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We use the Bose-Hubbard model with an effective infinite-range interaction to describe the correlated lattice
bosons in an optical cavity. We study both static and spectral properties of such system within the bosonic
dynamical mean-field theory, which is the state-of-the-art method for strongly correlated bosonic systems. Both
similarities and differences are found and discussed between our results and those obtained within different
theoretical methods and experiment.
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I. INTRODUCTION

The development of experiments with cold quantum gases
in optical lattices [1,2] led to a breakthrough in the studies
of strongly correlated systems. Its close correspondence with
the Bose-Hubbard model, together with the possibility of fine
tuning of the parameters of the system gives a remarkably
powerful tool for investigating quantum phenomena in this
model [3]. On the other hand, the fast growing field of research
on cold atoms in cavity-generated optical potential gives us a
good understanding of processes in which atoms interact with
radiation field [4]. Combining these two fields of research
together opens up a possibility of a new fascinating study.
Putting an optical lattice inside an optical cavity results in
an effective infinite-range interaction between particles in the
system [5]. This long-range interaction, mediated by the cavity
mode of the light, competes with the inherent short-range
interaction of the Bose-Hubbard model. As a result of this
competition between correlations on different length scales,
new states of matter emerge. On top of the phases of the Mott
insulator (MI) and superfluid (SF), known from theoretical
predictions [6] and confirmed in experiment [1], we expect
new phases of density wave (DW) and supersolid (SS) [7].

Recent experiment with lattice bosons in an optical cavity
[5,8] has stimulated a lot of theoretical research on this
subject. In several published papers, the Bose-Hubbard model
with infinite-range interaction has been studied within the
static mean-field theory [9,10]. These studies include results
for the phase diagram of such a system and some initial
results for low-energy spectra. However, these mean-field–
type approaches treat the kinetic term of the Hamiltonian
as a small perturbation. A more advanced way to study the
Bose-Hubbard model with infinite-range interaction would be
to use the bosonic dynamical mean-field theory (B-DMFT)
[11]. Such an approach allows us to obtain reliable results for
any ratio of the kinetic and potential energies. First application
of the B-DMFT to a system with the optical lattice inside an
optical cavity was presented in Ref. [7], in which DW and SS
phases were obtained. Another B-DMFT study, in Ref. [12],
elaborates on this topic showing a phase diagram which is
directly comparable with experiment of Ref. [8].

In this paper, we aim to expand on the previous B-DMFT
studies. Instead of performing calculations in the real space,

and thus being restricted to finite size of the lattice, we consider
an infinite system and derive an appropriate self-consistency
condition for a bipartite lattice in two dimensions, taking into
account the possibility of spontaneous breaking of transla-
tional symmetry. We obtain the phase diagram in a different
parameter space, in order to compare the static mean-field and
B-DMFT results. Between these two approaches we observe
similarities but also significant discrepancies, revealed in the
behavior of the system close to the phase transition between
the SS and DW phases and in the behavior of the SS phase.
We also present the spectral properties of the Bose-Hubbard
model with infinite-range interaction.

This paper is organized as follows. In Sec. II, we introduce
the Bose-Hubbard model with infinite-range interaction and
present the B-DMFT method together with its new self-
consistency relations, appropriate for a bipartite lattice (with
additional material included in the Appendix). We discuss
some issues related to using a self-consistent approach in the
studied problem in Sec. II C. In Sec. III A, we present the
phase diagram of the system, compare it to the one obtained
within the static mean-field approach, and discuss differences
between the results of the two approaches. In Sec. III B, we
present the local densities of states and momentum-resolved
spectral functions and analyze their features. In Sec. IV, we
provide the summary of our results.

II. MODEL AND INVESTIGATION METHOD

A. Bose-Hubbard model with cavity-mediated
infinite-range interaction

We consider a system with cold-atom quantum gas trapped
in an optical lattice which is additionally placed inside an
optical cavity. Such a setup was recently realized in experiment
[5,8]. The counterpropagating laser beams of wavelength λ

create a standing wave. This results in an effective periodic
potential, which has the periodicity equal to half of the
wavelength of the light beam, λ/2. We consider a two-
dimensional (2D) realization of such a system in the xz plane.
The laser beam in the z direction plays a second role as it
drives a cavity mode in the x direction through scattering of
light on atoms in the system. The scattering processes between
atoms and the cavity light creates a λ-periodic modulation
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of the optical-lattice potential. Theoretical treatment of such
experiments requires a complex analysis of a system with many
degrees of freedom: (i) internal atomic degrees of freedom,
processes of exciting an electron in an atom (it is justified
to treat an atom as a two state system [4]); (ii) a light mode
in the cavity degrees of freedom, processes of creating and
annihilating photons in the cavity due to the scattering of
photons on atoms; (iii) motional degrees of freedom, an atom
moving through the system, hopping from one potential well
to a neighboring one [4]. Within dispersive limit, when atomic
saturation effects are negligible and atoms are considered
as linearly polarizable particles, one can get rid of atomic
internal degrees of freedom [4]. If the decay rate of photons
from the cavity is large, we can adiabatically eliminate the
cavity field. Then, we obtain an effective Hamiltonian with an
infinite-range interaction mediated by the cavity mode in the
following form [5]:

Ĥ = −
∑
i,j

tij b̂
†
i b̂j − μ

∑
i

b̂
†
i b̂i + U

2

∑
i

b̂
†
i b̂

†
i b̂i b̂i

− V

N

(∑
i∈SA

b̂
†
i b̂i −

∑
i∈SB

b̂
†
i b̂i

)2

, (1)

where b̂
†
i (b̂i) is a bosonic creation (annihilation) operator on

a lattice site i, μ is the chemical potential, U is the local
interaction strength, and tij is the hopping amplitude. The
first three terms represent the Bose-Hubbard Hamiltonian for
which we assume nearest-neighbor (NN) hopping, i.e., tij =
t > 0 if sites i and j are NN and tij = 0 otherwise. These terms
alone describe a homogeneous isotropic square lattice and
would correspond to a system without the cavity field. The last
term in the Hamiltonian represents an effective infinite-range
interaction, mediated by the cavity field. Such an interaction
splits the square lattice into two sublattices A and B. The
parameter V controls the strength of this interaction. SA and
SB denote sets of site indices corresponding to the sublattices
A and B, respectively. Because of the N−1 term in the last
part of the Hamiltonian (1), the fluctuations are negligible for
this type of interaction in the thermodynamic limit. Therefore,
it is sufficient to treat the last term of (1) within a mean-field
approach, which leads to the following Hamiltonian:

Ĥ = −
∑
i,j

tij b̂
†
i b̂j − μ

∑
i

b̂
†
i b̂i + U

2

∑
i

b̂
†
i b̂

†
i b̂i b̂i

−V

(∑
i∈SA

b̂
†
i b̂i −

∑
i∈SB

b̂
†
i b̂i

)
(nA − nB)

+NV
(nA − nB)2

4
, (2)

where nA (nB) is the average occupation of a site on the
sublattice A (B). The last term is important for the correct
determination of the phase transition lines.

The Hamiltonian (2) is of the form of the Bose-Hubbard
model with the addition of an effective staggered mean
field, resulting in a lattice with A and B sites inequivalent.
The values of nA and nB are determined self-consistently.
Although the problem has been simplified, it still poses a

considerable challenge to solve. Selected results, which are
obtained within the static mean-field approximation, have been
recently presented by Chen et al. in Ref. [9] and by Dogra
et al. in Ref. [10]. In our paper, we use the B-DMFT [11]
approximation to solve this problem. The previous studies
showed that this method is well suited for studying the
Bose-Hubbard–type models [13–17]. It has also been applied
to a model of a finite system inside the optical cavity [7,12].
We expand this research to infinite homogeneous system and
present a more detailed study.

B. B-DMFT for a bipartite lattice

In the B-DMFT, the self-energy is approximated to be
momentum independent [18]. This allows us to use a self-
consistent scheme in which we obtain local quantities by
solving an effective local (“impurity”) problem and use Dyson
equations to close the set of equations. A detailed derivation
for the case of bosons on homogeneous lattice can be found in
Refs. [11,16]. In our work, we consider a bipartite lattice with
lower translational symmetry and, therefore, need to modify
this procedure. Let us first notice that we have two distinct
types of sites, corresponding to sublattices A and B, which
require different, impurity mapping. Its derivation is analogous
to the homogeneous case, but needs to be performed separately
for different sublattices. The result in a form of the action in
the Feynman path-integral representation is following:

Sloc
A/B =

∫ β

0
dτ b∗(τ )[∂τ − μ ∓ V (nA − nB)]b(τ )

+ U

2

∫ β

0
dτ b∗(τ )b∗(τ )b(τ )b(τ )−κ

∫ β

0
dτ �∗

A/Bb(τ )

+ 1

2

∫ β

0
dτ

∫ β

0
dτ ′b∗(τ )´A/B(τ − τ ′)b(τ ′). (3)

Here, we use subscripts A and minus sign if we consider an
impurity on the sublattice A and use subscripts B and plus sign
if the impurity is on the sublattice B. We also use a notation in
which β = 1/T is inverse of the temperature (kB = 1), κ = zt ,
the number of nearest neighbors on the square lattice is z = 4,
τ is the imaginary time, and

b =
(

b

b∗

)
(4)

are the complex variables in the Nambu notation [19]. Finally,
in (3) appear two external fields, the vector �A/B and the
matrix ´A/B , which also depend on the sublattice type, hence
the subscript. These are given, in close analogy with the
homogeneous case, by

´A/B(τ − τ ′) = −
∑
i,j �=0

ti0tj0〈Tτ b̂i(τ )b̂†
j (τ ′)〉(0)

A/B (5)

and

�A/B = 〈b̂i〉(0)
A/B, (6)

where i is a nearest neighbor of site 0 (impurity) and 〈. . .〉(0)
A/B

stands for the connected part of the equilibrium average in the
grand canonical ensemble of the system with site 0 removed
(independently on which sublattice the impurity resides, we

115105-2



SPECTRAL PROPERTIES AND PHASE DIAGRAM OF . . . PHYSICAL REVIEW B 95, 115105 (2017)

always assign to it an index 0). Notice that depending on the
sublattice on which the impurity resides, these averages will
be different, which is reflected by the subscript A or B. The
operator b̂† = (b̂†,b̂) is the Nambu notation for the creation
and annihilation operators and Tτ represents time ordering of
the operators. To summarize, for the impurity on one sublattice
the physical quantities depend on (i) a local potential μ due to
the external reservoir, (ii) a local interaction, (iii) an effective
local potential −V (nA − nB) due to infinite-range interaction,
(iv) an effective coupling to the surrounding sites (from another
sublattice) represented by two types of fields, �A/B describing
coupling to the condensate and ´A/B describing coupling to
normal particles.

Solving the impurity problem is computationally the most
demanding step in the B-DMFT self-consistency loop. In
this paper, we use the continuous-time quantum Monte Carlo
(CT-QMC) [20,21] as a single impurity solver [16,17]. It
is a stochastic method, which does not impose any extra
approximations. Within this approach one can, in principle,
obtain arbitrary accuracy of the results with the main limitation
coming from the computation time. Most importantly, we
obtain the following local quantities: nA/B average local
occupation (sublattice dependent), φA/B = 〈b̂A/B〉 the order
parameter on impurity on sublattice A or B, respectively, and
Gimp

A/B(iωn), the impurity Green function on sublattice A or B

in Matsubara frequencies. The latter can be used in the local
Dyson equation in order to obtain the local self-energy

˚A/B(iωn) = iωnff3 + μ1 − ´A/B(iωn)

− (
Gimp

A/B(iωn)
)−1

, (7)

where ff3 is the Pauli matrix with 1 and −1 on the diagonal.
As we already mentioned, in the B-DMFT the self-energy

is approximated to be purely local. A direct consequence of
this is that knowing the local part we have the full knowledge
of the self-energy, within the approximation. This means that
one can use a full lattice Dyson equation in order to obtain the
updated Green function for the entire lattice Gij (iωn). The full
equations are presented in the Appendix.

Finally, the last step in the B-DMFT procedure is to
calculate new, updated values of the fields ´A/B and �A/B .
For the former quantity we use again the local Dyson equation
(7), however, instead of the impurity Green function, we use
its updated local value GA/B obtaining

´A/B(iωn) = iωnff3 + μ1 − ˚A/B(iωn)

− (GA/B(iωn))−1. (8)

For the latter quantity, we note that the site of sublattice A

(B) is surrounded by sites of sublattice B (A) and, therefore,
couples to the condensate amplitude φB (φA). We also note that
the average in (6) is over lattice with a cavity, and this change
in the geometry of the system has to be taken into account.
The resulting formula, in analogy with its counterpart for a
homogeneous system ([14,16,22,23]), has the following form:

	A/B = φB/A + 1

κ

(



(11)
A/B(0) + 


(12)
A/B(0)

)
φA/B. (9)

Notice that some indices are inverted.

C. Metastability and phase transition line

A characteristic feature of a self-consistent iterative method
is that the converged solution might depend on the initial
condition, from which the iteration starts. This is not a problem
for the phase transition between MI and SF phases of the model
(1): if there exists a SF solution, it has a lower value of the grand
potential than the MI solution and therefore represents the true
phase [16]. However, this issue does influence other phase
transitions which we study in this paper. This might be easily
understood in the atomic limit (hopping amplitude t is set to
zero) for zero temperature and for μ = 0.4U , as an example. In
such case it is possible to solve the original lattice problem (1).
There are two states that are candidates for the ground state.
The average value of the Hamiltonian has local minimum with
respect to small variations from these two states. One state
corresponds to the MI with average occupation nA = nB = 1
and one corresponds to the DW with nA = 2 and nB = 0. The
physical solution is the one with lower value of the grand
potential, which in the zero temperature is 〈Ĥ 〉 [notice, that
the chemical potential μ has been included in the Hamiltonian
(1)]. Thus, we obtain a phase transition between MI and DW
at V = 0.5U . However, if we consider a problem mapped onto
a single impurity and treat it in a self-consistent manner,1 we
get a DW phase stable down to V = 0.3U . This is because for
0.5U > V > 0.3U , the DW is a metastable solution. Similarly,
for V > 0.5 it is possible for self-consistent steps to converge
to a MI solution, even though it has a higher value of the grand
potential than the DW solution.

Therefore, solving the B-DMFT equations self-consistently
is not enough to determine the phase diagram. In order
to determine the physically true phase for a given set of
parameters, one needs to compare values of the grand potential
for all of the metastable solutions. Here, we revert to an
approximate scheme of calculating the grand potential � by
assuming that � ≈ 〈Ĥ 〉. This approximation is equivalent to
neglecting the entropic contribution −T S, which becomes
formally rigorous only in the zero-temperature limit. We
checked within the static mean-field approximation [6] that the
neglected term is small compared to the internal energy, owing
to the low temperatures in which we performed calculations
(T S ∼ 10−3〈Ĥ 〉). Using this approximation has a negligible
influence on the results in the greater part of the phase
diagram. However, the small −T S term becomes significant
in the vicinity of the SS-DW transition driven by the change
of hopping amplitude. This issue will be discussed later in
Sec. III A.

III. RESULTS

A. Phase diagram and static properties

Our main goal is to expand the previous B-DMFT studies
of a two-dimensional system in an optical cavity [7,12]. This
is achieved by determining a phase diagram of a system in the
thermodynamic limit in the (t,V ) space, comparing with the
results of the static mean-field study [9] and by providing an

1Notice that for t = 0, static mean field and the B-DMFT are
equivalent.
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FIG. 1. Phase diagram of the two-dimensional system described
by Hamiltonian (1). Parameters are set to U = 10, μ = 0.4U ,
and β = 2. Distinct phases are denoted: MI (Mott insulator); SF
(superfluid); DW 2-0 (density wave with nA ≈ 2 and nB ≈ 0); DW
3-0 (density wave with nA ≈ 3 and nB ≈ 0); SS (supersolid). Top
panel: results obtained within the B-DMFT method. The inset shows
a closeup of the area marked with rectangle. Empty circles denote
parameters, for which the spectral functions are determined. Small
dots in the inset denote kinks in the dependence of φA − φB on V .
Bottom panel: results obtained within the static mean-field method.

analysis of the type of the phase transitions. These diagrams
are presented in Fig. 1: the B-DMFT results (top panel) and
the static mean-field results (bottom panel). The parameters for
which we performed calculations are U = 10, μ = 4, β = 2.
In order to make a distinction between different phases we
define two order parameters: any of the φA/B = 〈b̂A/B〉 fields [a
situation in which only one of them is (non)zero is impossible]
and 
n = nA − nB . These two order parameters allow us
to define four phases, Mott insulating (MI), superfluid (SF),
density wave (DW), and supersolid (SS) phases, as follows:

(i) The Mott insulating phase is characterized by vanishing
of both order parameters, i.e., φA = φB = 0 and 
n = 0. In

this phase, particles are immobile at t = 0, localized on lattice
sites, and distributed uniformly in the system.

(ii) The superfluid phase is characterized by the presence
of the condensed bosons in the system, where φ(A/B) �= 0, and
the uniform distribution of particles in it, i.e., 
n = 0.

(iii) The density wave is defined by 
n �= 0 and φA =
φB = 0. There are no condensed bosons in the system,
however, the symmetry between sublattices is spontaneously
broken.

(iv) The supersolid phase is obtained when both order
parameters are nonzero. There are two simultaneously broken
symmetries, Z2 between the sublattices and U(1) for the phase
of the macroscopic wave function of the condensate.

Within the DW phase we find yet another two phases
differing in the approximate value of 
n: DW 2-0 with 
n ≈ 2
in which sublattice A is on average occupied by approximately
two particles per site, and DW 3-0 for which 
n ≈ 3 and
sublattice A is on average occupied by approximately three
particles per site. Sublattice B is almost empty in both cases.
In general, we expect more DW-type phases for different
parameters of the system, V , μ, etc. The phase transition
between such phases is signaled by a discontinuity of 
n,
here as a function of infinite-range interaction strength V .
Apart from the difference in 
n, the two phases appearing
in the diagram in Fig. 1 are similar in their properties and
symmetry.

A comparison between the results of the experiment
[5] and the different theoretical approaches [9,10] shows
certain similarities. We find the same type of phases in both
approaches. The shapes of the diagrams are also similar. For
example, consider the phase transition line which separates
MI from DW for small hopping amplitude and SF from SS for
large. As we go along this line from large to small values
of t it descends and then flattens out. The SF extends to
higher values of V than the MI. This is a common feature of
both experimental and theoretical results. A good agreement
of experiment and theory was also shown in the results
of Refs. [8,12]. We find only one significant discrepancy
between the theories and the experiment. The interpretation
of experimental results suggests that there exists a point in
the phase space in which all four phases meet (cf. Fig. 3 of
Ref. [5]). In our phase diagram, and similarly in the phase
diagrams obtained within the static-mean-field approximation
[9,10], such a point does not exist. The Mott insulating and
supersolid phases are always separated by the density wave
and superfluid phases.

We also find discrepancies between the B-DMFT and the
static-mean-field results. First, there is a difference in the shape
of the phase transition line between the DW and MI phases. In
the bottom panel of Fig. 1 we see that this transition appears for
a constant value of −U/V ≈ −2. This is because the static
mean field is insensitive to changes of the hopping t in the
insulating phases. On the contrary, within the B-DMFT method
the dependence on the hopping amplitude in the insulating
phases is preserved. Hence, in the top panel of Fig. 1, the line
separating DW and MI phases is not exactly flat but varies
slightly with changing t .

The second discrepancy requires a more detailed study of
the behavior of the order parameter in the vicinity of the
phase transition lines. In the static-mean-field study it has

115105-4



SPECTRAL PROPERTIES AND PHASE DIAGRAM OF . . . PHYSICAL REVIEW B 95, 115105 (2017)

FIG. 2. Dependence of the order parameter φA (of the doubly
occupied site) on the relative hopping amplitude t − tc for V = 6 at
the phase transition between SS and DW. Thick line with “+” symbols
represents results obtained with the B-DMFT method. Thin line with
“×” symbols represents results obtained with the static-mean-field
method. Apart from the different magnitude of φA obtained with the
two methods, reflected by different scales on the graph, we observe
that the behavior around critical point is significantly different. It
seems that φ is discontinuous in the B-DMFT, contrary to the static-
mean-field results. Inset: dependence of the grand potential values
on the hopping amplitude t . Its value for the SS phase is smaller and
has a discontinuity as we cross the phase transition and the order
parameter φA vanishes.

been observed that the type of the phase transition depends
on the point at which we cross the phase boundary [9,10].
For example, for U/t ≈ 14.7 and −U/V ≈ −1.67 the phase
transition between SS and DW 2-0 phases is continuous. At
the same time, for U/t ≈ 14 and −U/V ≈ −1.56 the phase
transition between SS and DW 3-0 phases is discontinuous.
Within our method, this seems not to be the case. Every phase
transition is discontinuous, except for the one between SF and
MI, for which we have checked and confirmed previous results
of Ref. [16] (not shown here). This is particularly interesting
for the transition from SS to DW 2-0 phase because it shows
a difference between the static-mean-field and the B-DMFT
results. The behavior of the order parameter close to the phase
transition is depicted in Fig. 2. In the static mean field it is
clearly continuous. On the contrary, in the B-DMFT it seems
to drop abruptly at the critical value of the hopping amplitude
tc. This conclusion is supported by the fact that no power-law
dependence φA ∼ |t − tc|a fits to the data. We also observe that
the grand potential is always smaller in the SS phase and has
a discontinuity at the phase transition point, which is shown
in the inset of Fig. 2. The issue with the continuity can be
attributed to the approximation which we use. The neglected
entropic term is of the same order of magnitude as the jump
in the grand potential. Taking it into account could heal the
problem but should not introduce large changes in the phase
diagram. The computation of the entropic contribution with
sufficient numerical accuracy is, however, beyond our present
implementation of the B-DMFT.

FIG. 3. Top panel: dependence of φA − φB (difference of order
parameters on sublattices A and B) on infinite-range interaction term
V for several values of U/t (cf. inset in Fig. 1, top panel). One can
observe a sudden change of the slope of the function as V increases.
Bottom panel: a more detailed plot of φA − φB for U/t = 8.929 in the
area marked with rectangle in top panel and comparison to behavior
of the SF order parameter on sublattice A.

It is also interesting to investigate the behavior of the
order parameters within the SS phase. Particularly intriguing
is the dependence of φA − φB (difference of the condensate
amplitudes on the sublattices) on the infinite-range interaction
strength V in the region presented in Fig. 1, inset of the top
panel. The quantity φA − φB as a function of V is plotted in
Fig. 3. The behavior is nonmonotonic and seems to have a sharp
“kink”. A more detailed study, with a finer grid, shows that nei-
ther the derivative of φA − φB nor the other order parameters,
e.g., φA/B , are discontinuous (cf. Fig. 3, bottom panel). We
also do not detect any change in the symmetry of the solution.
Therefore, we conclude that the observed behavior does
not represent a true phase transition but merely a crossover
between a SS with 
n ≈ 2 and a SS with 
n ≈ 3. It would
be worth investigating whether the situation does not change
in the zero temperature, however, this is not possible with our
method. The presented behavior represents one more differ-
ence between the B-DMFT and the static-mean-field results
[10]. Namely, in the latter the SS is not a single phase but rather
splits into two (or more) phases separated by a phase transition
line ending in a critical point (cf. Fig. 1, bottom panel).

B. Spectral functions

In the following, we present the spectral functions of the
model (1). We skip the discussion of the problem in the MI
and SF phases since it has been already thoroughly studied
[22,24–31]. On the other hand, the spectral functions of the
SS and DW phases have not been investigated in details yet.
The only study we are aware of is the one within the
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FIG. 4. Local densities of states A(ω) of the Bose-Hubbard model
with infinite-range interaction. Parameters are set to U = 10, β = 2,
and μ = 4. The values of t and V are as follows: top panel, t = 0.4,
V = 5.5 which corresponds to DW phase; bottom panel, t = 1.12,
V = 6.555 which corresponds to SS phase. See Fig. 1 for reference.

static-mean-field approximation and only for the lowest-
energy excitations [10]. In order to elaborate on that subject
further, we consider two types of spectral functions:

(i) Local density of states AA/B(ω) = − 1
π

Im[Gii(ω)],
where Gii(ω) is the local Green function; subscript A or B

specifies the sublattice to which i belongs.
(ii) Momentum-resolved spectral function Aα(k,ω) =

− 1
π

Im[Gα
k(ω)], where the Green function Gα

k(ω) is represented
in the basis of operators b̂k;1 and b̂k,2 which diagonalizes the
noninteracting Hamiltonian, hence the index α ∈ {1,2}. Notice
that since the lattice has lower translational symmetry, the area
of the Brillouin zone (BZ) is reduced by half.

Within the B-DMFT method we obtain Green functions on
the imaginary axis G(iωn). In order to determine the Green
functions on the real axis G(ω), we need to perform analytic
continuation. We use the maximum entropy [32] method for
the numerical analytic continuation since within the CT-QMC
we obtain results for finite number of frequency points and
with a stochastic noise. More details on the data preparation
and obtaining spectral functions within the B-DMFT can be
found in Ref. [22].

In Fig. 4, we present results for the local density of states
A(ω) for both sublattices, where A is occupied and B is nearly
empty. The parameters were set to U = 10, μ = 4, and β = 2.
We set t = 0.4, V = 5.5 to obtain the DW phase and t = 1.12,

V = 6.555 to get the SS phase (see Fig. 1 for reference). The
results for the former are presented in the top panel. In this case,
the average occupations on different sites are nA = 1.9906
and nB = 0.0096, which means that one sublattice is almost
doubly occupied at each site and the other is nearly empty. We
distinguish three peaks, which we call bands on the basis of the
momentum-resolved spectral functions analysis, which will be
discussed later. Two of those are particle bands and appear for
positive values of ω and one is a narrow hole band appearing
for negative values of ω. The distance between the center of
hole and the center of particle bands is approximately equal
to the interaction strength U = 10. The hole band centers at
around ω = −5. It has a form of a narrow peak and is present
for both sublattices, however, its weight is significantly smaller
for the sublattice B. This is because creation of a hole can occur
only on the occupied site. Hence, the peak is suppressed for
the nearly empty sublattice B. The small width of the band
comes from the fact that holes are localized on the sublattice
A, bound to it due to absence of particles on sublattice B. This
means that their dependence on quasimomentum is weak.

Let us consider the two particle bands. For the occupied
sublattice A, more of the spectral weight is distributed to the
band with lower energies, concentrating between ω = 3 and
6. We also see a shoulder corresponding to the second band
with higher energies. Conversely, on the empty sublattice
we observe more of the spectral weight distributed to the
higher-energy band, spanning between ω = 7 and 9 and
a shoulder corresponding to the lower-energy excitations.
The fact that the bands are not completely separated can be
attributed to the finite resolution of maximum entropy and/or
to a finite temperature.

This behavior can be understood on a basis of the problem
in atomic limit, that is, with t = 0. A similar comparative
analysis was presented in Refs. [31,33]. For given parameters
and average occupations we have V (nA − nB) ≈ 11. This
would give two excitations on the occupied sublattice: hole
excitation at ω = −5 with A(ω) = −2δ(ω + 5) and particle
excitation at ω = 5 with A(ω) = 3δ(ω − 5). Similarly, on the
empty sublattice this gives a particle excitation at ω = 7
with A(ω) = δ(ω − 7). The nonzero value of t results in
broadening of the bands compared to the local problem, the
lower band extends towards lower energies and the higher band
towards higher energies. t �= 0 also results in some exchange of
particles between sublattices, hence, the states become mixed
and we see signatures of excitations corresponding to the B

sublattice on the sublattice A and vice versa.
Next, we consider the results for the SS phase, for which

nA ≈ 2.45 and nB ≈ 0.2. They are presented in Fig. 4,
bottom panel. The bands are much wider because the hopping
amplitude is larger than in the previous case. This is most
prominent for the negative part of the spectrum of the sublattice
A. In the DW phase, we observed localized hole excitations,
hence a narrow band. In the SS phase, the interpretation of
the part of spectrum with ω < 0 as hole excitations loses
its virtue. This is due to the presence of the condensate:
φ2

A ≈ 1.27 and φ2
B ≈ 0.17 and, as a result, fluctuating number

of particles in the system 〈b̂〉 �= 0. The elementary excitations
combine the properties of both particles and holes, e.g.,
the Bogoliubov quasiparticle operator is a superposition of
creation and annihilation operator [34]. Therefore, for each
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FIG. 5. Momentum-resolved spectral functions A(k,ω) of the
Bose-Hubbard model with infinite-range interactions for the DW
phase [panels (a) and (b)] and the SS phase [panels (c) and (d)].
The parameters at which the calculations were performed are the
same as in Fig. 4. Lower index of A denotes one of two states with
quasimomentum k, which diagonalize the noninteracting problem.
Note the logarithmic color scale.

excitation with energy ω its spectral weight will be distributed
between the peaks at ω and −ω. The spectrum for the sublattice
B looks significantly different. The negative- and low-energy
parts of the spectrum appear due to presence of condensation:
fluctuations in its phase and amplitude. As condensate fraction
is significantly smaller on this sublattice, these features in
the spectral function are also much weaker. The main part of
the spectrum starts at around ω = 10, which coincides with
energy of adding a particle on an empty site of the sublattice
B with V (nA − nB) ≈ 14.4, μ = 4, and for t = 0 (atomic
limit). Nevertheless, it is much wider than zt (here =4.48),
which seems to describe approximately the width of bands
observed in the DW phase. The spectral weight is very small
around ω = −10, therefore, the mixing of particle and hole
properties of the excitations seems to be smaller for higher
energy. Finally, we note that at high energy, ω ≈ 37, there
appears yet another resonance, whose origin we cannot explain
for now. As its weight is relatively small, its exact shape and
position may not be reliably reproduced by the MaxEnt method
of analytic continuation.

In Fig. 5, we present the momentum-resolved spectral func-
tions A(k,ω). Due to the lowering of the lattice translational
symmetry, the Brillouin zone (BZ) is reduced and, as a result,
one needs two types of states for each value of the quasimo-
mentum. The operators for these states are chosen such that
the Hamiltonian (2) without local interaction is diagonal in
the new basis. We plot our results along the line between two

special points, � and X, in the reduced BZ [coordinates of these
points in the original BZ are � = (0,0) and X = (π/2,π/2),
assuming that lattice constant is equal to unity]. It is important
to note that dependence of A(k,ω) on k enters only through
dispersion relation εk of a noninteracting, homogeneous model
[cf. Eq. (A5)]. The spectral functions along different lines in
the reduced BZ can be easily reproduced form values of A(k,ω)
along the � − X line.

As previously, we first analyze the results in the DW phase,
shown in Figs. 5(a) and 5(b). The two plots correspond to two
different operators for given quasimomentum k. The results are
consistent with those of a local spectral function. We observe
a narrow band (the dependence on k is weak) for the negative
ω. For the positive values of ω we observe two bands, one
stretching from ω ≈ 3 to 5 and one from ω ≈ 7 to 9. This is
in agreement with the results for the local spectral function,
shown in Fig. 4. One should also notice that the gap between
the two particle bands is approximately equal to 2[V (nA −
nB) − UnA] = 2. The same result would be obtained if we
treated the interaction within the Hartree-Fock approximation.
Therefore, in the DW phase, our approach simply reproduces
the qualitative behavior, which is obtained within static-mean-
field consideration, with small quantitative corrections.

The plot of A(k,ω) looks significantly different in the SS
phase, shown in Figs. 5(c) and 5(d). First, we observe two
low-energy bands. These bands seem to be symmetric with
respect to ω = 0 axis. The energy of the excitations becomes
small as we approach the � point, almost reaching ω = 0.
These low-energy excitations originate on the sublattice A.
The occupation on sublattice A fluctuates between two and
three particles (nA ≈ 2.45), therefore, the energetic cost of
adding or removing a particle on sublattice A is expected to be
low. However, due to the condensation, the excitations are no
longer particlelike or holelike, but rather combine properties of
both as explained earlier. In fact, judging by the homogeneous
case, we would expect these excitations to resemble Goldstone
modes, fluctuations in phase of the order parameter. Formation
of these quasiparticles also explains the symmetry between the
bands. The open gap between the lowest-energy bands (around
ω = 0) is a feature of the B-DMFT approach. It appears
because in the B-DMFT, the Hugenholtz-Pines theorem [35]
is not satisfied [16,22]. In fact, we would expect not only a
closed gap, but also dispersion relation to become linear as we
approach ω = 0.

We also observe higher energetic bands, for positive and
negative ω. As the different bands, both for ω < 0 and for
ω > 0, have similar energy, it is hard to distinguish which
excitation process they are related to. We attempted to identify
the bands based on the simple picture of a site in the atomic
limit with additional coupling to a symmetry-breaking field
(cf. static Fisher mean field). The value of this field was taken
from B-DMFT calculations and the resulting Hamiltonian was
diagonalized obtaining its eigenvalues and through them the
energies of the excitations (note that with a symmetry-breaking
field the occupation number states will no longer be eigenstates
of the system). Details of this method can be found in Ref. [33].
This approach allows to interpret the nature of some of the
bands. For example, the bands with ω ≈ −13, −8, 12 seem
to be in good agreement with such a modified atomic picture.
However, the positions of other bands, with ω ≈ 20, 30, 40,
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are not captured properly. While for the last two this could be
attributed to the resolution and accuracy of MaxEnt procedure,
it cannot for the ω ≈ 20 band, as its weight is not small
[cf. Fig. 5(c)]. It rather seems that the dynamical corrections of
the B-DMFT play an essential role here. Therefore, one should
be cautious with using the atomic limit analogy to interpret the
spectral features of the SS phase.

Another feature requiring better understanding is that while
in the DW phase low-energy particle band has energy ω

increasing with quasimomentum k and the other particle band
has energy decreasing with quasimomentum, it seems not to be
the case in the SS phase. For the two lowest-energy bands with
ω > 0, the energy increases with quasimomentum. It could be
that a band with inversed dispersion appears for such energies
that it overlaps with other bands making it hard to distinguish.

We conclude that trying to find a simple intuition based on
atomic limit works well for the DW phase but not completely
for the SS phase. The higher-energy excitations are probably of
a more complex nature: dynamical processes are captured by
the B-DMFT but not present in the the static picture. It would
be interesting to investigate the momentum-resolved spectral
functions of the Bose-Hubbard model with infinite-range
interactions with other methods, maybe even using stronger
approximations, but providing results on the real axis and with
better resolution.

IV. SUMMARY

In summary, we have presented a thorough study of the
Bose-Hubbard model with infinite-range interactions mediated
by the cavity light modes. The use of the B-DMFT, which is a
dynamical method, allows us to obtain a more reliable phase
diagram. Because including the infinite-range interaction can

lead to spontaneous breaking of the translational symmetry, we
have derived and used an appropriate full self-consistency re-
lation. The main result is the phase diagram. Comparison with
other mean-field theoretical results shows both similarities and
disagreements between the two approaches. While the phase
diagram looks qualitatively similar, some phase transitions are
of different type. We have also found an interesting behavior
within the supersolid phase, which could be a precursor of a
phase transition at zero temperature.

Apart from phase diagram we have studied the spectral
properties of the supersolid and density wave phases. We
have presented both local and momentum-resolved spectral
functions. We have analyzed our results by comparing with
simple expansion around the atomic limit in small-t parameter,
hoping to give some intuitive understanding of processes
occurring in system with infinite-range interaction mediated
by the cavity light mode.
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APPENDIX: B-DMFT SELF-CONSISTENCY FOR A
BIPARTITE LATTICE WITH A AND B SUBLATTICES

INEQUIVALENT

In order to close the self-consistency of the B-DMFT, we
need to obtain the full Green function based on the local
impurity results. Within the B-DMFT approximation, one uses
the Dyson equation

G−1
ij (iωn) =

([
iωn + μ − V eff

i − �11
i (iωn)

]
δi,j − tij −�12

i (iωn)δi,j

−�21
i (iωn)δi,j

[ − iωn + μ − V eff
i − �22

i (iωn)
]
δi,j − tij

)
, (A1)

where we use similar notation as in Ref. [22], Green function is in Nambu notation, �(iωn) are matrix elements of the self-energy
˚ (further on, for brevity, we do not write explicitly that � depends on frequency), V eff = V (nA − nB) is the effective potential
due to infinite-range interaction V , and ωn are Matsubara frequencies. This general expression can be significantly simplified
in the case of bipartite lattice with broken symmetry between sublattices in which case the self-energy and local potential are
expressed as

˚i = ¯̊ ± δ˚, V eff
i = ±V eff, (A2)

where we have plus sign for sublattice A and minus sign for sublattice B, ¯̊ and δ˚ are halved sum and difference of self-energies
on sublattices A and B. Since the system is homogeneous, we perform a Fourier transform. For convenience, we choose the
wave vectors in the same way as for the system, where there is no difference between sublattices (notice that this convention is
different than the one used for spectral functions, see Sec. III B)

G−1
k,q =

∑
i,j

(
eikRi 0

0 eikRi

)
G−1

ij

(
e−iqRi 0

0 e−iqRi

)
/N.

(A3)

As a result, we obtain the following expression:

G−1
kq (iωn) = [iωnff3 + (μ − εk)1 − ¯̊ ]δk,q − (δ˚ + Veff)δk,q+π , (A4)

where εk = ∑
j tij e

ik(Ri−Rj ) and π = (π,π ) is a vector corresponding to the special point M in Brillouin zone of a 2D lattice
(lattice constant is set to unity). We notice that the expression, apart from mixing pairs of states k and k − π , separates for
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different k’s. Inverting the above formula, we obtain
Gkq(iωn) = {[ff3iωn + (μ − εk)1 − ¯̊ ] − (δ˚ + Veff)[ff3iωn + (μ − εk−π )1 − ¯̊ ]−1(δ˚ + Veff)}−1

× (δk,q1 + (δ˚ + Veff)[ff3iωn + (μ − εk−π )1 − ¯̊ ]−1δk−π,q). (A5)

This expression can now be easily Fourier transformed back, according to Eq. (A3), to the real space, yielding lattice Green
function, in particular its local part Gii(iωn).
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