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Crossed Andreev reflection (cAR) is a scattering process that happens in a quantum transport setup consisting
of two normal metals (NM) attached to a superconductor (SC), where an electron incident from one NM results
in a hole emerging in the other. Typically, electron tunneling (ET) through the superconductor from one NM
to the other competes with cAR and masks its signature in the conductance spectrum. We propose a scheme
to enhance cAR, in which the SC part of the NM-SC-NM is side coupled to another SC having a different
superconducting phase to form a Josephson junction in the transverse direction. At strong enough coupling and
for a large enough phase difference, one can smoothly traverse between the highly ET-dominant to the highly
cAR-dominant transport regimes by tuning chemical potential, due to the appearance of subgap Andreev states
that are extended in the longitudinal direction. We discuss connections to realistic systems.
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I. INTRODUCTION

Andreev reflection (AR) is the scattering process by which
a current flows across the interface of a normal metal (NM)
and a superconductor (SC) when an external bias across the
interface is applied in the subgap regime. The Cooper-pair
current in the superconductor draws equal contributions from
the electron and hole channels of the normal metal. This
phenomenon, first discovered by Andreev [1], has been ex-
tensively studied theoretically and experimentally for several
decades [2–4].

AR has played an important role in the observation of
transport signatures of exotic Majorana fermions in meso-
scopic systems [4]. In addition, recent advances in cold-atomic
systems promise new testbeds where theoretical findings [5,6]
related to Andreev reflection can be demonstrated experimen-
tally [7]. Crossed Andreev reflection (cAR) is a phenomenon
closely related to AR and occurs in a system consisting
of two normal metals attached to a superconductor [8–21].
An electron incident on the SC from the first normal metal
(NM1) gets absorbed into the SC as a Cooper pair, absorbing
the second electron of the Cooper pair from the second
normal metal (NM2), resulting in a hole current in NM2. The
phenomenon of cAR is closely related to the production of
nonlocally entangled electrons by splitting Cooper pairs from
the SC, the detection and enhancement of which has seen
a lot of theoretical [22] and experimental interest [23,24].
However, cAR is accompanied by electron tunneling (ET)
where the electron from NM1 tunnels into NM2 as an electron.
cAR is typically masked in simple NM-SC-NM systems
due to dominant ET [9]. A negative differential transcon-
ductance between NM1 and NM2 is a definite signature
of cAR.

In this paper, we propose a scheme to enhance cAR,
which is different from other existing proposals [10–18],
and demonstrate with a simple theoretical model that cAR
enhancement can be much greater than predicted in them.
Of the two existing proposals that have been experimen-
tally realized, the first method introduces barriers at the

NM-SC junctions of an NM-SC-NM setup [16,20], while the
second employs two ferromagnets (FM) in an antiparallel
configuration instead of the NM’s [17–19] that suppress
ET and AR thereby allowing cAR to dominate. cAR is
enhanced in the former method when the momentum scale
characterizing the barrier is at least as large as the Fermi
momentum, though the enhanced cAR currents are too small
as shown in Appendix A. In addition, there are several other
proposals such as: (i) employing quantum spin Hall insulators
connected to SC and spatially separate ET and cAR channels
based on the spin-momentum locking of the edge states [11],
(ii) driving a steady Cooper pair current in the SC such
that the SC phase modulates and thus enhances cAR [12],
(iii) substituting NM and SC parts of the setup with exotic
materials such as graphene, silicene, topological insulators,
and topological superconductors [13,14], (iv) coupling to
external electromagnetic modes [15], which have not yet been
realized experimentally.

Here, we propose to modify the NM-SC-NM setup by side
coupling the SC with another SC (which has a superconducting
phase differing by φ but the same magnitude of the pair
potential) as shown in Fig. 1(a). We call the two coupled
SC’s together an ‘SC ladder’ (note that this is different from
several setups such as the one by Grosselin et al. [25] where a
magnetic flux enclosed between two superconductors forming
a loop can control subgap transport in the superconductors).
We show that an adequate superconducting phase difference
between two legs of the ladder accompanied by a sufficiently
strong coupling between two legs of the SC ladder leads to
subgap Andreev states which can enhance cAR. This is the
central result of our work.

II. DETAILS OF THE CALCULATION

A. Hamiltonian and dispersion

Introducing the hole annihilation operators ds,λ(x)=c
†
s̄,λ(x),

the Hamiltonian for the ladder region (0 � x � a) can be
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FIG. 1. (a) A schematic diagram of the setup. The thick red lines
in the middle are the two SC channels, coupled to each other by a
strength g highlighted by the brown region in between. A voltage
bias V is applied to the left NM while the SC ladder and the right
NM are grounded, as shown by the blue lines. Thin lines with arrows
show the current directions when cAR dominates over ET. (b) The
zero bias transconductance GRL in units of 2e2/h. (c) The logarithm
of the gap in the dispersion of the ladder region [Eq. (2)] in units of
�; the vertical dashed line corresponds to g/� = 1. The parameters
chosen are μ = 10�, a = 6h̄/

√
2m�.

written as:

H =
∑
λ,s

[
�

†
s,λ(x)

{(−h̄2

2m

∂2

∂x2
− μ

)
τz + �(cos φλτx

+ sin φλτy)

}
�s,λ(x) + g�

†
s,λ(x)τz�s,λ̄(x)

]
, (1)

where (i) s =↑ , ↓ and λ = 1,2 are spin and wire indices,
respectively, (ii) s̄/λ̄ takes the value of the label index
different from s/λ, and (iii) �s,λ(x) = [σscs,λ(x),ds,λ(x)]T ,
where σ↑/↓ = ±1. The dispersion for this Hamiltonian is:

E = ±
√

ε2
k + g2 + �2 ± 2g

√
ε2
k + �2 sin2 [(φ1 − φ2)/2],

(2)

where εk = (h̄2k2/2m − μ) and h̄k is the momentum. Each
of these bands is doubly degenerate due to spin (s =↑ , ↓).
The Hamiltonians for the NM regions on the left (x < 0) and
right (x > a) are H = ∑

s c
†
s (x)[h̄2k2/2m − μ]cs(x). From

here onwards, we shall leave out the spin index s and a
factor of 2 to account for spin degeneracy will multiply the
conductances in the final result. The superconducting phases
φλ on the two legs (λ = 1,2) of the SC ladder can be chosen
to be φ1 = 0, and φ2 = −φ, without loss of generality so that
(φ1 − φ2) = φ.

B. Wave function

The solution to the Hamiltonian is a two-spinor ψ in
the NM regions (the two components represent the electron
and hole channels) and a four-spinor [ψT ,χT ]T in the
ladder region (two more components represent the second

leg of the ladder), where the spinors ψ and χ have the
form: ψ(x) = [ψe(x),ψh(x)]T for −∞ < x < ∞ and χ (x) =
[χe(x),χh(x)]T for 0 � x � a. In the NM regions, the elec-
trons and holes have momenta ±h̄ke and ±h̄kh, respectively,
where ke/h =

√
2m(μ ± E)/h̄2 at a given energy E. The

scattering wave function for an electron incident from the left
onto the ladder region at an energy E is given by:

ψe(x) = eikex + rne
−ikex, for x � 0,

= tne
ikex, for x � a,

ψh(x) = rae
ikhx, for x � 0,

= tae
−ikhx, for x � a,

ψ(x) =
∑
σ,ν,p

sσ,ν,peiσkν,px[ψe,ν,p,ψh,ν,p]T and

χ (x) =
∑
σ,ν,p

sσ,ν,peiσkν,px[χe,ν,p,χh,ν,p]T ,

for 0 � x � a. (3)

In the ladder region, the momenta σh̄kν,p at energy E

denoted by the indices σ,ν,p are obtained by inverting the
dispersion relation Eq. (2): h̄kν,p = √

2m(σpεk,ν + μ), where

εk,ν =
√

E2 + g2 − �2 + 2gν
√

E2 − �2 cos2(φ/2), and the
index σ = ±1 denotes whether the mode is for a right/left
mover, the index ν = ±1 refers to the antibonding/bonding
bands formed due to the hybridization between the two legs
(λ = 1,2) of the ladder, and p = e,h refers to electron, holelike
bands for which σe/h = ±1.

C. Boundary conditions

From the boundary conditions (BC’s) described by Carreau
et al. [26] for a general one-dimensional system, we choose
the one that is physically relevant to our system. The
NM-SC junction generically has a barrier for electron tunnel-
ing which limits the electron transmission. The BC at the NM-
SC interface is described by the continuity of the wave function
and a discontinuity of the derivative [2]. The latter is the same
as having a delta-function barrier potential on the NM side
of the NM-SC junction, infinitesimally close to the junction.
Since we are interested in enhancing cAR over ET, we set
the barrier strengths to zero to make the NM-SC junctions
fully transparent. In other words, both the wave function and
its derivative at the NM-SC interface are continuous. But this
fixes the BC only for one leg of the ladder. The BC for the other
leg is given by a probability current conserving BC at the ends
of the ladder (i.e., x = 0,a). Such a BC that describes the
lower leg of the ladder depends on four parameters in general
as for the ‘particle in a box’ study of Carreau et al. [26]. The
NM-SC interfaces at x = 0,a are not connected by any direct
hopping as in the case of periodic BC’s. This causes the BC’s
to depend on just two parameters: (q2,x0 + ∂x)�2(x)|x=x0 = 0,
where q2,x0 is a real-valued parameter with dimensions of
inverse length that describes the BC at x0. The limit qx0 → ∞
implies that the wave function is zero at x = x0, while the
limit qx0 → 0 implies that the first derivative of the wave
function is zero at x0, allowing the wave function to have a
nonzero probability density at x0. The latter limit qualitatively
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corresponds to a lattice model of the SC ladder in which the
last site of the second leg can have a finite probability density.
Hence, we have chosen qx0 = 0 for both x0 = 0 and x0 = a,
though a particular choice of the BC does not affect the results
qualitatively. The BC’s used are:

ψ(x+
0 ) = ψ(x−

0 ),∂xψ(x)|x=x+
0

= ∂xψ(x)|x=x−
0
,

∂xχ (x)|x=x0 = 0 for x0 = 0,a. (4)

Both the NMs are connected to only one leg (λ = 1) of the
SC ladder as shown in Fig. 1(a). As mentioned earlier, the
junction is modeled to be transparent since we are interested
in enhancing cAR, a scattering process which involves both the
NMs. We first calculate the scattering amplitudes numerically
for a diverse set of relevant parameters by employing the BC:
Eq. (4) in the wave function given by Eq. (3). Using these
scattering amplitudes, the transconductance is calculated,
which is the physical quantity of interest since it can be
experimentally measured.

D. Transconductance

The system under investigation is essentially a three
terminal setup. The NM regions on the left and right (extending
to x → ∓∞) form two terminals and the SC ladder in the
middle (maintained at a fixed chemical potential μ) acts as a
reservoir for the charge current since it is not conserved in the
SC region.

We are interested in calculating the differential transcon-
ductance GRL(V ) := dIR(V )/dV , where dIR(V ) is the
change in current in the right NM when the Fermi energy
of the left NM is changed from eV to e(V + dV ), keeping
the Fermi energies of the ladder region and right NM at
zero (here, e is the electronic charge and V is the voltage).
Using the Landauer-Büttiker formalism [27], the differential
transconductance in such a transport setup at a bias voltage
V is

GRL(V ) = 2e2

h
(|tn|2 − |ta|2

√
(μ − eV )/(μ + eV )). (5)

It is easy to see from Eq. (5) that the contributions of ET and
cAR to the current on the right NM are positive and negative,
respectively. Hence, a negative GRL is a clear signature of cAR
enhanced over ET while a positive GRL implies the dominance
of ET over cAR.

III. RESULTS

(1) The zero-bias transconductance GRL|V =0 as a function
of the parameters φ and g is shown in Fig. 1(b) and we
understand it in terms of the dispersion of the ladder region
given by Eq. (2). Figure 1(c) is a contour plot of the logarithm
of the gap in units of � (i.e., log [Eg/�]). The gap closes on
the line: g/� � 1,φ = π . cAR is enhanced as g/� crosses 1
from left to right, and this enhancement is prominent around
0.7π < φ < 1.3π and 1.4� < g < 2.2�. Further, as g/�

crosses a value of 3, ET is enhanced to a value as high as
∼0.75 × 2e2/h. This indicates that the enhancement of cAR
and ET to such high values is related to the closing of the gap.

(2) Fixing φ = π , we see how the subgap conductance
spectrum changes as the coupling strength g is changed.

FIG. 2. (a)–(c): Dispersion of the SC ladder, (d)–(f): transconduc-
tance GRL, contributions to it from ET and cAR for φ = π,μ = 10�.
(g)–(j): Contour plots of GRL. For (g),(i), g = 0.5�. For (h),(j),
g = 1.5�. For (d)–(j), a = 6h̄/

√
2m�. For (g),(h), μ = 10�. For

(i),(j), φ = π . GRL is in units of 2e2/h.

This is contrasted with the dispersion of the ladder region,
the topology of which changes when g/� is on either side
of 1. In Figs. 2(a)–2(c), the dispersion of the SC ladder,
and in Figs. 2(d)–2(f), the conductance spectrums for g/� =
0.5,1.0,1.5 have been plotted. As g/� crosses over from 0.5
to 1.5, through 1.0, the conductance spectrum shifts smoothly
from being in the positive half to being in the negative half
of the ordinate, which is a clear signature of enhanced cAR
as indicated by the green dotted lines. This enhancement is
accompanied by the appearance of subgap Andreev states in
the SC ladder.

(3) The dependence of the conductance spectrum in
the bias window (|eV | � �) on the superconducting phase
difference φ and the chemical potential μ can be obtained.
Figures 2(g)–2(h) shows contour plots of GRL as a function
of (eV,φ) for g = 0.5� [2(g)] and g = 1.5� [2(h)]. One can
see that cAR is enhanced significantly for the case g = 1.5�

throughout in the bias window (−�,�), and the value of φ at
which cAR is enhanced the most depends on the value of the
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bias eV . Though cAR is enhanced in the case of g = 0.5�,
this happens in very narrow regions of the eV -φ plane, and
it is worth noting that the enhancement of cAR for g = 0.5�

happens for values of φ far away from zero or 2π .
(4) Figures 2(i)–2(j) show contour plots of GRL as a

function of (eV,μ) for g = 0.5� [2(i)] and g = 1.5� [2(j)].
For these two cases, φ = π . It is apparent from the contour
plots that the enhancement of cAR is prominent in the case of
g = 1.5� compared to the case of g = 0.5�. For g = 1.5�,
cAR is enhanced throughout the bias window around certain
values of μ, but for g = 0.5�, a poor cAR enhancement can
be found in very small regions near eV = ±�. Further, the
enhancement of cAR occurs at a series of μi’s. Also, the
enhancement of cAR around the μi’s becomes less prominent
with increasing μi .

IV. MECHANISM

The above results point to the following mechanism for the
enhancement of cAR: A nonzero phase difference φ and a
nonzero coupling g between the two legs of the ladder create
plane-wave modes within the otherwise gapped dispersion of
the ladder region as can be seen from Eq. (2). Equivalently,
two out of four kν,p’s become real valued at energies: |E| < �.
These plane wave modes have nonzero components in both
electron and hole sectors, and we call them subgap Andreev
states. Thus, the transconductance is due to a Fabry-Pérot type
interference between the subgap Andreev states in the ladder
region that transmit either an electron or a hole into the right
NM. The probabilities of the two transmission processes can
be tuned by changing a parameter that changes the dispersion
and the spinor structure of the modes in the ladder region. The
subgap Andreev states can be thought of as plane wave modes
formed by the hybridization of Andreev bound states, when
a large number of Josephson junctions (each formed between
two superconducting quantum dots) are coupled.

Since, the chemical potential μ sets the fundamental length
scale of the problem and affects the spinor structure of the
BdG modes, changing μ smoothly, keeping the values of eV, φ

( 	= 0) and g ( 	= 0) fixed must show a smooth transition from
maximally enhanced cAR to maximally enhanced ET. This
can be seen in Fig. 2(j), and the recurrent enhancement of
cAR and ET at a series of values of μ (= μi) corresponds to
a periodicity in ki’s (where ki =

√
2mμi/h̄

2) [28], given by
(ki+1 − ki)a ∼ π , reaffirming quantitatively our explanation
that the cAR enhancement is due to Fabry-Pérot interference
between the subgap Andreev states in the SC ladder. As can be
seen from Fig. 1(c), φ = π and g > � give rise to gap closing
and hence the cAR enhancement is expected to be maximal
for this choice of parameters, which is in agreement with the
results highlighted in Figs. 2(d)–2(j).

V. DISCUSSION

We have primarily studied a one-dimensional superconduc-
tor side coupled to another one-dimensional superconductor
having a superconducting phase different from the first
superconductor. However, long-range superconducting order
is not possible in purely one dimension. This limitation can be
overcome by a proximate higher dimensional superconductor

in contact with the one-dimensional quantum wire. Also, the
Fermi energy and chemical potential in the SC are assumed to
be maintained at particular values, which means that a steady
state current flows into the SC and the SC is grounded via a
grounding electrode.

We now discuss different systems that are closer to experi-
mental setups in which our results can possibly be tested. To be
able to maintain a SC phase difference φ between two legs of
the ladder is an important task when it comes to experimental
implementation. We make the following proposals to achieve
this [29]:

(1) Passing a supercurrent in the transverse direction; a SC
phase difference between two legs of the SC ladder is induced
that is proportional to the transverse current [12].

(2) Using magnetic flux to mimic the Josephson phase
difference as in SQUIDS [30]. Connecting two legs of the
ladder through a loop and passing a magnetic flux through can
induce a phase difference proportional to the flux (modulo flux
quantum �0) as discussed in Ref. [31].

(3) Using π -junction materials, such as layered supercon-
ductors [32] which have a nonzero superconducting phase
difference naturally existing between the adjacent layers is
one direction. Sandwiching such a layered SC between NM
leads in such a way that each layer lies in the longitudinal
direction can mimic the ladder structure proposed here. This
will be a quasi-two-dimensional version of the setup we have
proposed. We have performed transport calculations for such
a two-dimensional version of the ladder geometry and we see
that most of our results we obtained above remain the same
qualitatively.

(4) In a closely related system namely a Josephson junction
between two-dimensional superconductors, subgap Andreev
states appear. To describe the system more precisely, let the re-
gions (0 � y � ∞,0 < x < a) and (−∞< y < 0,0 < x < a)
have SC phases � and �e−iφ . Using appropriate BC at y = 0,
the subgap states localized at the junction can be calculated
(see Appendix B). We see that very similar to the ladder,
a nonzero φ gives rise to subgap states which are BdG
plane-wave modes along the x direction, but are localized
in the y direction around y = 0. These states can be used to
enhance cAR if two NM metal leads are connected close to
the Josephson junction.

The very fact that a phase difference is maintained between
the two legs of the ladder means that a Josephson current
flows from one leg of the ladder to the other in the transverse
direction. However, this current does not interfere with the
quasiparticle current that is carried by the subgap Andreev
states between the two NM leads. In a recent experiment [33],
it was demonstrated that a subgap Andreev bound state formed
in a Josephson junction shows a subgap peak in conductance
when connected to a NM. This is due to Andreev reflection,
and the current in the NM due to Andreev reflection does not
interfere with the Josephson current that flows from one SC to
the other. The existence of stabilized subgap modes is required
to obtain enhanced cAR.

In a setup where cAR is enhanced over ET and AR, if the
bias is maintained across both the NM-SC junctions keeping
the two NM’s grounded, a high-efficiency Cooper pair splitting
(CPS) results. Once a considerable superconducting phase
difference (π/2 � φ � 3π/2) is maintained in the ladder, CPS
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can be enhanced by tuning either the chemical potential μ or
the length a of the ladder region, in contrast to the already ex-
isting Cooper pair splitter [23,24] which is based on Coulomb
blockaded quantum dots, where two gate voltages need to be
tuned to a particular combination. In this respect, our scheme
may be more robust to the parameters that need to be tuned to
get CPS enhancement. Further, the conductances measured in
the experiment reporting high efficiency CPS [24] suggest that
the corresponding cAR enhanced transconductance values are
much smaller in magnitude than the values that can be obtained
theoretically in our setup.
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APPENDIX A: NM-SC-NM WITH BARRIERS

Chtchelkatchev [16] has performed calculations for a
two-dimensional NM-SC-NM system with barriers at the
junctions. We study the one-dimensional version of the NM-
SC-NM setup with barriers here and reproduce their results
qualitatively, i.e., show that cAR is enhanced by having
barriers at the NM-SC interface. Figure 3 summarizes the
results of our calculations on a single-channel SC connected
to two NM leads with barriers of strength q0 = 5kF (where
kF =

√
2mμ/h̄2). The parameter q0 enters the calculations

through the BC:

∂xψ(x)|x=±a+0 − ∂xψ(x)|x=±a−0 = q0ψ(±a). (A1)

In certain narrow regions in the bias-kF a plane, cAR is
enhanced. But the enhanced cAR contributions to the conduc-
tance are much smaller even in the theoretical calculations for a
ballistic system (0.15 × 2e2/h being the largest value obtained
in this setup to the maximum possible value of 2e2/h). The
mechanism here is multiple back-and-forth reflections of the
BdG quasiparticles in the SC due to the presence of barriers
at the NS junctions. Though the spectrum is gapped, the
evanescent BdG modes have some real component to their
“momenta” and that is what amounts to saying ‘multiple
back-and-forth reflections.’

Experiments so far have found a very small enhancement
factor for cAR. Russo et al. [20] have performed experiments
on a setup that is qualitatively an NM-SC-NM junction with
barriers. But, this differs from the calculations here mainly in
the fact that the NM’s in experiments are diffusive while the
calculations have been performed for NM-SC-NM keeping in
mind ballistic NM’s. Thus, the results of the calculations can-
not be directly used to understand experiments. Nevertheless,
evidence of the enhancement of cAR is found in experiments
and the negative nonlocal voltage measured is of the order
of 10−2 times the value of the normal state voltage. This
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FIG. 3. Our calculation of ET and cAR contributions in a single
channel NSN geometry with delta-function barriers of q0 = 5kF at
the NS junctions. GRL is plotted in the upper panel as a contour plot
in units of 2e2/h. In the lower panel, ET and cAR contributions to
GRL are plotted at a fixed bias eV = 0� as a function of the length of
the SC region in units of k−1

F . cAR enhancement is π periodic in kF a.

is to be contrasted with the value of 0.8 that we get in our
calculations. The BdG modes also have an imaginary part to
the momentum in addition to the real part which suppresses
the nonlocal subgap transport when the length of the SC is very
large. In the opposite limit of a short SC region, the electron to
hole conversion is very small. Also, in the limit of the barrier
strength q0 much smaller than the Fermi wave number kF , the
effect of the barrier becomes negligible and the dominance of
ET is restored. Ideally, to enhance cAR in this setup, kF a ∼ π

and q0 � kF to enable a few back-and-forth reflections of the
BdG quasiparticle modes before they decay (the real part of
k is responsible for this interference) and electron to hole
conversion to happen.

APPENDIX B: JOSEPHSON JUNCTION BETWEEN
TWO-DIMENSIONAL SUPERCONDUCTORS

A system closely related to the ladder proposed here is
a Josephson junction between a pair of two-dimensional
superconductors. The Hamiltonian that describes such a
Josephson junction is:

H =
∑

s

[
�†

s (x,y)

{
−

(
h̄2

2m

∂2

∂x2
+ h̄2

2m

∂2

∂y2
+ μ

)
τz

+�[cos [φ(y)]τx + sin [φ(y)]τy]

}
�s(x,y)

]
,

where φ(y) = 0 for y > 0,

and φ(y) = −φ for y < 0. (B1)
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The dispersion for the bulk as given by this Hamiltonian is

E(
k) = ±
√

(h̄2
k2/2m − μ)2 + �2, (B2)

and the bulk gap is 2�. We show here that a nonzero φ

can induce one-dimensional states localized at the junction.
The BC for the junction is ψ(x,y = 0+) = ψ(x,y = 0−)
and [∂yψ(x,y)|y=0+ − ∂yψ(x,y)|y=0− ] = q0ψ(x,y = 0). The
parameter q0 characterizes the transparency of the junction.
The limits q0 = 0 and q0 → ∞ correspond to fully transparent
and fully opaque junctions, respectively. The subgap states
require at least one out of kx and ky to be complex. Since
the junction is in the y direction, ky is complex. Translational
invariance of the system along the x direction makes kx a good
quantum number and real valued. At a given energy E in the
gap (i.e., |E| < �) and in a particular spin eigensector s, the
wave function

ψ(x,y) = eikxx ·
∑
ν=±

Asy,νe
iνkRy−syκy 
usy,ν, (B3)

where ky = νkR + isyκ , (kR,κ > 0), 
k = (kx,ky), 
k is related
to E by the dispersion relation Eq. (B2), sy = sign(y), and

usy,ν is the eigenspinor that is a function of ky = νkR + isyκ .
Substitution of the above wave function in the BC equation
yields a subgap state that exists if and only if Det[M] = 0,
where M is 4 × 4 matrix, given by:

M = [M1 M2], where

M1 =
[ 
u+,+ 
u+,−

(ik+,+ − q0)
u+,+ (ik+,− − q0)
u+,−

]

M2 =
[ 
u−,+ 
u−,−
−ik−,+
u−,+ −ik−,−
u−,−

]
. (B4)

FIG. 4. log |Det.[M]| plotted as a function of E and kx for various
choices of φ. Dark blue regions in each contour plot indicate the
existence of subgap states localized along the junction. We have
chosen q0 = 0 everywhere.

The results of a numerical calculation presented in Fig. 4
show that a nonzero phase difference φ results in subgap states,
that go deeper into the gap as φ approaches π . The dispersion
of the 1D modes is almost flat in the middle, while for kx near
±kF , the dispersion has a sharp slope and connects to energies
±� smoothly.
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