
PHYSICAL REVIEW B 95, 104518 (2017)

Atomic displacements in quantum crystals
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Displacements of atoms and molecules away from lattice sites in helium and parahydrogen solids at low
temperature have been studied by means of quantum Monte Carlo simulations. In the bcc phases of 3He and 4He,
atomic displacements are largely quantum-mechanical in character, even at melting. The computed Lindemann
ratio at melting is found to be in good agreement with experimental results for 4He. Unlike the case of helium, in
solid parahydrogen there exists near melting a significant thermal contribution to molecular vibrations, accounting
for roughly half of the total effect. Although the Lindemann ratio at melting is in quantitative agreement
with experiment, computed molecular mean square fluctuations feature a clear temperature dependence, in
disagreement with recent experimental observations.
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I. INTRODUCTION

The denomination “quantum solid” refers to crystals
displaying marked quantum-mechanical effects [1]. These
include a kinetic energy per particle significantly above
its classical value 3T /2 [2], as well as considerably more
pronounced particle excursions away from their equilibrium
(lattice) positions than observed in most solids. The latter
assertion can be phrased quantitatively in terms of the so-called
Lindemann ratio [3] δ = urms/a, urms being the root-mean-
square displacement of particles away from lattice sites, and
a the distance between nearest-neighboring sites. This ratio
increases with temperature, and in most substances takes on
a value close to 0.1 at melting; however, in a highly quantal
solid such as 4He it can be as high as ∼0.3, even at temperature
T = 0, as a result of the large zero-point motion resulting from
the light mass of the atoms. Indeed, for a long time the most
commonly accepted explanation for the failure of He to solidify
at low temperature, under the pressure of its own vapor, has
been that the large zero-point motion of its light atoms acts
to destabilize the crystal phase (this belief has been recently
challenged [4]). An interesting theoretical question remains
that of the role played by quantum mechanics in the melting
of solids made of light atoms or molecules.

Helium is, of course, the archetypal quantum solid [5], but
sizable quantum effects have also been predicted and observed
for solid parahydrogen (p-H2). Although its constituent
particles are molecules of mass one half of that of a 4He
atom, p-H2 is nonetheless a stronger crystal than helium at
comparable thermodynamic conditions, owing to the depth
of the attractive well of the intermolecular potential, roughly
three times that between two helium atoms. For this reason,
unlike helium parahydrogen is a crystal at T = 0 (even in
reduced dimensions [6,7]), and in many respects the behavior
of solid p-H2 interpolates between that of a classical crystal
and solid helium. It has been recently suggested, however, that
the melting of a crystal of p-H2 may be driven primarily by
quantum-mechanical effects [8].
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Both the mean kinetic energy per particle, as well as the
mean square displacement 〈u2〉 ≡ u2

rms around lattice sites,
can be accessed experimentally by either x-ray or neutron
scattering [9]; in particular, estimates of 〈u2〉 can be obtained
through the measurement of the Debye-Waller factor [10,11].
On the theoretical front, first principle [12] calculations of
both quantities can be carried out by means of quantum Monte
Carlo (QMC) simulations; thus, a comparison of theoretical
results with experimental data represents a cogent test of the
current theoretical understanding of the physics of the simplest
quantum crystals, as well as of the most commonly adopted
microscopic models thereof.

The most important theoretical assumptions built into the
vast majority of QMC calculations are (a) the adoption of a pair
potential to describe the interaction of atoms or molecules and
(b) the neglect of quantum-mechanical exchanges of indistin-
guishable particles. The use of pair potentials has been shown
to afford a rather accurate theoretical description of energetic
and structural properties of solid He [13,14] (even though
the inclusion of three-body terms improves significantly the
agreement with the experimental equation of state [13]), as
well as p-H2 [15]. Exchanges of indistinguishable particles are
almost invariably neglected in most theoretical calculations of
crystal properties, the main justification being the infrequency
with which such exchanges occur [16–18], even in a highly
quantal crystal like 4He.

It has been suggested, however, that quantum-mechanical
exchanges may play a major role in the stabilization of the bcc
phase of solid 3He. A significant test of this hypothesis would
consist of a comparison of computed and measured values of
〈u2〉 in this system, as one of the most important consequences
of quantum-mechanical exchanges is a much greater atomic
mobility, resulting in more pronounced fluctuations around
lattice sites than if exchanges were absent [19].

A detailed comparison of experimental and theoretical
results for 〈u2〉 has been carried out for fcc and hcp 3He and
4He, at temperatures between 5 K and 35 K, yielding satis-
factory agreement [10,20]. To our knowledge, no microscopic
calculations have been performed for the bcc phase of the
two isotopes, which occurs at considerably lower temperatures
and coexists with fluid phases whose physics is dominated by
quantum exchanges. On the experimental side, we are only
aware of measurements of the Lindemann ratio in bcc 4He.
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In this paper we report results of QMC calculations
of the mean square atomic excursions away from lattice
positions in bcc 4He and 3He at the melting temperatures
T = 1.6 K (4He) and 0.65 K (3He). We also computed the
same quantity for the equilibrium hcp phase of p-H2 from a low
temperature T = 1 K, all the way to the melting temperature
T = 13.8 K. In all of our calculations pair potentials are used
and quantum-mechanical exchanges neglected. We compute
separately thermal and quantum-mechanical contributions to
atomic and molecular displacements.

Computed values of 〈u2〉 are found to be in excellent
agreement with experiment for bcc 4He; for bcc 3He our
estimated value of the Lindemann ratio δ is ∼6.5% lower
than existing theoretical estimates. In principle, there is no
reason not to expect comparable accuracy for both isotopes.
However, if particle exchanges are as prominent in this phase
as suggested in Ref. [19], it is possible that one may see a
difference between the experimentally measured value and
one predicted by a calculation neglecting atomic exchanges,
as these are likely to result in a significant enhancement of the
mobility of atoms in the crystal at melting.

The results for 〈u2〉 in hcp p-H2 show a clear dependence
on temperature, of a magnitude that appears to be exper-
imentally observable; this is in qualitative and quantitative
disagreement with recent measurements. We find that, while
atomic excursions away from lattice sites in bcc He are largely
quantum mechanical in character, in p-H2 at melting thermal
and quantum-mechanical contributions are very nearly equal
in magnitude. Thus, according to this criterion solid p-H2 may
be regarded as neither completely “quantum” nor “classical”,
but rather as a system sitting on the dividing line between the
two physical behaviors.

We also report in this paper our estimates for the pressure
and/or the mean kinetic energy per particle, and compare them
with available experimental determinations. The remainder of
this paper is organized as follows: In Sec. II we introduce the
microscopic model and offer details of the calculation carried
out in this work; in Sec. IV we illustrate our results, outlining
our conclusion in Sec. V.

II. MODEL

Consistent with most theoretical studies, our systems of
interest, namely solid helium and parahydrogen, are modeled
as ensembles of N pointlike particles of spin zero, enclosed
in a parallelepipedal cell of volume � with periodic boundary
conditions. The quantum-mechanical many-body Hamiltonian
is the following:

Ĥ = −λ

N∑
i=1

∇2
i +

∑
i<j

V (rij ). (1)

Here, λ = 6.0596 K Å
2

for 4He, 8.0417 K Å
2

for 3He and
12.031 K Å

2
for p-H2, while V is the potential describing

the interaction between two particles, atoms or molecules,
assumed here to depend only on their relative distance.
The results presented here for the helium isotopes were
obtained using the Aziz pair potential [21], whereas the
Silvera-Goldman potential [22] was used for p-H2. It is worth

mentioning that these are not the only potentials that have been
used in previous simulation work, but it seems fair to state that
they are the most commonly adopted. They have both been
shown to provide rather accurate quantitative descriptions of
the thermodynamics of the solid phase of helium [23] and
p-H2 [15,24]. Naturally, in principle a more accurate model
would go beyond the simple pair decomposition, including,
for instance, interactions among triplets; however, published
numerical work (e.g., on helium) has given strong indications
that three-body corrections, while significantly affecting the
estimation of the pressure, have a relatively small effect on
the structure and dynamics of the system, of interest here
[13,25,26].

III. METHODOLOGY

The thermodynamic properties of the system, as modeled
by the many-body Hamiltonian (1), were studied by means of
numerical simulations, based on the continuous-space Worm
Algorithm (WA) [27,28]. This is a fairly well-established
(Monte Carlo) methodology, based on R. P. Feynman’s path
integral formulation of quantum statistical mechanics [29]. It
allows one to obtain essentially exact numerical estimates of
thermodynamic properties of quantum many-body systems at
finite temperature, directly from the microscopic Hamiltonian.
The reader is referred to Ref. [28] for a thorough description
of the technique. The specific implementation utilized in this
project is canonical, i.e., we keep the number N of particles
fixed [30]. Other technical aspects of the calculations are
common to any other QMC simulation scheme. The usual
fourth-order high-temperature propagator was adopted here
[31]; convergence of the estimates was observed for a time
step τ = 3.125×10−3 K−1, for both He and p-H2. Because
the computational cost was negligible, all estimates reported
here were obtained using twice as small a time step, in order
to be on the safe side.

As mentioned above, the sampling of quantum-mechanical
exchanges of identical particle, in principle allowed by the
methodology utilized here, is explicitly excluded, i.e., we treat
particles as distinguishable. This is an excellent assumption
for p-H2, as well as for 4He in the temperature range explored
here. On the other hand, for 3He at the temperature of
interest exchanges do occur, albeit still relatively rarely. The
exclusion of exchanges is deliberate, as we are interested
in assessing their possible importance through a comparison
with experimental measurements; however, it ought to be
reminded that inclusion of exchanges in a Fermi system
like 3He would be rendered much more complicated by the
appearance of the well-known “sign” problem, plaguing any
current QMC methodology. In the absence of exchanges, the
WA is very similar to conventional path integral Monte Carlo
[31], although the presence of an open world line (path) in
the WA allows for direct computation of the one-body density
matrix [32], for which however we do not report results here.

The calculations of the kinetic energy per particle and of
the pressure, as well as of structural quantities such as the
pair correlation function, are standard [31]; on the other hand,
that of 〈u2〉 has been performed relatively infrequently so far,
and for this reason we offer here a few relevant details, with
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the general remark that we largely duplicate the procedure
illustrated in Ref. [20].

The mean square displacement of a particle away from a
lattice site 〈u2〉 in a crystal at temperature T is defined as

〈u2〉 = T

N

N∑
i=1

〈∫ 1/T

0
du (ri(u) − bi)

2

〉
, (2)

where the sum runs over all the atoms or molecules in the
system, {bi} is a set of fixed lattice positions consistent with
the crystal structure of interest, 〈...〉 stands for quantum-
mechanical thermal average, and the integral is over the
imaginary-time path ri(u) of the ith particle [29]. It is possible
to identify two separate contributions to 〈u2〉 in (2), namely
[24,33]

〈u2〉 = 〈u2〉Q + 〈u2〉T , (3)

where

〈u2〉Q = T

N

N∑
i=1

〈∫ 1/T

0
du (ri(u) − r̄i)

2

〉
(4)

and

〈u2〉T = 1

N

N∑
i=1

〈(bi − r̄i)
2〉 (5)

having defined the single particle path centroid as

r̄i = T

∫ 1/T

0
du ri(u). (6)

The usefulness of this breakdown lies in the fact that 〈u2〉 is
dominated by either 〈u2〉Q or 〈u2〉T in different temperature
limits. Specifically, at high temperature (i.e., in the classical
limit) 〈u2〉Q becomes negligible and 〈u2〉 ≈ 〈u2〉T , as the
imaginary-time path of a quantum particle shrinks to a point.
On the other hand, in the T → 0 limit it is 〈u2〉 ≈ 〈u2〉Q,
as particle excursions away from lattice sites are mostly
quantum-mechanical in nature (i.e., zero-point motion). Thus,
Eq. (3) can be used to assess quantitatively the relative impor-
tance of quantum-mechanical versus classical (i.e., thermal)
contributions to atomic/molecular displacements at a given T .
In particular, we shall make use of the ratio χ ≡ 〈u2〉Q/〈u2〉,
which tends to zero at high T and approaches unity as T → 0.

Implicit in the definitions (2) and (5) is the assumption
that at each imaginary time along the paths, every particle
remains close to one and the same lattice position. In a typical
simulation, particles are initially placed at lattice sites bi , i = 1
through N , but obviously wander away in the course of a run;
for the systems and thermodynamic conditions considered in
this study, we observed that particles for the most part remain
close to their initial lattice sites [34]. At low temperature,
however, especially for the lighter He isotope, single-particle
paths can become sufficiently extended in space that at
different imaginary times a particle may be close to different
lattice sites, even in the absence of quantum-mechanical
exchanges. In order to avoid complications, we discarded the
contribution to the accumulated statistical average of 〈u2〉T
of such (very rare) single-particle paths. Because the fraction
of single-particle paths discarded has never exceeded ∼10−5

in any of our simulations, we believe this not to result in a

significant bias of our estimates. It may be noted that it is
roughly equivalent to the procedure implemented in Ref. [20],
consisting of rejecting sampling moves that take any particle
further away from its assigned lattice site than a pre-defined
“tether” distance, typically of the order of the lattice constant.

The results presented here were obtained by simulating
systems comprising a number of particles N up to 1024 for
He, 4096 for p-H2. As shown in Ref. [20], estimates of 〈u2〉
feature a nontrivial dependence on N , especially near melting.
We come back to this point when discussing the results in
detail.

IV. RESULTS

A. Helium

We begin by illustrating the results for the bcc phase of
the two isotopes of He, at melting. We begin with 4He at

T = 1.6 K and density ρ = 0.02854 Å
−3

.
We simulated systems comprising N = 128, 432, and 1024

particles. As we shall discuss below, the dependence on the
system size of the averages of different physical observables
is very different. Because of the proximity of the system
to the fluid phase, we periodically inspected configurations
in order to ensure that the system is still in the crystal
phase. Figure 1 shows a snapshot of a typical many-atom
configuration generated in the course of a single run. The
crystalline arrangement of the atoms is clear.

The computed value of the pressure is 26.7(2) bars, which
is in very good agreement with experiment [35,36]. The
kinetic energy per 4He atom Ek is equal to 23.82(2) K in
a system of N = 128 atoms and remains unchanged, within
statistical uncertainties, in systems comprising more atoms
(this is found to be the case also for 3He and p-H2). A
direct comparison of this result with available experimental
and theoretical estimates is tricky because of small differences

FIG. 1. Snapshot of a many-particle configuration (world lines)

for bcc 4He, at temperature T = 1.6 K, density ρ = 0.02854 Å
−3

.
View is along one of the three main (equivalent) crystallographic
directions. The total number of particles is 1024. Only the traces of
the 128 in two adjacent planes are visible. Distances are in Å.
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TABLE I. Experimental and theoretical estimates of the kinetic
energy per atom in the bcc phase of 4He. Statistical uncertainties, in
parentheses, are on the last digit.

Method T (K) ρ (Å
−3

) Ek (K)

This Work 1.6 0.02854 23.82(2)
Expt (Ref. [37]) 1.725 0.0288 23.7(3)
PIMC (Ref. [38]) 1.6 0.0288 24.4
PIMC (Ref. [39]) 1.5 0.02857 23.936(5)

in the thermodynamic conditions. However, as shown in
Table I, there appears to be overall consistency, also consid-
ering that the theoretical calculation of Ref. [39] made use of
slightly different interatomic potentials.

Figure 2 shows the pair correlation function g(r) computed
for a system of N = 1024 atoms. The curve features the
characteristic, persistent oscillations of a crystalline system.
Aside from the obvious fact that simulating a larger system
allows one to access this quantity at greater distances, we
observe small differences between the results obtained with the
smaller system size simulated here (i.e., N = 128) and those
for N = 1024, the height of the main peak approximately 1%
lower in the latter case.

Next we discuss our results for the mean square atomic
displacements in bcc 4He. Our estimates of 〈u2〉 are shown in
Fig. 3 for the three system sizes considered here (see above).
The first observation is that the ratio χ ≈ 0.75, i.e., atomic
displacements away from lattice sites at melting are mainly
quantum mechanical in this crystal. Accordingly, based on the
arguments illustrated in Ref. [20], we fit the data in Fig. 3 with
the expression

f (N ) = α + βN−γ (7)

with γ = 2/3 which yields an extrapolated value of 〈u2〉 in

the thermodynamic limit equal to 1.080(2) Å
2

[the resulting
Lindemann ratio is δ = 0.291(1)]. This is in remarkable

agreement with the experimental value [40] of 1.09 Å
2
.

Altogether, these results point to fairly good, quantitative

FIG. 2. Pair correlation function g(r) for bcc 4He at T = 1.6 K

and density ρ = 0.02854 Å
−3

, computed for a system of N = 1024
atoms.

FIG. 3. Mean square atomic displacements (in Å
2
) away from

lattice sites in bcc 4He at the melting temperature T = 1.6 K and

density ρ = 0.02854 Å
−3

. Shown here are the results for the three
system sizes simulated (see text). Curve through the points is a fit
to the data based on the expression α + βN−2/3. The box at the left
upper corner represents the experimental estimate from Ref. [5].

agreement with experiment afforded by the relatively simple
microscopic model of Eq. (1), based on a pair potential.

Let us now consider the bcc phase of the lighter isotope
of helium, namely 3He, at T = 0.65 K and at a density

ρ = 0.02458 Å
−3

, i.e., along the melting line. Consider-
ably fewer experimental results have been published for
3He than for 4He, as neutron scattering measurements are
complicated by the significant neutron absorption cross
section.

In this case, the value of the pressure as it emerges from
the calculation is 31.8(2) bars, in excellent agreement with
experiment [41], just like for 4He. To our knowledge no
estimates of the atomic kinetic energy have been reported
at the thermodynamic conditions considered here. Indeed,
the only measurement of this quantity performed to date
is that by Senesi et al. [42], who studied a much denser
system, at higher temperature (2 K). The value of the kinetic
energy per 3He atom obtained in our simulation is 23.14(3) K.
This result is consistent with the approximate ground state
estimate of Ref. [13], namely 23.6 K, obtained for a slightly

higher density (0.02509 Å
−3

) and with a different pair
potential.

On comparing the configurational snapshot shown in Fig. 4
with the corresponding one in Fig. 1, one can visually
appreciate an important qualitative difference between the 3He
and 4He solids, namely the significantly greater delocalization
of the 3He atoms. This is quantitatively reflected in the
pair correlation function shown in Fig. 5. Obvious are the
considerably lower height of the first peak (∼1.435 versus
∼1.575 for 4He), as well as the much weaker secondary
oscillations.

All of this points to a significantly more quantal crystal than
the 4He discussed above, as expected given the lower density
and atomic mass, and as confirmed also by the computed value
of the parameter χ , which is worth ∼0.87, i.e., substantially
higher than in 4He, showing the degree to which 3He is the
most quantum mechanical of all naturally occurring crystals.
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FIG. 4. Snapshot of a many-particle configuration (world lines)

for bcc 3He, at temperature T = 0.65 K, density ρ = 0.02458 Å
−3

.
View is along one of the three main (equivalent) crystallographic
directions. The total number of particles is 1024. Only the traces of
the 128 in two adjacent planes are visible. Distances are in Å.

Consequently, one also expects more pronounced atomic
displacements away from lattice sites.

Figure 6 shows the estimates for 〈u2〉 for bcc 3He, at

temperature T = 0.65 K and density ρ = 0.02458 Å
−3

, for
the same three system sizes considered for 4He. Within the
statistical uncertainty of the calculation, the estimate obtained
on a system comprising N = 1024 atoms is indistinguishable
from that for N = 432. The weak dependence on N reflects the
low temperature at which the calculation is carried out. Indeed,
we consistently observed that the bulk of the size dependence
of 〈u2〉 comes from the (weak) centroid contribution 〈u2〉T ,
while 〈u2〉Q is essentially independent of N . This is in
qualitative agreement with the findings of Ref. [20].

The same fitting procedure utilized above for 4He yields
a value of 〈u2〉 extrapolated to the thermodynamic limit of

1.67(1) Å
2
. The extrapolated value is consistent, within statis-

tical errors, with the estimates obtained for N = 432,1024

FIG. 5. Pair correlation function g(r) for bcc 3He at T = 0.65 K

and density ρ = 0.02458 Å
−3

, computed for a system of N = 1024
atoms.

FIG. 6. Mean square atomic displacements (in Å
2
) away from

lattice sites in bcc 3He at the melting temperature T = 0.65 K and

density ρ = 0.02458 Å
−3

. Shown here are the results for the three
system sizes simulated (see text). Curve through the points is a fit to
the data based on the expression α + βN−2/3.

atoms, and indeed it is largely independent on the func-
tional fitting form utilized. The resulting Lindemann ratio is
δ = 0.344(1), somewhat lower than the existing theoretical
estimate of ∼0.370 based on time-dependent Hartree [43] and
self-consistent phonon theory [44]; these calculations are both
approximate, and based on different pair potentials than the
one utilized here (effects of Fermi statistics of the 3He atoms
are also not included, as in the calculation carried out here).

As mentioned above, we are not aware of any measurement
of 〈u2〉 for bcc 3He at the physical conditions considered in this
work. On the one hand, the microscopic model utilized here
should be reasonably expected to afford the same accuracy for
both isotopes, as the pair-wise interaction is very nearly the
same, the magnitude of nonadiabatic and nuclear spin coupling
effects being negligibly small. On the other hand, quantum
exchanges are comparatively more important in solid 3He than
in 4He, owing to the lighter atomic mass and lower density
of the former, and definitely increase atomic delocalization.
It seems therefore that a comparison of the experimentally
measured value of 〈u2〉 with that predicted in this calculation,
in which quantum exchanged are not included, should provide
an important clue as to the validity of the suggestion of
Ref. [19].

B. Parahydrogen

We now illustrate our results for p-H2. As we shall see,
the main physical observations are rather different from those
made for helium; in particular, while the physical behavior
of bcc He is dominated by quantum mechanics, that of p-H2

reflects an interplay of quantum and thermal effects.
We obtained estimates for bulk hcp p-H2 at the constant

density ρ = 0.0261 Å
−3

, in the temperature range 1 K � T �
13.8 K, i.e., from what is essentially the ground state [45] all
the way to the melting temperature. It is experimentally known
that thermal expansion of a p-H2 crystal at low T is remarkably
small [8]. In this temperature range, the computed kinetic
energy per molecule increases monotonically from a T → 0
value of 70.2(1) K to that of 71.9(1) at the melting temperature.
These estimates seem altogether consistent with the most
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FIG. 7. Mean square atomic displacements (in Å
2
) away from

lattice sites in hcp p-H2 at different temperatures, at density ρ =
0.0261 Å

−3
. Shown here are results for two simulated systems,

comprising N = 512 (squares) and N = 4096 (circles) molecules.
When not explicitly shown, statistical errors are smaller of the
symbol size. Inset shows the size extrapolation of the results obtained
at temperature T = 13.8 K. Curve through data points is a fit
obtained using the expression α + βN−1/3. Star represents the value
extrapolated to the thermodynamic limit.

recent experimental measurements of Ek [46]; it should be
noted how the variation of this quantity in the range of T

explored here is of the order of the typical experimental
uncertainty.

Figure 7 shows numerical estimates for 〈u2〉 obtained for
p-H2 as a function of temperature, for two different system
sizes, namely N = 512 (squares) and N = 4096 molecules.
The first, obvious remark is that the size dependence of the
results changes dramatically as the temperature is raised;
in particular, at low T (i.e., T � 4 K), where molecular
excursions are mostly quantum mechanical, the estimates
obtained for the two different system sizes are essentially
the same, within the statistical errors of the calculations.
Extrapolation of the results to the thermodynamic limit can
be carried out just like for solid He, i.e., the data obtained
on different system sizes can be fitted with the functional
expression (7), with the same value of γ used for He, namely
γ = 2/3.

On the other hand, on approaching the melting temperature
the dependence of the results on system sizes becomes much
more significant, and, as observed also in Ref. [20], extrapo-
lation to the thermodynamic limit requires that the parameter
γ in (7) be set to 1/3, which is consistent with excursions
away from lattice sites being mainly thermally driven [20]. The
inset of Fig. 7 shows the extrapolation to the thermodynamic
limit of the estimates for 〈u2〉 at the melting temperature T =
13.8 K. The extrapolated value is 0.622 Å

2
, corresponding to

a Lindemann ratio equal to 0.208 (nearest neighbor distance
is 3.784 Å), certainly significantly above the value (∼0.1)
typically associated with thermal melting, confirming that
quantum fluctuations play an important, though not dominant
role in the behavior of a p-H2 crystal at melting. Indeed,
the value of the parameter χ introduced above is remarkably
close to 0.5 at this temperature, i.e., quantum and thermal
contribution to molecular displacements are very nearly equal.

TABLE II. Calculated mean square displacement of molecules
in a p-H2 crystal at various temperatures. The density is ρ =
0.0261 Å

−3
. The quoted values of 〈u2〉 are extrapolated to the

thermodynamic limit. Also shown is the parameter χ ≡ 〈u2〉Q/〈u2〉
for the largest system size considered here (N = 4096), as well as
the Lindemann ratio δ, obtained from 〈u2〉 assuming a temperature-
independent nearest neighbor distance of 3.784 Å. Last column shows
experimental estimates of δ, from Ref. [8]. Statistical uncertainties,
in parentheses, are on the last digit.

T (K) 〈u2〉 (Å
2
) χ δ δ (Ref. [8])

13.8 0.622(2) 0.49 0.208(1)
11.5 0.593(5) 0.56 0.204(1) 0.200(2)
8.0 0.547(2) 0.69 0.195(1)
4.0 0.519(2) 0.84 0.190(1) 0.199(2)

We have carried out size extrapolations of 〈u2〉 at several
other temperatures; we provide some of our estimates in
Table II, together with the values of χ obtained from the
largest system simulated here (N = 4096) [47]. Also provided
is the Lindemann ratio δ, computed assuming a temperature-
independent nearest-neighbor distance. The rightmost column
contains experimental estimates of δ obtained from Ref. [8];
specifically, we read off Fig. 2 of Ref. [8] the estimates of urms

and divided them by 3.784 Å.
Our results, both as illustrated in Fig. 7 as well as in

Table II, show a clear temperature dependence of the molecular
displacements; specifically, the Lindemann ratio increases by
∼10% from its T → 0 value to that at melting. This is in
disagreement with the experimental data reported in Ref. [8],
which are quantitatively consistent with our predictions near
melting, but feature no significant temperature dependence,
essentially in the entire temperature interval considered here,
which extends from essentially ground state all the way to
melting. This observation prompted the claim made in Ref. [8]
that the physics of a p-H2 crystal at saturated vapor pressure
is dominated by quantum mechanics.

The calculation carried out in this work fails to support
such a claim; specifically, although there are undoubtedly
significant, measurable quantum effects in a crystal of p-H2,
even at the melting temperature (just as there are in the liquid
phase at freezing [32]), as indicated by the relatively high
value of the Lindemann ratio, nonetheless thermal effects are
significant at high T . Indeed, the parameter χ , which is a
measure of the relative importance of quantum effects, takes
on in p-H2 a value close to 0.5 at melting, as opposed to, for
example, 0.75 of 4He (a similar value in p-H2 is observed at
T ∼ 7 K, i.e., one half of the melting temperature).

The temperature dependence of the mean square molecular
displacements observed in our simulations of a p-H2 crystal
is of a magnitude that should lend itself to unambiguous
experimental detection. Thus, we have no explanation for
the qualitative and quantitative disagreement between our
theoretical results and the experimental measurements of
Ref. [8] at low temperature (T � 10 K). The potential utilized
here is the standard intermolecular potential for condensed
parahydrogen, and it is difficult to imagine that the discrepancy,
which is temperature dependent, could be attributable to it. As
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such a discrepancy is most significant at low temperature, one
might be tempted to ascribe it to the possible effect of quantum
exchanges, but these are essentially absent in this system, and
certainly at the temperatures considered here.

V. CONCLUSIONS

In this work, we carried out extensive QMC simulations
of the bcc solid phase of the two isotopes of helium, as well
as of the hcp phase of p-H2 at low temperature, based on a
microscopic model only including pair-wise interactions. In all
of the calculations, we regarded particles as distinguishable,
i.e., quantum statistics was ignored. It is worth noting that a
recent QMC calculation of the Lindemann ratio for bcc 4He
including quantum-mechanical exchanges (Ref. [39]) yielded
a result consistent with the one reported here, lending some
validation to the hypothesis that exchanges are indeed negli-
gible. The microscopic model affords generally satisfactory to
excellent agreement with measured thermodynamic properties
(e.g., the pressure).

We computed for all the systems considered the mean
square displacement of particles away from lattice sites, and
obtained estimates in excellent agreement with experiment for
bcc 4He; the estimate obtained for the Lindemann ratio in bcc
3He is about 6.5% below existing theoretical predictions. This
new result should supersede those predictions, since it is based
on a more robust methodology and accurate pair potential.

The microscopic Hamiltonian utilized is the same for both
isotopes and is expected to afford comparable accuracy; it
was suggested in Ref. [19], however, that quantum exchanges
significantly enhance atomic mobility in a 3He crystal, and
thus must be explicitly included in a calculation, if accurate
agreement with experiment is sought. This would point to
a remarkable difference between the roles of Fermi and Bose
statistics vis-à-vis crystallization; for, while the latter enhances
the stability of the (superfluid) liquid phase [4], the former
promotes the formation of a crystal in which particles enjoy

much greater mobility than the neglect of statistics would lead
one to expect. We did not attempt to perform any simulation
explicitly including Fermi statistics in this work, due to the
presence of the above-mentioned “sign” problem. It is not a
priori obvious that such a calculation would be unfeasible,
as exchanges are likely to be still relatively infrequent, and
therefore the signal-to-noise ratio may remain high enough
to allow one to collect sufficient statistics with reasonable
computational effort. We postpone this project until the future.

In general, we found that the physics of these two crystals
at melting is largely dominated by quantum mechanics (zero-
point motion). Indeed, we observed this to remain the case
even in the hcp phase of 4He at higher pressure. For example,
simulation of hcp 4He at a pressure of approximately 40
bars (density ρ = 0.0312 Å−3), at the melting temperature
T = 2.5 K (using a number of particles N = 512) yields a
value of the parameter χ defined above close to 0.7, i.e., most of
the contribution to atomic displacements comes from quantum
mechanics. On further pressurizing the hcp crystal, the value
of χ at melting reduces progressively, i.e., the behavior of the
system approaches that of a classical solid; however, effects of
quantum mechanics remain significant even at a relatively high
pressure. For example, close to 2.4 kbars at the melting tem-
perature T = 24 K (ρ = 0.05735 Å−3), χ is found to be ∼0.4.

Our calculated molecular displacements in solid p-H2

display a clear dependence on temperature, in disagreement
with recent experimental measurements. The cause of this
discrepancy is unknown at this time. It is found that, although
quantum mechanical effect is important, the behavior of this
system near melting shows both quantum and classical aspects,
both roughly equally important in magnitude.
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