
(at this k) nonequivalent orbital components develops (see
top panel in Fig. 6).

Much more sizable effects occur for both the momentum
and the orbital dependence of the real-part of the self-energy
at low energies. This can be inferred from the middle panel
of Figs. 6 and 7(a) that displays ��(k,iν0) at the lowest
Matsubara frequency, again for the dxy orbital in the kz = 0
plane. We witness a momentum-differentiation of 0.2 eV
or more—a quite notable effect beyond DMFT. We note
that, contrary to Zk and γk, the momentum-dependence of
��(k,iν0) in Fig. 7(a) does not mirror the shape of the Fermi
surface in Fig. 4 (right). This will in particular influence
transport properties that probe states in close proximity to
the Fermi surface.

At low energies, we also find a pronounced orbital-
dependence in ��(k,iν). At the X point, the real part of
the low-frequency self-energy is larger by about 0.1 eV for the
(at this k point) degenerate dxy , dyz orbitals than for the dxz

component. At the M point, the dxy component is larger than
the dxz, dyz doublet.

Combining the influence of the orbital- and momentum
dependent self-energy, we hence find systematically larger
shifts ��(k,iν = 0) for excitations with higher initial (DFT)
energy. Seen relatively, this means that unoccupied states are
pushed upwards and occupied states downwards, resulting in
a widening of the overall bandwidth. This was previously
evidenced using perturbative techniques [18,19,85]. At high
energies, the self-energy becomes again independent of orbital
and momentum to recover the value of the Hartree term [101].

We now use the maximum entropy method [102,103] to
analytically continue the AbinitioD�A Green’s function to
real frequency spectra. Let us note that, in our AbinitioD�A
calculations we do not update the chemical potential. However,
from the D�A Green’s function we find a particle number
of 1.062, which is very close to the target occupation
of 1.

In the lowest panel of Fig. 6, we compare our results to
conventional DMFT for selected k-points. From the above dis-
cussion it is clear that the AbinitioD�A self-energy will cause
quantitative differences in the many-body spectra, while the
overall shape will be qualitatively similar to our and previous
DMFT results. As evidenced above, the inclusion of nonlocal
fluctuations decreases the degree of electronic correlations:
both a larger Z and the shifts induced by �� slightly increase
the interacting bandwidth with respect to DMFT. Indeed, we
see in our spectra signatures of reduced correlations: Hubbard
bands are less pronounced and quasiparticle peaks move away
from the Fermi level, although in the current case these effects
are small. This is congruent with previous dynamical cluster
approximation (DCA) calculations that included short-ranged
nonlocal fluctuations [83]. Let us also note that recently it was
indeed found experimentally [104] that the lower Hubbard
band in SrVO3 is intrinsically somewhat less pronounced than
previously thought, with a substantial part of spectral weight
actually originating from oxygen vacancies.

The very weak momentum dependence of the quasiparticle
dynamics and electronic lifetimes does not come as a surprise.
Indeed, the local nature of Z was previously established in
a D�A study of the 3D Hubbard model [43], and, using
perturbative techniques, in metallic oxides [18] and the iron
pnictides and chalcogenides [19,105]. On the other hand,
these studies found a largely momentum-dependent static
contribution ��(k,ν = 0) to the self-energy. Going beyond
model studies and perturbative methods, we here confirm
that ��(k,ν = 0) indeed contains non-negligible momentum-
dependent correlations beyond DMFT even for only purely
local interactions. Still, in the current study, momentum-
dependent effects are small enough to only lead to quantitative
changes. There are three main reasons for the preponderance
of local self-energy effects: (1) SrVO3 is not in close proximity
to a spin-ordered phase or any other second order phase
transitions. Therefore nonlocal spin- or charge-fluctuations
were not expected to be particularly strong. (2) SrVO3 is
a cubic, i.e., fairly isotropic system. Nonlocal correlation
effects are generally more pronounced in anisotropic or lower
dimensional systems. Therefore we can speculate that nonlocal
self-energies will become more prevalent in ultra-thin films
of SrVO3[88,106]. (3) The GW approach in fact yields a
much larger static k-dependent ��(k,ν = 0) [18,85]. This is,
however, an effect of the nonlocality of the interaction, which
yields a largely momentum-dependent screened exchange con-
tribution to the self-energy [107]. While nonlocal interactions
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FIG. 7. (a) Real and (b) imaginary parts of the AbinitioD�A self-energy �(k,iν0) at the first Matsubara frequency ν0 (c) scattering rate γk

and (d) quasiparticle weight Zk in the kz = 0 plane for the dxy orbital [99].
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are included in the AbinitioD�A formalism (see Sec. II), we
here performed calculations with a local interaction only, and
are thus missing this effect.

IV. CONCLUSION AND OUTLOOK

In conclusion, we have derived, implemented, and applied
a new first-principles technique for correlated materials:
the AbinitioD�A approach. The method is a diagrammatic
extension of the successful DMFT approximation and treats
electronic correlation effects on all time and length scales.
Since it includes the self-energy diagrams of DMFT, the GW
approach and nonlocal correlations beyond both, we believe
AbinitioD�A to set a new standard in realistic many-body
calculations. We first applied the new methodology to the
transition metal oxide SrVO3 in a one-shot setup and neglected
the influence of frequency dependent and nonlocal interac-
tions, U (ω) and V q , respectively. Consequently, the plasmonic
physics recently reported in GW+DMFT [15,18,21] is not
included. Here, we focused on nonlocal correlation effects
beyond DFT+DMFT that arise from a purely local Hubbard-
like interaction such as nonlocal spin fluctuations.

We find that while the quasiparticle weight Z is essentially
local, there is a notable momentum and orbital dependence
in the real part of the self-energy. We hence conclude that
nonlocal correlations can be important even in fairly isotropic
systems in three dimensions, in the absence of any fluctuations

associated with a nearby ordered phase, and can occur even for
purely local (Hubbard and Hund) interactions. These findings
herald the need for advancing state-of-the-art methodologies
for the many-body problem. In this vein, AbinitioD�A presents
a very promising route toward the quantitative simulation of
materials. In future studies the approach can be applied to
systems in which nonlocal fluctuations play a greater role, such
as compounds in proximity to second order phase transitions
or lower dimensional systems. For such materials, nonlocal
correlations beyond DMFT are a journey into the unknown.

Note added. In the course of finalizing this work, we became
aware of the independent development of a related ab initio
vertex approach by Nomura et al. [108] based on another
diagrammatic DMFT extension, the triply-irreducible local
expansion akin to D�A.
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