
PHYSICAL REVIEW B 95, 115106 (2017)

Unveiling the internal entanglement structure of the Kondo singlet
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We disentangle all the individual degrees of freedom in the quantum impurity problem to deconstruct the Kondo
singlet, both in real and energy space, by studying the contribution of each individual free electron eigenstate.
This is a problem of two spins coupled to a bath, where the bath is formed by the remaining conduction electrons.
Being a mixed state, we resort to the “concurrence” to quantify entanglement. We identify “projected natural
orbitals” that allow us to individualize a single-particle electronic wave function that is responsible of more than
90% of the impurity screening. In the weak coupling regime, the impurity is entangled to an electron at the Fermi
level, while in the strong coupling regime, the impurity counterintuitively entangles mostly with the high energy
electrons and disentangles completely from the low-energy states carving a “hole” around the Fermi level. This
enables one to use concurrence as a pseudo order parameter to compute the characteristic “size” of the Kondo
cloud, beyond which electrons are weakly correlated to the impurity and are dominated by the physics of the
boundary.
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I. INTRODUCTION

The Kondo problem describes a magnetic impurity screened
by the spin of the electrons in the Fermi sea, forming a
collective singlet state [1,2]. Its simplest formulation is through
the so-called Kondo impurity model:

H =
∑
kσ

εkc
†
kσ ckσ + JK

�Simp · �Sr0 , (1)

where the �Simp operator represents an S = 1/2 impurity em-
bedded in a Fermi sea of noninteracting fermions. The Kondo
interaction with a fermion at position r0 is parametrized by the
coupling JK . Irrespective of the dispersion εk , the problem is
intrinsically one-dimensional, and several approaches, such as
the numerical renormalization group (NRG) [3,4], the Bethe
ansatz [5,6], and generalizations to lattice problems [7], take
advantage of this low dimensionality.

Most of our understanding of the Kondo problem stems
from renormalization group (RG) formalisms that yield a
complete physical picture of the distance independent physics
in the strong coupling limit and at low energies, as zooming out
from the impurity and looking at it from afar [8]. This fixed
point is characterized by a single energy scale—the Kondo
temperature TK—and is described by a bound state formed
by the impurity and the conduction electrons, the “Kondo
singlet.” This wave function is typically characterized as a
screening cloud (“Kondo cloud”) centered at the impurity and
decaying in distance with a characteristic range ξK [9–15]
that depends on JK (or TK ). At distances of the order of
ξK , or in finite systems, where the conduction electrons are
confined to a small spatial region in a “Kondo box” [16–20]
all the electrons may be inside the Kondo cloud, without an
outside. This regime would correspond to the “crossover”
between weak coupling and strong coupling in the RG
flow.

In the strong coupling limit for JK much larger than the
bandwidth W , it is easy to visualize a tightly bound singlet
formed by the the impurity and a localized electron at r0.
Nozières elegantly demonstrated [21,22] that this fixed point
can be described within Fermi liquid theory: The bound state

becomes just a scattering center and the remaining conduction
electrons that are not coupled to the impurity will simply
behave as free fermions with their wave functions modified
by a phase shift δ = π/2. At intermediate couplings, as we
reduce JK , the impurity will become correlated with electrons
farther and farther from it. In a small system, at some point
the Kondo cloud will not fit into the “box” and it cannot
form: The singlet will extend to the entire volume and the
impurity will couple mostly to one electron at the Fermi
level.

Even though this is one of the most studied and best
understood problems in condensed matter physics, deeply
conflicting pictures coexist when it comes to interpreting
the internal structure of this state. For instance, how is it
possible that in a dilute system with numerous impurities
with overlapping Kondo clouds, Kondo physics dominates
and a single impurity model can explain all experimental
observations [12,23]? In the case of a large number of
impurities, one would expect that at some point there would not
be enough electrons near the Fermi surface to screen all the im-
purities, as postulated by Noziéres in his “exhaustion” paradox
[24,25]. Understanding the screening process and the internal
entanglement structure of the Kondo singlet is paramount to
understanding more complex problems, such as “exhaustion”
in heavy-fermion systems [24,25] and the so-called “Kondo
breakdown” [26,27]. In this work we make significant progress
in this direction by using quantum information ideas to
quantify the two-particle entanglement between the impurity
and each conduction electron individually.

The paper is organized as follows: In Sec. II we describe
the model and methods utilized in the calculations, in Sec. III
we introduce the definition of entanglement in a mixed state
of two spins and the idea of “concurrence,” and in Sec. IV we
show results and the analysis of the pairwise entanglement. In
Sec. V we introduce the concept of projected natural orbitals
and we discuss their relevance in terms of representing the
internal entanglement structure of the wave function. Based
on this, in Sec. VI we show how entanglement can be used to
estimate the Kondo screening length. We close with a summary
and conclusions.
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II. MODEL AND METHODS

Without loss of generality, we model the conduction
electrons by a one-dimensional tight-binding chain with open
boundary conditions of size 2L + 1 (L even) and the impurity
connected to the site in the middle [9]. A simple folding
transformation [28,29] allows us to map it onto an equivalent
chain of length L + 1 and an impurity coupled to the first site
(r0 = 0):

Hel = −
√

2t
∑

σ

(c†0σ c1σ + H.c.) − t

L−1∑
σ,i=1

(c†iσ ci+1σ + H.c.),

(2)
where t is the hopping matrix element and our unit of energy.
The electrons in this Hamiltonian correspond in reality to the
symmetric (bonding) electrons of the original problem. In the
following we refer to its eigenstates as |k〉 = c

†
k|vac〉, with

energies εk = −2t cos k and momenta k = π/(2L + 2)j (j =
1,3,5, . . . ,2L + 1).

The problem can readily be solved with the density matrix
renormalization group (DMRG) [30–32] and indeed, it has
been studied in the literature, particularly focusing on the
spatial correlations [7,11] and the bipartite entanglement
entropy [33,34]. We conducted DMRG simulations in systems
of up to N = L + 1 = 63 orbitals at half filling, keeping the
truncation error below 10−8 which translates into up to 3000
DMRG basis states for real space simulations.

III. ENTANGLEMENT IN A MIXED STATE

In this work we turn our attention to the entanglement
and correlations between the impurity spin and the individual
electronic wave functions. This is a problem of two spins
embedded in a bath formed by the rest of the conduction
electrons, effectively in a mixed state. This problem has
attracted a great deal of interest in the quantum information
community and very seldom looked at in this condensed matter
context [35,36] (see Ref. [37] for a general review).

Entanglement is related to the nonlocality of correlations
in quantum mechanics and in pure states it can be measured
through the entanglement entropy by means of the Schmidt
decomposition. In the case of mixed states, these ideas do not
apply [38].

In order to determine whether the spins are entangled in a
mixed state one needs to work with the two-particle density
matrix. In general, a density matrix is said to be separable if it
can be written as

ρ =
∑

i

piρ1i ⊗ ρ2i .

The term “entangled” refers to nonseparable states. There are
many alternative ways to define the entanglement of formation
[39–45]. A conventional way to introduce it is as [40,41,46]:

E = min
{pj ,|ψj 〉}

∑
j

pjS(|ψj 〉), (3)

where the minimization is over all pure state decompositions
ρ = ∑

j pj |ψj 〉〈ψj |, and S = −ρ1j log2(ρ1j ) is the von Neu-
mann entropy obtained by tracing over one of the subsystems,
ρ1j = tr2(|ψj 〉〈ψj |).

There is no simple solution for the separability problem,
which in general is NP-hard [47]. However, for the particular
case that we study here, this is actually much simpler.
The separability of a two-spin system such as ours can be
determined by means of the Peres Horodecki (PPT) criterion
[48], which tells us that the necessary and sufficient condition
is that the partial transpose of ρ with respect to spin “2” has
non-negative eigenvalues.

In a seminal paper, Hill and Wooters found a closed formula
for the entanglement of formation for two spins [37,40,41,49]:

E(ρ) = h

(
1 +

√
1 − C(ρ)2

2

)
,

with

h(x) = −x log2 x − (1 − x) log2(1 − x).

The quantity C(ρ) is called the “concurrence” and has the
property that it is an entanglement monotone and is zero for a
separable state. For a mixed state of two spins/qubits it takes
the form:

C(ρ) = max (0,λ1 − λ2 − λ3 − λ4),

where the λi’s are the square roots of the eigenvalues of the
matrix ρρ̃ in decreasing order, with

ρ̃ = (σy ⊗ σy)ρ∗(σy ⊗ σy).

Here, ρ∗ is the complex conjugate of ρ in the standard basis
|σσ ′〉.

IV. CONCURRENCE IN THE KONDO PROBLEM

A good point to start is by writing the (normalized) ground
state wave function in a form that takes into account the
symmetries of the problem, isolating the contributions of the
impurity spin and the orbital of interest. In the absence of
magnetic fields, this acquires the form:

|g.s.〉 = al(|⇑〉|2〉l|αl,↓〉 + |↓〉|2〉l|αl,↑〉)
+ bl(|⇑〉|↓〉l|βl,↑↓〉 + |⇓〉|↑〉l|βl,↓↑〉)
+ cl(|⇑〉|↑〉l|δl,↓↓〉 + |⇓〉|↓〉l|δl,↑↑〉)
+ dl(|⇑〉|0〉l|γl,↓〉 + |⇓〉|0〉l|γl,↑〉), (4)

where the states |αl,σ 〉,|βl,σ,−σ 〉,|δl,σσ 〉,|γl,σ 〉 do not include the
single particle orbital c

†
lσ and contain phases (signs) that are

unimportant in the following discussion. The states |σ 〉l , |2〉l ,
and |0〉l indicate the occupation of the single orbital, which
could be in momentum space, real space, or some other
representation. The coefficients al, bl, cl , and dl depend on
the orbital l and the single particle basis, and 〈βl,↓↑|βl,↑↓〉 =
(c2

l − b2
l )/b2

l .
In order to determine the entanglement between the impu-

rity and orbital l, we consider that it primarily originates from
the spin degree of freedom and we trace over configurations
that are empty or double occupied, yielding a projected
wave function |φ〉 not containing the terms proportional to
al and dl . This is a legitimate assumption, since the impurity
only contains spin and no charge and the Kondo problem
is a paradigm of spin-charge separation [1]. In the basis
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|⇑ ↑〉,|⇑ ↓〉,|⇓ ↑〉,|⇓ ↓〉, both the reduced density matrix and
the two-particle density matrix are identical:

ραβ,α′β ′ = 1
2 〈φ|c†lβc†imp,αcimp,α′clβ ′ |φ〉.

It is a simple exercise to show that it has the form
(see Appendix A):

ρ = 1

4

⎛
⎜⎜⎜⎝

nl↑ − δl 0 0 0

0 nl↑ + δl −2δl 0

0 −2δl nl↑ + δl 0

0 0 0 nl↑ − δl

⎞
⎟⎟⎟⎠, (5)

with δl = −2〈Sz
impnl↑〉 = −2〈Sz

impS
z
l 〉 (for a singlet), and all

averages are with respect to the (unnormalized) state |φ〉. Using
the form of |φ〉, these quantities can be expressed as nl↑ =
c2
l + b2

l and δl = (b2
l − c2

l ). After dividing by nl↑ to normalize
the trace, this density matrix acquires the peculiar form of a
so-called “Werner state” [37,50]:

ρ ′ = 1
4 (1 − �)1 + �|s〉〈s|,

where ρ ′ = ρ/nl↑,� = δ/nl↑ and |s〉 = 1/
√

2(|↑↓〉 − |↓↑〉)
represents a singlet.

The PPT criterion implies that Werner states are separable
for � < 1/3. In addition, the concurrence is given as:

C = max

(
0,

3�− 1

2

)
= max

(
0,−〈�Simp · �S2〉

n2↑
− 1

2

)
. (6)

We want to evaluate the concurrence between the quantum
impurity and conduction electrons ck . For this purpose, we
use the noninteracting form of the wave functions (without
the impurity) ck = ∑

i Ukici and calculate the correlations
between the localized spin and these orbitals that yield
the coefficients of the wave function (4) in momentum
space: ak = 〈nimp,↑nk↑nk↓〉, bk = 〈nimp,↑nk↓(1 − nk↑)〉, ck =
〈nimp,↑nk↑(1 − nk↓)〉. As we discuss below, the simulation can
be more efficient if carried out directly in momentum space.
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FIG. 1. Concurrence momentum distribution C(k) between a
Kondo impurity and the electrons in the Fermi sea for N = L + 1 =
63. The exact results correspond to the limit JK → ∞, L → ∞. C(k)
is symmetric about kF = π/2.

We shall call the results the “concurrence distribution” to
refer to the dispersion in momentum or energy of this quantity.
Results for C (for N = L + 1 = 63 electrons) are plotted in
Fig. 1 for different values of JK and show a clear and dramatic
change of behavior for weak and strong coupling: For small
JK the impurity is entangled mostly to a single electron at the
Fermi energy. As JK increases, it becomes entangled to higher
energy electrons and the entanglement with the electron at εF

is continuously suppressed. Eventually, in the strong coupling
regime, the impurity couples mostly to high energy electrons
and decouples completely from the electron at the Fermi level.
There is a broad range of momenta around the Fermi level
where C is identically zero and in the figure, it looks as though
the impurity has carved a hole in the concurrence distribution.
Using the exact solution for JK → ∞ and L → ∞ one can
readily verify that in this limit a2

kF
= b2

kF
= c2

kF
= d2

kF
= 1/8,

which yields C = 0. The behavior of C(kF ) is also shown in
Fig. 2(a) for two system sizes.

Remarkably, the concurrence in real space is always zero
except for the first site of the chain r0 [also shown in
Fig. 2(a)], irrespective of the value of JK . This was pointed
out in Ref. [36] and interpreted as a pseudo-orthogonality
catastrophe: This is the only site of the chain with correlations
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FIG. 2. (a) Concurrence between a Kondo impurity and the
electron at momentum kF as a function of JK for system sizes N = 23
and N = 63. Results for the concurrence with the orbital at position
r0 are also shown. (b),(c) Excitation gaps above the ground state
for N = 23,63, respectively. The arrows indicate the points at which
C(kF ) vanishes.
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FIG. 3. Wave function amplitudes of the dominant natural orbital
decomposed in both momentum (a) and real space (b) components,
for different values of JK . For small JK the natural orbital corresponds
to the electronic wave function at kF , while in the strong coupling
limit, it is equal to an electron localized on the first site of the chain,
or an equal superposition of all momenta.

large enough to overcome the PPT condition of separability,
Eq. (6).

V. PROJECTED NATURAL ORBITALS

It would be highly desirable to be able to disentangle the
Kondo singlet from the rest of the Fermi sea. Since presumably
the impurity is entangled to a single electron, all we need is
to identify this electronic wave function. This can be done by
considering a particular basis of “projected” natural orbitals.
We define the “projected” single particle Green’s function as:

G̃σ
ij = −〈

Sz
impc

†
σj cσ i

〉
.

The natural orbitals (NOs) are defined as the eigenvectors of
this matrix |αn〉 = α

†
n|vac〉 (we have omitted the spin index

for simplicity). Unlike the single particle Green’s function,
this projection will unambiguously yield a dominant single
particle eigenstate (see Appendix B). This wave function
|α0〉 has eigenvalue ∼1/4, and all the other eigenvalues
are close to zero for the entire range of JK considered. In
Figs. 3(a) and 3(b) we show the wave function coefficients
of the dominant natural orbital decomposed into its real-
space components |α0〉 = ∑

i aic
†
i |vac〉, and momentum basis

|α0〉 = ∑
k wkc

†
k|vac〉. This wave function is equal to α

†
0 = c

†
kF

for JK → 0, and α
†
0 = c

†
r0 for JK → ∞.

In addition, when calculating the concurrence with the nat-
ural orbitals, we find that more than 90% of the entanglement
is with the single particle wave function |α0〉. This is illustrated
in Fig. 4, where we show the concurrence with the dominant
NO as a function of JK . These results lead us to a very simple
and compact expression for the ground-state wave function,
that is rigorously valid in the JK → 0 and JK → ∞ limits:

|g.s.〉 = 1√
2

(|⇑〉α†
0↓ − |⇓〉α†

0↑)|FS′〉, (7)

where the impurity spin forms a singlet with the natural
orbital |α0〉 in a product state (completely disentangled) from
a Fermi sea formed by the remaining orthogonal natural

0.0 1.0 2.0 3.0 4.0 5.0
JK

0.0

0.2

0.4

0.6

0.8

1.0
Entanglement Entropy S
Concurrence C(NO)

FIG. 4. Concurrence with the dominant natural orbital, and von
Neuman bipartite entanglement entropy between the “block” formed
by the impurity and the natural orbital, and the rest of the system.

orbitals |FS′〉 = ∏(N−1)/2
n=1 α

†
n↑α

†
n↓|vac〉. This wave function is

very similar to the one proposed by Yosida in the 60s [51,52],
and also to the one proposed by Bergmann in his artificial
resonant state approach [53].

To verify this assumption we calculate the coefficients
an, bn, cn, and dn of the ground state, Eq. (4) in this basis.
We find that for the dominant natural orbital, b2

0 > 0.49 and
a2

0,c
2
0,d

2
0 < 0.01 for all values of JK considered. All other

natural orbitals are either double occupied or empty. In addi-
tion, we calculate the bipartite von Neumann entanglement
entropy between a subsystem formed by the impurity and
the dominant natural orbital, and the rest of the conduction
electrons, S = −Tr(ρ log2 ρ), where ρ is the two-particle
reduced density matrix of the subsystem. If Eq. (7) was
rigorously correct, this quantity should be zero. Our results in
Fig. 4 show that S is small, particularly in the weak and strong
coupling regimes. Even though there is a residual entanglement
with the rest of the electrons, this occurs for intermediate
values of JK ∼ W which are relevant to “Kondo box” physics.
In the thermodynamic limit, the physics flows toward the
strong coupling regime and we expect S → 0. One can readily
validate this wave function as a very good approximation to the
actual ground state by numerically calculating its variational
energy: We find that it yields the correct ground state energy
with three and even up to four digits (not shown here).

VI. KONDO SCREENING LENGTH

It has been proposed that the size of the electron wave
function that screens the localized spin ξK could be measured
in mesoscopic devices [10,18,19,54–56]. Determining this
quantity is a nontrivial task, since the wave function typically
decays algebraically. However, one could identify this length
with the typical system size at which the renormalization flow
enters the strong coupling universal regime. In our case, the
concurrence at kF plays the role of determining precisely this
cutoff.

To justify these arguments, we look at the evolution of the
spectrum with JK , shown in Figs. 2(b) and 2(c). The behavior
of the energies as a function of JK bears a resemblance to
the NRG spectrum as a function of system size [57]. One can
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FIG. 5. Kondo screening length extracted from a finite-size
analysis by using the concurrence as an “order parameter.” The dashed
line corresponds to an exponential fit ξK = 6.55 exp (7.6/JK ).

see levels that run parallel to each other: the state labeled �2

correspond to a particle-hole excitation in the Fermi sea |FS′〉 in
Eq. (7) and the level spacing is determined by the system size.
At small JK , one can see that the low energy excitations �1

are being pushed up in energy. These are genuine excitations
of the Kondo singlet, and determine the characteristic energy
scale TK . The crossover between the two regimes happens as
the first excited eigenvalue “merges” with the single particle
excitation. Even though this is not a sharp transition, there is
an energy cutoff that is determined by the critical value J ∗

K (L)
at which the concurrence vanishes as seen in Figs. 2(a)–2(c)
for two system sizes.

One can now calculate the critical value J ∗
K (L) for different

system sizes L, and inverting this dependence obtain ξK (JK ),
shown in Fig. 5. The overall dependence can be summarized
very accurately in a fit ξK = 6.55 exp (7.6/JK ). Notice that in
the limit JK → ∞ the screening length should scale to ξK = 1,
implying the possibility of other corrections to the prefactor.
For small systems of length N = 5 the concurrence never van-
ishes, naturally providing a lattice/energy cutoff for the validity
of the model. This expression differs from the one obtained
using scaling arguments in Refs. [9,56], ξK ∼ exp(π/c) with
c = 2JK/(1 − 3J 2

K/4) in the strong coupling limit. We believe
the discrepancy stems from the fact that we are measuring
two different quantities: while theirs corresponds to a scaling
length, we are measuring the characteristic “size” of the natural
orbitals. To illustrate this, we first notice that the natural orbital
wave function can be directly associated to the amplitude of the
RKKY spin-spin correlations [20] K(ri) = |Z(ri) − Z(ri+1)|
with Z(ri) = 〈Sz

impS
z
i 〉, as shown in Fig. 6(a). Therefore, by

studying the behavior of the correlations, we can now assign a
physical meaning to the length ξK . In Fig. 6(b) we show both
the RKKY correlations with the impurity K(ri), and the ones
with the last site of the chain, KN = |ZN (ri) − ZN (ri+1)| with
ZN (ri) = 〈Sz

NSz
i 〉, for two sets of parameters. The correlations

cross at r = ξK , indicating that beyond this distance from the
impurity, the physics is dominated by the free-fermion physics

FIG. 6. (a) Dominant natural orbital and RKKY correlation K(ri)
as defined in the text, for a chain of size L = 63, and ξK = 32. The
correlation has been multiplied by a factor 4. (b) RKKY correlation
with the first and last sites of the chain K(ri) and KN (ri) for two
values of ξK .

of particles in a box of size N − ξK confined between the
Kondo cloud and the end of the chain.

VII. CONCLUSIONS

In mesoscopic systems and for small JK ∼ W/L, the
Kondo cloud does not have space to form and the impurity
entangles mainly to the state at the Fermi level. As JK

increases, the impurity starts creating particle-hole excitations
in the Fermi sea and will entangle to the electrons above
the chemical potential, and to the holes below it. Most
interestingly, the electrons around the Fermi level tend to
decouple from the spin, oblivious to its presence as though the
impurity were transparent. This transition from weak to strong
coupling regimes is described dramatically by the behavior of
the concurrence at the Fermi level.

Our results for the concurrence with the state at kF indicate
that this measure can be employed as a quasi-order parameter
to determine the transition (actually a crossover) from the weak
to strong coupling regimes at the point at which it becomes
identically zero. This criterion offers the means to measure the
Kondo screening length.

We have identified a dominant single particle wave function
that is entangled to the impurity forming a singlet that is, to
a great extent, practically disentangled from the rest of the
conduction electrons. We point out that conducting DMRG
simulations in the natural orbital basis increases the efficiency
in a very dramatic way, even though the Hamiltonian will now
involve long range terms [58]. This is because the ground state
wave function is very close to a product state. For the largest
systems studied, keeping of the order of 40 DMRG states
may yield machine precision accuracy for the largest systems
studied. It is important to notice that these natural orbitals are
optimized for the ground state, and not the excited states.

We have associated the Kondo screening length ξK to a
characteristic “size” of the natural orbital wave function. This

115106-5



CHUN YANG AND ADRIAN E. FEIGUIN PHYSICAL REVIEW B 95, 115106 (2017)

quantity differs from the Kondo scaling length and corresponds
to a property of the wave-function. We have found that beyond
this distance from the Kondo impurity the physics is dominated
by the boundary, with free fermions weakly correlated to
the impurity that “see” the Kondo cloud as a scattering
center.

These results and the tools developed in this work provide
new insight into the single impurity problem, and can lead to a
better understanding of heavy fermion systems and exhaustion
physics, and efficient real-frequency impurity solvers for
dynamical mean field theory calculations [59–63]. Work in
this direction is currently being conducted and presented
elsewhere.
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APPENDIX A: TWO-PARTICLE DENSITY MATRIX

In this appendix we describe the identities that yield the
simple form of the two-particle density matrix ρ in the presence
of time-reversal symmetry, which is defined as

ραβ,α′β ′ = 1
2 〈c†2βc

†
1αc1α′c2β ′ 〉.

Using this expression, one can re-write it more explicitly in a
matrix form:

ρ = 1

2

⎛
⎜⎜⎜⎝

〈n1↑n2↑〉 0 0 0

0 〈n1↑n2↓〉 〈S+
1 S−

2 〉 0

0 〈S+
2 S−

1 〉 〈n1↓n2↑〉 0

0 0 0 〈n1↓n2↓〉

⎞
⎟⎟⎟⎠. (A1)

Assuming that the site labeled as 1 corresponds to the impurity,
we introduce the identities:

〈N1n2σ 〉 = 〈n1↑n2σ 〉 + 〈n1↓n2σ 〉 = 〈n2σ 〉, (A2)

which yield:

〈n1↑n2σ 〉 = 1
2 〈n2σ 〉 + 〈

Sz
1n2σ

〉
〈n1↓n2σ 〉 = 1

2 〈n2σ 〉 − 〈
Sz

1n2σ

〉
. (A3)

In addition,〈
Sz

1n2↑
〉 = 1

2 (〈n1↑n2↑〉 − 〈n1↓n2↑〉)〈
Sz

1n2↓
〉 = 1

2 (〈n1↑n2↓〉 − 〈n1↓n2↓〉). (A4)

Since 〈n1↑n2↑〉 = 〈n1↓n2↓〉 and 〈n1↓n2↑〉 = 〈n1↑n2↓〉, we
obtain that 〈

Sz
1n2↑

〉 = −〈
Sz

1n2↓
〉
.

Replacing in Eq. (A3):

〈n1↑n2σ 〉 = 1
2 〈n2↑〉 + σ

〈
Sz

1n2↑
〉

〈n1↓n2σ 〉 = 1
2 〈n2↑〉 − σ

〈
Sz

1n2↑
〉
, (A5)

where we have used 〈n2↑〉 = 〈n2↓〉, and σ = ± for up, and
down spins. We resort to the SU (2) symmetry of the problem
to find:

〈S+
1 S−

2 〉 = 〈S+
1 S−

2 〉 = 2
〈
Sz

1S
z
2

〉 = 2
〈
Sz

1n2↑
〉
.

Defining δ = −2〈Sz
1n2↑〉, we finally obtain

ρ = 1

2

⎛
⎜⎜⎜⎝

〈n2↑〉−δ

2 0 0 0
0 〈n2↑〉+δ

2 −δ 0
0 −δ

〈n2↑〉+δ

2 0
0 0 0 〈n2↑〉−δ

2

⎞
⎟⎟⎟⎠, (A6)

which is the desired result, as described in the text.

APPENDIX B: NATURAL ORBITALS

Let us assume that the ground state can be written as

|g.s.〉 = 1√
2

[|⇑〉α†
0↓ − |⇓〉α†

0↑]
N/2∏
n=1

α
†
n↑α

†
n↓|vac〉, (B1)

where the single particle states |αi〉 are the natural orbitals.
Without loss of generality, we can calculate the single particle
Green’s function in this basis G

↑
ij = 〈α†

i↑αj↑〉, which is diago-

nal with elements G
↑
00 = 1/2,G

↑
ii = 1 for 0 < i � N . Notice

that this corresponds precisely to the momentum distribution
function n(k) in the weak coupling limit, as discussed in the
text.

This means that their weights are pretty much evenly
distributed, without assigning a dominant weight to a single
state. For this reason, we introduce the “projected” single
particle Green’s function as G̃

↑
ij = −〈Sz

impα
†
i↑αj↑〉, which is

also diagonal, but with eigenvalues G̃
↑
00 = 1/4 and G̃

↑
ii = 0 for

0 < i � N/2, clearly identifying the single particle state that
is entangled to the impurity. Even though both formulations
yield the same eigenfunctions, in a generic scenario, where
the ground state is approximately, but not exactly, described
by Eq. (7), the projected Green’s function can always identify
the dominant orbital with a high level of accuracy, as shown
in the main text, while the conventional formulation does not.
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[32] U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005).
[33] E. S. Sørensen, M.-S. Chang, N. Laflorencie, and I. Affleck,

J. Stat. Mech. (2007) L01001.
[34] I. Affleck, N. Laflorencie, and E. S. Sørensen, J. Phys. A 42,

504009 (2009).
[35] S. Y. Cho and R. H. McKenzie, Phys. Rev. A 73, 012109 (2006).
[36] S. Oh and J. Kim, Phys. Rev. B 73, 052407 (2006).
[37] L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Rev. Mod. Phys.

80, 517 (2008).

[38] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki,
Rev. Mod. Phys. 81, 865 (2009).

[39] V. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knight,
Phys. Rev. Lett. 78, 2275 (1997).

[40] S. Hill and W. K. Wootters, Phys. Rev. Lett. 78, 5022 (1997).
[41] W. K. Wootters, Phys. Rev. Lett. 80, 2245 (1998).
[42] V. Vedral and M. B. Plenio, Phys. Rev. A 57, 1619 (1998).
[43] F. Verstraete, J. Dehaene, and B. DeMoor, Phys. Rev. A 64,

010101 (2001).
[44] F. Verstraete, J. Dehaene, and B. De Moor, Phys. Rev. A 68,

012103 (2003).
[45] K. Modi, T. Paterek, W. Son, V. Vedral, and M. Williamson,

Phys. Rev. Lett. 104, 080501 (2010).
[46] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K.

Wootters, Phys. Rev. A 54, 3824 (1996).
[47] S. Gharibian, Quantum Inf. Comput. 10, 343 (2010).
[48] A. Peres, Phys. Rev. A 54, 2685 (1996).
[49] W. K. Wootters, Quantum Inf. Comput. 1, 27 (2001).
[50] R. F. Werner, Phys. Rev. A 40, 4277 (1989).
[51] K. Yosida, Phys. Rev. 147, 223 (1966).
[52] C. M. Varma and Y. Yafet, Phys. Rev. B 13, 2950 (1976).
[53] G. Bergmann and L. Zhang, Phys. Rev. B 76, 064401 (2007).
[54] W. B. Thimm, J. Kroha, and J. von Delft, Phys. Rev. Lett. 82,

2143 (1999).
[55] P. Simon and I. Affleck, Phys. Rev. B 64, 085308 (2001).
[56] R. G. Pereira, N. Laflorencie, I. Affleck, and B. I. Halperin,

Phys. Rev. B 77, 125327 (2008).
[57] P. S. Cornaglia and C. A. Balseiro, Phys. Rev. B 66, 115303

(2002).
[58] F. A. Wolf, I. P. McCulloch, and U. Schollwöck, Phys. Rev. B
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