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Spin-flip reflection at the normal metal-spin superconductor interface
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We study spin transport through a normal metal-spin superconductor junction. A spin-flip reflection is
demonstrated at the interface, where a spin-up electron incident from the normal metal can be reflected as a
spin-down electron and the spin 2 × h̄/2 will be injected into the spin superconductor. When the (spin) voltage is
smaller than the gap of the spin superconductor, the spin-flip reflection determines the transport properties of the
junction. We consider both graphene-based (linear-dispersion-relation) and quadratic-dispersion-relation normal
metal-spin superconductor junctions in detail. For the two-dimensional graphene-based junction, the spin-flip
reflected electron can be along the specular direction (retro-direction) when the incident and reflected electron
locates in the same band (different bands). A perfect spin-flip reflection can occur when the incident electron
is normal to the interface, and the reflection coefficient is slightly suppressed for the oblique incident case. As
a comparison, for the one-dimensional quadratic-dispersion-relation junction, the spin-flip reflection coefficient
can reach 1 at certain incident energies. In addition, both the charge current and the spin current under a charge
(spin) voltage are studied. The spin conductance is proportional to the spin-flip reflection coefficient when the
spin voltage is less than the gap of the spin superconductor. These results will help us get a better understanding
of spin transport through the normal metal-spin superconductor junction.
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I. INTRODUCTION

When a metal is coupled to a superconductor, the Andreev
reflection occurs at the interface between the metal and the
superconductor [1], where an electron incident from the
normal metal is reflected as a hole at the interface and a
Cooper pair is generated in the superconductor. The Andreev
reflection determines the conductance of the normal metal-
superconductor junction when the voltage is smaller than the
superconducting gap since the normal tunneling cannot occur.
The quasiparticle current is transformed to a supercurrent at
the metal-superconductor interface and this process can be
described by the scattering-matrix approach [2–4]. In usual
metal-superconductor junctions, the Andreev reflected hole
retraces the path of the incident electron and thus this Andreev
reflection is also called as Andreev retroreflection. Besides,
another kind of reflection, specular Andreev reflection, has also
been reported in graphene-superconductor junctions [5–7].
Graphene is a single layer of carbon atoms arranged in
a honeycomb lattice and has drawn great attention since
its experimental realization [8–10]. Graphene has a unique
band structure with a linear dispersion relation of low-lying
excitations, which gives rise to many peculiar properties
[11]. Specular Andreev reflection occurs when the incident
electron and the reflected hole locate, respectively, at the
conduction and valence bands of graphene [5], whereas
Andreev retroreflection occurs when the incident electron and
the reflected hole locate at the same band. Since then, many
papers have studied graphene-based superconductor hybrid
systems [7,12–18].

The conventional charge superconductivity can be regarded
as a superfluid of electric charge, where electrons form Cooper
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pairs in the superconductor and condense into the BCS ground
state [19–22]. Each Cooper pair carries an electric charge 2e

and is spin singlet for s-wave pairing. The charge superconduc-
tor can support dissipationless charge current at equilibrium,
with resistance being zero. Recently, a new quantum state,
the spin superconductor, was proposed [23–27]. The spin
superconductivity is a novel quantum state and can be viewed
as a counterpart of the charge superconductivity. The charge
superconductor is a superfluid of electric charge, where the
condensates are Cooper pairs as mentioned above. However,
the spin superconductor is a superfluid of spin, and can be
formed by condensed bosons in sufficiently low temperatures.
The bosons are electrically neutral with their spins being
nonzero. The spin superconductor can carry dissipationless
flow of spin current, with spin resistance being zero. On the
other hand, the spin superconductor is a charge insulator
and the charge current cannot flow through it. The spin
superconductivity may exist in spin-polarized triplet exciton
systems of graphene [23–25], 3He-B superfluidity [28,29],
Bose-Einstein condensate of magnetic atoms [30–32], Bose-
Einstein condensate of magnons and spinons [33–35], and so
on. The excitons are charge neutral with their spin being either
singlet or triplet, and the condensation of excitons have been
realized in an electron-hole bilayer system [36,37]. A pure
spin system described by quantum Heisenberg spin model can
also support spin superconductivity, as long as some effective
bosonic degrees of freedom such as triplons exist [33]. We also
notice the close relation between the spin superconductivity
and the spin superfluidity [25,38]. Several methods have
been proposed to realize dissipationless spin current in both
ferro- and antiferro-magnetic insulators [23,39–41], and the
phenomenological two-fluid theory or the Ginzburg-Landau
theory has been well established [26,27,42,43].

As an analogy of the Andreev reflection at the metal-
superconductor interface, it is natural to study the reflection
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characteristics of a metal-spin superconductor interface. The
condensates of a charge superconductor are Cooper pairs,
while they are electron-hole (e-h) pairs in a spin supercon-
ductor. The electronlike spin-up carriers and the holelike
spin-up carriers attract each other and form e-h pairs due to
the Coulomb interaction. The Bose-Einstein condensate of
these charge neutral spin-triplet e-h pairs form the ground
state of a spin superconductor. When an electron is injected
from a normal metal to a spin superconductor, it should not
be reflected as a hole, since the condensates of e-h pairs
are charge neutral and do not need extra electric charge
for their formation. However, because the condensates carry
nonzero spin angular momentum, an injected electron should
be spin-flip reflected for the formation of a new spin-triplet
e-h pair in the spin superconductor. Hence, at the metal-spin
superconductor interface, the reflection occurs on the spin
degree of freedom instead of the charge degree of freedom.
This could give rise to a spin current when a spin voltage is
applied between the metal and the spin superconductor.

Motivated by this analogy, we carry out a theoretical study
of transport properties of a normal metal-spin superconductor
junction. By using the scattering-matrix approach, the spin-flip
reflection coefficient and the differential spin conductance
are obtained. Both linear and quadratic dispersion cases
are considered. For the linear dispersion case (graphene-
based normal-spin superconductor junction), a normal incident
electron will be perfectly spin-flip reflected at the interface,
although the Fermi wave lengths mismatch at the two sides.
The spin-flip reflection will be slightly suppressed for the
oblique incident case, since the Fermi wave lengths mismatch
begins to take effect. We also find that there exists either the
spin-flip specular reflection or the spin-flip retro-reflection
in the graphene-based junction, which depends on whether
the incident and reflected electrons locate in the same band
or the different bands. While for the quadratic-dispersion-
relation normal metal-spin superconductor junction, the spin-
flip reflection coefficient will be strongly affected by the
potential barrier. In addition, the spin transport through the
junction is investigated. The spin conductance is proportional
to the spin-flip reflection coefficient when the spin voltage is
less than the gap of the spin superconductor.

The rest of this paper is organized as follows. In Sec. II, we
show the model Hamiltonian of the normal metal-spin super-
conductor junction, considering both the linear and quadratic
dispersion cases. In Sec. III, we investigate the spin-flip
reflection at the graphene-based normal-spin superconductor
interface, which possesses the linear dispersion relation. As a
comparison, in Sec. IV, the reflection is studied at the quadratic
normal metal-spin superconductor interface. Finally, a brief
summary is presented in Sec. V.

II. MODEL HAMILTONIAN

In this section, we present the model Hamiltonian of the
normal metal-spin superconductor junction in real space, for
both the linear and quadratic dispersion cases. In a spin
superconductor, the condensates are e-h pairs [23,25]. The
e-h pairs are formed between electronlike spin-up carriers and
holelike spin-up ones by the Coulomb interaction. These e-h
pairs condense into the ground state of a spin superconductor.

In the following, we elaborate it in detail. First, we consider
the linear dispersion case where the spin superconductor
can be found in a ferromagnetic graphene. Regarding a
two-dimensional (2D) sheet of graphene in the x-y plane, the
2D massless Dirac Hamiltonian is given by [11]

H0 = vF

(
0 px − ipy

px + ipy 0

)

= h̄vF

(
0 kx − iky

kx + iky 0

)
= h̄vF k

(
0 e−iθ

eiθ 0

)
,

(1)

where vF ≈ 106 m/s is the Fermi velocity in graphene,
which acts as the effective velocity of light. p ≡ (px,py)
is the momentum operator in the x-y plane. θ is the angle
between the wave vector k ≡ (kx,ky) and the x axis such
that tan θ = ky/kx . The Hamiltonian can be diagonalized by
performing a unitary transformation

U =
√

2

2

(
1 1
eiθ −eiθ

)
. (2)

Then,

H ′
0 = U †H0U =

(
h̄kvF 0

0 −h̄kvF

)
. (3)

If graphene grows on a ferromagnetic material [44–46] or is
under an external magnetic field [47], the spin degeneracy will
be broken. In order to describe a ferromagnetic graphene, the
Hamiltonian should be expanded to a 4 × 4 matrix, including
both the spin and pseudospin degrees of freedom [23,25]

H ′ =
(

H ′
0 + Mτ0 0

0 H ′
0 − Mτ0

)
, (4)

where M is the ferromagnetic exchange split energy and τ0 is
the 2 × 2 identity matrix in pseudospin space. In the derivation
presented below, we set M < 0. Note that we have ignored
the valley degree of freedom, because the two valleys are
degenerated and the intervalley coupling is usually very small
due to the well separation of the two valleys in k space. The four
corresponding energy bands are ετσ = τh̄kvF + σM , where
τ = ± denotes the pseudospin and σ = (↑,↓) represents
the real spin. We focus on the energy bands which are
close to the Fermi energy EF = 0, i.e., ε+↑ = h̄kvF + M

and ε−↓ = −h̄kvF − M , because only the energy bands near
the Fermi surface are relevant. For convenience, these two
energy bands are called low-energy bands. The mean-field
approximation of the e-h Coulomb attraction interaction can
induce a pairing potential � between the two bands ε+↑ and
ε−↓ [23]. Then, the mean-field Hamiltonian (including the e-h
attraction interaction) can be written as [23]

H ′′ =

⎛
⎜⎝

h̄kvF + M 0 0 �

0 −h̄kvF + M �′ 0
0 �′ h̄kvF − M 0
� 0 0 −h̄kvF − M

⎞
⎟⎠.

(5)

Here, we have added a pairing potential �′ between the
energy bands ε−↑ and ε+↓. Usually, �′ � � and we take
�′ = � below for convenience of calculations. Because the
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term involving �′ is between the two high-energy bands ε−↑
and ε+↓, it has little effect on the transport properties around
the Fermi surface. Note that this Hamiltonian is consistent with
Ref. [23].

Next, the Hamiltonian is inverted back to its original form
by taking a unitary transformation with Ũ = diag(U,U ), i.e.,
HSSC = ŨH ′′Ũ †. The Hamiltonian of a spin superconductor
is then given by

HSSC =
(

H0 + Mτ0 �τz

�τz H0 − Mτ0

)
, (6)

where τz is the z component of the Pauli matrices in pseudospin
space. Note that this Hamiltonian is consistent with the one
when the graphene possesses the canted antiferromagnetic
phase [48,49]. For the graphene-based normal-spin supercon-
ductor junction, the graphene is in the spin superconducting
phase when x > 0 and is in the normal phase when x < 0. The
Hamiltonian of the normal graphene at x < 0 is

HFMG =
(

H0 + (V + ML)τ0 0
0 H0 + (V − ML)τ0

)
. (7)

Because the ferromagnetic graphene has a large magnetic
momentum M at x > 0, here we consider a small magnetic
momentum ML x < 0 also. V is a constant potential, which
can be modulated by applying an external electric field or a gate
voltage. To summarize, the Hamiltonian of the graphene-based
normal-spin superconductor junction can be expressed in a
unified form as

H =
(

H0 + (M(x) + V (x))τ0 �(x)τz

�(x)τz H0 + (−M(x) + V (x))τ0

)
,

(8)

where �(x) = ��(x), M(x) = ML(1 − �(x)) + M�(x),
V (x) = V (1 − �(x)), and �(x) is the Heaviside step function.
We take |M| 	 |ML| in the calculation below.

For the quadratic dispersion case, we focus on a two-
bands model and replace the linear low-energy bands ε+↑ =
h̄kvF + M and ε−↓ = −h̄kvF − M in Eq. (5) with a quadratic
dispersion relation. The two-bands model Hamiltonian is then
given by

HSSC =
(

p2

2m
+ M �

�
−p2

2m
− M

)
. (9)

At the normal side, we consider the quadratic metal, in
which the pairing potential � vanishes and the spin degeneracy
remains. The Hamiltonian is written as

HN =
(

p2

2m
+ V 0

0 p2

2m
+ V

)
. (10)

Thus the Hamiltonian of the quadratic normal metal-spin
superconductor junction can be written in a unified form as

Ĥ =
(

p2

2m
�(x)

�(x) −p·sgn(x)p
2m

)
+ V (x) + M(x)σz + V0δ(x).

(11)

E

-k+-q+ q+
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-q- q- -k- k- k+
Δ

E

FIG. 1. Band structures of a graphene with small magnetic
momentum (FMG) and of a spin superconductor (SSC). In the
graphene side, the red line denotes the dispersion spectrum of spin-up
electrons and the blue line represents that of spin-down ones. A
spin-up electron i with wave vector q+ is incident from the graphene
side to the spin superconductor. Spin-flip reflected electron A, normal
reflected electron B, normal transmitted electron C, and spin-flip
transmitted electron D are represented by the filled circles, with the
direction of motion indicated by the arrows. There are two kinds of
incident energies as shown in the figure. For one kind of incident
energies, the incident electron and the spin-flip reflected electron
locate at the same band, whereas for the other kind of incident
energies, they locate at the conduction and valence bands.

Here, V (x) = (1 − �(x))V is the potential energy at the
normal side, M(x) = �(x)M is the magnetic momentum of
the spin superconductor, and V0δ(x) is the Schottky potential
at the normal metal-spin superconductor interface. Note that
σz is the z component of the Pauli matrices in real spin
space rather than pseudospin space. We take M < 0 and
|M| 	 � in the calculation below, because the gap of the
superconductor is usually much smaller than the magnetic
momentum.

III. LINEAR DISPERSION CASE

In this section, we investigate the 2D scattering at the
graphene-based normal metal-spin superconductor interface.
The Hamiltonian corresponding to this case is shown in Eq. (8).
We consider that the wave functions at both sides have the
plane wave form, i.e., ψ(x) = (a,b,c,d)T eiq·r . For the normal
graphene, we have the energy spectrum

E↑(qx,qy) = ML + V ± vFh̄

√
q2

x + q2
y , (12a)

E↓(qx,qy) = −ML + V ± vFh̄

√
q2

x + q2
y , (12b)

as illustrated in Fig. 1(left side). q = (qx,qy) is the wave vector.
Because ML is set to be negative, the energy spectrum of spin-
up electrons will be shifted down. For the spin superconductor,
the energy spectrum can be obtained by diagonalizing the
Hamiltonian and one gets

E = ±
√(

M ± vFh̄

√
q2

x + q2
y

)2 + �2, (13)
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where an energy gap � appears near the Fermi surface as
shown in Fig. 1(right side). In numerical calculations, we
mainly study the quantum transport near the Fermi surface
and thus the low-energy bands take effect:

E = ±
√(

M + vFh̄

√
q2

x + q2
y

)2 + �2. (14)

When a spin-up electron is injected from the left side to the
spin superconductor, there exist two cases. (1) The incident
electron and the spin-flip reflected electron locate in the same
band. (2) They locate, respectively, in the conduction and
valence bands, as shown in Fig. 1. In the following, we consider
a 2D scattering problem and study the spin-flip reflection
for both cases in detail. There are three conservation laws
in the present 2D scattering system. First, there exists the
conservation of energy due to the time translation invariance.
Then, the momentum projection qy should be invariant as a
result of the translational invariance along the y direction (i.e.,
parallel to the interface). Finally, the probability current is
conserved along both the x and y directions. Based on these
conservation laws, the wave functions at both sides can be
written. When a spin-up electron i in the conduction band
with energy E > 0 is injected from the left side to the spin
superconductor (see Fig. 1), the spin-flip reflected electron
A locates in the conduction/valence band of the spin-down
energy spectrum. The wave function at the left side (x < 0) is
given by

ψ(x,y) =

⎧⎪⎪⎨
⎪⎪⎩

1√
2

⎛
⎜⎜⎝

e−i α+
2

ei α+
2

0
0

⎞
⎟⎟⎠eiq+

x x + r↓↑√
2

⎛
⎜⎜⎝

0
0

ei τα−
2

−e−i τα−
2

⎞
⎟⎟⎠e−iτq−

x x

+ r↑↑√
2

⎛
⎜⎜⎝

ei α+
2

−e−i α+
2

0
0

⎞
⎟⎟⎠e−iq+

x x

⎫⎪⎪⎬
⎪⎪⎭eiqyy, (15)

where q+
x and ±q−

x (q±
x =

√
(E ∓ ML − V )2/h̄2v2

F − q2
y )

are, respectively, the momentum projections of the incident
and spin-flip reflected electrons along the x axis, α± =
arcsin(qy/

√
q±2

x + q2
y ) are the corresponding incident and

spin-flip reflected angles, and r↓↑ and r↑↑ are, respectively,
the amplitudes of the spin-flip reflection and the normal
reflection. Here, we set τ = ±1, which means that the spin-flip
reflected electron locates in the conduction band (τ = 1) or
the valence band (τ = −1). From the angle α−, we can find
the outgoing direction of the spin-flip reflected electron. If the
incident electron and the spin-flip reflected electron locate in
the same band, the reflection is almost a specular reflection.
If they locate, respectively, in the conduction and valence
bands, the reflection is almost a retro-reflection. As compared
with the Andreev reflection in the graphene-superconductor
interface, this is exactly the opposite. For the normal re-
flection, the reflected electron is always along the specular
direction.

The wave function at the spin superconductor side (x > 0)
can be written as

ψ(x,y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

t↑↑
2
√

cosh γ

⎛
⎜⎜⎜⎜⎝

e−i
β+

2 e
γ

2

ei
β+

2 e
γ

2

e−i
β+

2 e− γ

2

−ei
β+

2 e− γ

2

⎞
⎟⎟⎟⎟⎠eik+

x x

+ t↓↑
2
√

cosh γ

⎛
⎜⎜⎜⎜⎝

ei
β−

2 e− γ

2

−e−i
β−

2 e− γ

2

ei
β−

2 e
γ

2

e−i
β−

2 e
γ

2

⎞
⎟⎟⎟⎟⎠e−ik−

x x

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

eiqyy,

(16)

where k+
x and −k−

x (k±
x =

√
(−M ± √

E2 − �2)2/h̄2v2
F − q2

y )
are, respectively, the momentum projections of the nor-
mal and spin-flip transmitted electrons along the x axis,

β± = arcsin(qy/
√

k±2
x + q2

y ) are the refraction angles, and
eγ ≡ (E + √

E2 − �2)/�. t↓↑ and t↑↑ are the amplitudes
of the spin-flip transmission and the normal transmission,
respectively.

After obtaining the wave functions at the x < 0 and x > 0
sides, the next procedure is to connect them at the interface
x = 0. For the linear dispersion case, the wave-function should
be continuous at the interface, i.e., ψ(0−,y) = ψ(0+,y). By
substituting Eqs. (15) and (16) into the boundary condition,
the reflection and transmission amplitudes can be obtained
straightforwardly:

r↓↑ = cos α+ cos

(
β+ + β−

2

)
/

r↑↑ = i

{
eγ cos

(
τα− − β−

2

)
sin

(
α+ − β+

2

)

+ e−γ sin

(
τα− + β+

2

)
cos

(
α+ + β−

2

)}
/ (17)

t↑↑ = e
γ

2 cos α+ cos

(
τα− − β−

2

)√
2 cosh γ /

t↓↑ = ie− γ

2 cos α+ sin

(
τα− + β+

2

)√
2 cosh γ /,

where

 = eγ cos

(
τα− − β−

2

)
cos

(
α+ + β+

2

)

+ e−γ sin

(
τα− + β+

2

)
sin

(
α+ − β−

2

)
. (18)

The corresponding transmission and reflection coefficients
can be derived by using the conservation law ∇ · j = − ∂

∂t
|ψ |2.

Here, the probability current j is given by

j = vF (ψ†σ0 ⊗ τxψex + ψ†σ0 ⊗ τyψey), (19)

where σ0 is the 2 × 2 identity matrix in spin space and τ ≡
(τx,τy) is the 2D vector of Pauli matrices in pseudospin space.
Substituting Eqs. (15) and (16) into Eq. (19), we obtain the
relation between the scattering coefficients and the scattering
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FIG. 2. Transmission and reflection coefficients of a spin-up
electron incident from the left side with ML = 0, � = 1, and
M = −10�. The incident angle α+ is 0, π/8, and π/4 for the first
column [(a), (d), and (g)], for the second column [(b), (e), and (h)],
and for the third column [(c), (f), and (i)], respectively. The potential
energy is V = 0 for the first row (a)–(c), V = −5� for the second
row (d)–(f), and V = −15� for the third row (g)–(i).

amplitudes as

R↓↑ = |r↓↑|2 cos α−

cos α+ ,

R↑↑ = |r↑↑|2,
(20)

T↑↑ = |t↑↑|2 cos Reβ+

cos α+
sinh Reγ
| cosh γ | ,

T↓↑ = |t↓↑|2 cos Reβ−

cos α+
sinh Reγ
| cosh γ | .

Here, T↑↑ + T↓↑ + R↑↑ + R↓↑ = 1 because of the current
conservation. One can see from Eq. (20) that T↑↑ = T↓↑ = 0
exactly when the energy |E| of the incident electron is less
than �, because of the existence of the gap of the spin
superconductor. Then R↑↑ + R↓↑ = 1 for |E| < �.

First of all, we present the transmission and reflection co-
efficients of the graphene-based normal-spin superconductor
junction with the magnetic momentum at the left side being
ML = 0, as shown in Fig. 2. If an electron is injected normally
to the interface (α+ = 0), the spin-flip reflection is perfect
with R↓↑ = 1 and the normal reflection completely vanishes
for |E| < �, regardless of the potential V [see Figs. 2(a),
2(d), and 2(g)]. The spin-flip reflection can be slightly
suppressed by either the oblique incidence or the decrease
of the potential V . Here, we emphasize that for |E| < �, the
spin-flip process dominates the reflection phenomenon and
R↓↑ > R↑↑ holds for a wide range of parameters, except for
α+=π/4 and V = −15� in Fig. 2(i). These results can be
explained as follows. The reflected angle and the refraction
one satisfy the relation sin α− = E−ML−V

E+ML−V
sin α+ and sin β± =

E−ML−V

−M±√
E2−�2 sin α+. Normal incidence (α+ = 0) with ML = 0

indicates α+ = α− = β+ = β− = 0, leading to R↓↑ = |e−2γ |,
which is 1 for |E| < � and decays quadratically for E > �.

(c)
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0
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FIG. 3. (a)–(c) Transmission and reflection coefficients of the
graphene-based normal-spin superconductor junction as a function
of the incident energy E, with (a) α+ = 0, (b) α+ = π/32, and (c)
α+ = π/16. The other parameters are � = 1, ML = −0.5�, M =
−10�, and V = 0. (d) A 2D plot of spin-flip reflection coefficient
R↓↑ vs α+ and E. The parameters are the same as (a)–(c).

Both terms of cos α+ and cos β++β−
2 in r↓↑ will be reduced by

increasing the incident angle α+ [see Eq. (17)], which slightly
weakens the spin-flip effects. From a physical viewpoint,
when an electron is obliquely incident, qy is a conserved
quantity and the dispersion spectrum of qx is no longer
linear. Then, the Fermi wave lengths mismatch suppresses the
spin-flip reflection. Note that the normal transmission appears
immediately when the incident energy E exceeds the energy
gap � in general. However, one can see from Fig. 2(i) that
the normal transmission appears only when E exceeds the
critical energy Ec ≈ 2.72�. The underlying physics is that
there does not exist any corresponding scattering state in the
spin superconductor for an obliquely incident electron, and the
critical condition is determined by the relation

√
E2 − �2 −

M � (E − V ) sin α+. By solving the above equation, the
critical energy can be obtained as Ec1 = −D/ sin α+ and
Ec2 = sin α+D+√

D2+�2 cos2 α+
cos2 α+ , where D = M − V sin α+. The

prerequisite for the appearance of the normal transmission is
� � E � Ec1 or E � max(Ec2,�). In Fig. 2(i), the critical
energy is Ec2 ≈ 2.72� because Ec1 < 0.

Next, we study the influence of nonzero magnetic momen-
tum ML on the scattering coefficients. Figure 3 shows the
transmission and reflection coefficients with ML = −0.5�

and the potential V = 0. For the normal incidence (α+ = 0),
the nonzero ML will not affect the scattering coefficients as
compared with Fig. 2(a), and the spin-flip reflection coefficient
remains R↓↑ = 1 for |E| < � [see Fig. 3(a)]. The oblique
incidence with nonzero α+ induces a region in which the
spin-flip reflection coefficient is R↓↑ = 0, due to the absence of
the spin-flip scattering state in this region. The larger the angle
α+ is, the wider region of R↓↑ = 0, as illustrated in Figs. 3(b)
and 3(c). While out of this region, R↓↑ is very large. Here, the
two regions of large R↓↑ denote the spin-flip specular reflection
and the spin-flip retro-reflection. In the region of |E| < |ML|,
the incident electron and the spin-flip reflected electron locate,
respectively, in the conduction band and the valence one,
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FIG. 4. (a) and (b) Cross sections of the energy spectrum of the

graphene with ML = 0 in Fig. 1. The red lines denote the dispersion
spectrum of the spin-up states and the blue lines represent the spin-
down ones. The direction of motion of the states is indicated by the
arrows. A spin-up electron in the conduction band incident from the
graphene can be either spin-flip retroreflected (a) or spin-flip specular
reflected (b), depending on whether the reflected electron locates in
the valence band (a) or the conduction band (b). (c) Trajectories
of an incident electron i, the normal reflected electron B, and the
spin-flip reflected electron A, for different incident energies E by
fixing the incident angle. By increasing the incident energy E from
0, although the normal reflected angle remains the same, the spin-flip
angle rotates anticlockwise that it disappears and reappears when
the spin-flip reflected state is shifted from the valence band to the
conduction one.

and the spin-flip retro-reflection appears. In the region of
|E| > |ML|, the incident and spin-flip reflected electrons
locate in the same band, and the spin-flip specular reflection
occurs. In Fig. 3(d), the spin-flip reflection coefficient R↓↑
is plotted as functions of α+ and E, with the incident angle
α+ changing from 0 to π/4. There are two regions in which
R↓↑ is almost 1. These two regions are the spin-flip specular
reflection and the spin-flip retroreflection.

This peculiar reflection property can be well demonstrated
using the schematic diagram illustrated in Fig. 4. Figures 4(a)
and 4(b) present the cross sections of the energy spectrum of
the graphene with nonzero ML, which are obtained by cutting
along the dotted line in Fig. 1. A spin-up electron i incident
from the conduction band of the graphene can be either
spin-flip reflected A or normal reflected B at the normal-spin
superconductor interface. One can see from Figs. 4(a) and
4(b) that the normal reflection is always specular, whereas
the spin-flip reflection can be either retro [see Fig. 4(a)] or
specular [see Fig. 4(b)], depending on whether the reflected
electron locates in the valence band or the conduction band of
the spin-down energy spectrum. For a certain oblique angle α+,
when the incident energy E is increased from 0, the normal
reflected angle remains constant and the spin-flip reflected
angle α− rotates anticlockwise that it disappears for a while,
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FIG. 5. Transmission and reflection coefficients of a spin-up
electron incident from the left side with � = 1, ML = −0.5�, and
M = −10�. The incident angle α+ is π/32, π/8, and π/4 for the
first column [(a), (d), and (g)], for the second column [(b), (e), and
(h)], and for the third column [(c), (f), and (i)], respectively. The
potential energy is V = −0.2� for the first row (a)–(c), V = −2�

for the second row (d)–(f), and V = −10� for the third row (g)–(i).

then reappears, and moves closer to the normal reflected angle
[see Fig. 4(c)]. The critical energy for the disappearance or
the reappearance of the spin-flip reflection can be obtained as
follows: the spin-flip reflected angle α− and the incident angle
α+ satisfy the relation sin α− = E−ML

τ (E+ML) sin α+. The condition

of sin α− � 1 gives two critical energies Ec,± = −ML
1±sin α+
1∓sin α+ ,

between which the spin-flip reflection disappears.
Figure 5 shows the transmission and reflection coefficients

in the case of nonzero ML and nonzero potential V . For small
incident angles α+, e.g., α+ = π/32, when the potential V

is decreased from 0 to −10�, which can be experimentally
realized by the gate voltage, the region of the spin-flip
retro-reflection diminishes [see Figs. 3(b) and 5(a)] and
disappears for V < −� [see Figs. 5(d) and 5(g)], whereas
the region of the spin-flip specular reflection is enlarged.
For V < −� [see, e.g., Figs. 5(d) and 5(g)], the spin-flip
specular reflection occurs almost perfectly with the spin-flip
reflection coefficient R↓↑ ≈ 1 for |E| < �. On the other hand,
for relative large incident angles α+, e.g., α+ = π/8 and π/4,
the spin-flip reflection coefficient R↓↑ is usually small and
the normal reflection coefficient R↑↑ is large for small |V |
[see Figs. 5(b), 5(c), and 5(f)]. By decreasing the potential V ,
the spin-flip reflection is considerably strengthened and the
normal reflection is weakened [see Figs. 5(e), 5(h), and 5(i)].
The larger the incident angle α+ is, the larger |V | is needed
to strength the spin-flip reflection. In fact, by decreasing V ,
the critical energy Ec,+ is reduced. When Ec,+ < �, the
spin-flip reflection is dramatically enhanced and dominates
the reflection process.

It is known that when a voltage is applied between a normal
metal and a charge superconductor, an electric current can
be generated. This is due to the occurrence of the Andreev
reflection at the normal metal-superconductor interface when
a charge is injected into the superconductor. The quasiparticle
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FIG. 6. Differential charge conductance Ge and differential spin
conductance Gs vs the charge voltage eVs (a) and vs the spin voltage
eVs (b). The parameters are ML = 0, V = 0, � = 1, and M = −10�.

current in the normal metal will be transformed to the
supercurrent in the superconductor. However, at a normal
metal-spin superconductor interface, it is the spin rather
than the charge degree of freedom that plays a role. An
electron will be spin-flip reflected as another electron, with
spin angular momentum 2 × h̄

2 being injected into the spin
superconductor. Therefore the quasiparticle spin current in the
normal metal will be transformed to a super spin current in
the spin superconductor. Here, we consider both the charge
voltage and the spin voltage. Under the voltage, the chemical
potential of the spin superconductor is fixed to be μR = 0,
and the chemical potential of the normal metal is set to be
μL↑ = μL↓ = eVs for the charge voltage and μL↑ = −μL↓ =
eVs for the spin voltage [50–52]. The spin voltage can be
experimentally implemented by various methods with today’s
technologies, for example, by using the spin Hall effect
[53–55], the spin Seebeck effect [56–58], and the optical
excitation [59]. After obtaining the transmission and reflection
coefficients, the particle current I↑/↓ can be calculated from
the Landauer-Büttiker formula [4],

Iσ = 1

S

∑
kx ,ky

[(Rσ̄σ + Tσσ + Tσ̄σ )vxfLσ − Rσσ̄ vxfLσ̄ ],

where σ̄ = ↓(↑) when σ = ↑(↓), fLσ (E) is the Fermi distribu-
tion function with fLσ (E) = �(μLσ − E) at zero temperature,
S is the total area of the graphene sheet, and vx is the
electron velocity along the positive x axis. Here, the sum is
performed over the states with positive vx . Then, the spin and
charge currents can be obtained as Is = h̄

2 (I↑ − I↓) and Ie =
e(I↑ + I↓). And the corresponding differential conductance is
Ge,s = dIe,s

dVs
.

Figure 6 displays the differential spin conductance Gs and
the charge conductance Ge under the charge voltage and the
spin voltage. One can see that in the case of the charge voltage,
both the spin conductance Gs and the charge conductance Ge

are zero when the voltage is smaller than the energy gap � [see
Fig. 6(a)], because of the gap in the spin superconductor and
the spin superconductor is a charge insulator. When the voltage
eVs is larger than �, both Gs and Ge increase linearly with
eVs , owing to the fact that the quasiparticle states locate above
the gap of the spin superconductor and the linear dispersion
relation of graphene. On the other hand, in the case of the
spin voltage, although the voltage satisfies eVs < �, Gs grows
quickly with the voltage eVs , whereas Ge is strictly zero [see
Fig. 6(b)], due to the occurrence of the spin-flip reflection. In

this situation, the quasiparticle spin current in the normal metal
flows through the interface and is transformed to a super spin
current when it enters into the spin superconductor. Although
the charge current is zero, a large spin current can flow
through the junction even if the spin voltage eVs is small. This
means that the normal metal-spin superconductor junction is
transparent for the spin current, owing to the contribution of
the spin-flip reflection. When the voltage satisfies eVs > �,
Gs is still large and increases linearly with eVs because of
the tunneling of the quasiparticle (T↓↑ and T↑↑). However, Ge

is exactly zero because of the particle-hole symmetrical band
structure at ML = 0 and V = 0, and remains very small when
ML = 0 and V = 0.

IV. QUADRATIC DISPERSION CASE

In this section, we calculate the 1D reflection and the
transmission coefficient of the normal metal-spin supercon-
ductor junction, where both the normal metal and the spin
superconductor have quadratic dispersion. The Hamiltonian
corresponding to this case is shown in Eq. (11). The wave
functions on both sides are assumed to be plane waves
ψ(x) = (a,b)T eiqx . There are two degenerate energy bands
at the normal side

EN (q) = h̄2q2

2m
+ V. (21)

For a certain incident energy E > 0, there are four de-
generate states ψ±

N,↑(x) = (1,0)T exp(±iqx) and ψ±
N,↓(x) =

(0,1)T exp(±iqx), where q =
√

2m(E−V )
h̄2 . The indices ± in

ψ±
N,↑(↓) denote the velocity direction of the states. For example,

ψ+
N,↑ describes a spin-up electron, which moves along the

positive direction (from the left to the right).
In the spin superconductor, the energy bands are

ES(k) = ±
√(

h̄2k2

2m
+ M

)2

+ �2. (22)

The four corresponding degenerate states are

ψ±
S,↑(x) =

(
u0

v0

)
exp (±ik+x) (23)

and

ψ±
S,↓(x) =

(
v0

u0

)
exp (∓ik−x), (24)

where k±(E) =
√

2m(−M±√
E2−�2)

h̄2 , u2
0 = 1

2 (1 +
√

E2−�2

E
), and

v2
0 = 1

2 (1 −
√

E2−�2

E
). u0 and v0 are the coherent factors of

the spin superconductor, which also appear in the case of
the Bogoliubov-de Gennes (BdG) equation of the charge
superconductor. The band structures of the normal metal and
the spin superconductor are illustrated in Fig. 7.

We consider the situation where a spin-up electron is
incident from the normal metal to the interface. By connecting
the wave functions in both regions at x = 0, the reflection
and transmission coefficients can be obtained. By using the
equations derived above, the wave functions in the normal
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FIG. 7. Band structures of the normal metal (N) and the spin
superconductor (SSC) for the quadratic dispersion case. In the normal
metal, the spin degree of freedom is degenerate, and the spin-up
states are denoted by the red lines and the spin-down states are
denoted by the blue line. A spin-up electron i with wave vector q is
incident from the normal metal to the spin superconductor. Spin-flip
reflection A, normal reflection B, normal transmission C, and spin-flip
transmission D are indicated by the arrows.

metal can be expressed as

ψ1(x) =
(

1
0

)
eiqx + r↓↑

(
0
1

)
e−iqx + r↑↑

(
1
0

)
e−iqx . (25)

In the spin superconductor, the wave functions are

ψ2(x) = t↑↑

(
u0

v0

)
eik+x + t↓↑

(
v0

u0

)
e−ik−x. (26)

The boundary conditions of the wave functions at x = 0 are

ψ(0−) = ψ(0+),

σ zψ ′(0+) − ψ ′(0−) = 2mV0

h̄2 ψ(0). (27)

The first line comes from the continuity of the wave functions
and the second one is the requirement of the δ potential.

Equation (27) determines the four parameters r↓↑, r↑↑,
t↑↑, and t↓↑ uniquely. After some analytical calculations,
the reflection and transmission amplitudes can be derived
straightforwardly

r↓↑ = 2u0v0(η+ + η−)



r↑↑ = −1 + 2u2
0(1 + 2iZ + η−) − 2v2

0(1 + 2iZ − η+)


(28)

t↑↑ = 2u0(1 + 2iZ + η−)



t↓↑ = −2v0(1 + 2iZ − η+)


,

where η± = k±/q are dimensionless quantities, Z = mV0/h̄
2q

measures the barrier strength, and

 = u2
0(1 + 2iZ + η−)(1 + 2iZ + η+)

− v2
0(1 + 2iZ − η−)(1 + 2iZ − η+). (29)
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FIG. 8. Transmission and reflection coefficients versus the inci-
dent energy E for the normal metal-spin superconductor junction
with the quadratic dispersion case. The Schottky potential strength
is Z = 0 (a), 0.3 (b), 1.0 (c), and 3.0 (d). The other parameters are
� = 1, V = −15�, and M = −10�.

By using the conservation of probability ∇ · j = − ∂
∂t

|ψ |2,
the probability current is then given by jx = h̄

m
Im(ψ†σ0∂xψ)

at x < 0 and jx = h̄
m

Im(ψ†σz∂xψ) at x > 0. By substituting
Eqs. (25) and (26) into the expression of the probability current,
the relation between the transmission (reflection) coefficients
and the amplitudes can be obtained as

R↑↑ = |r↑↑|2,
R↓↑ = |r↓↑|2,

(30)
T↑↑ = (|u0|2 − |v0|2)η+|t↑↑|2,
T↓↑ = (|u0|2 − |v0|2)η−|t↓↑|2.

Here, the four coefficients satisfy R↑↑ + R↓↑ + T↑↑ + T↓↑ =
1, due to the current conservation.

Figure 8 plots the reflection coefficients R and the trans-
mission coefficients T for various barrier strengths Z. When
the incident energy E is less than the gap �, the transmission
coefficients T↑↑ and T↓↑ are zero exactly, due to the absence of
the state in the spin superconductor when |E| < �. As a result,
R↑↑ + R↓↑ = 1 when |E| < �. In the absence of the Schottky
potential, i.e., Z = 0, the spin-flip reflection coefficient R↓↑
is very large, where R↓↑ is almost 1 for |E| < � and decays
quickly for |E| > � [see Fig. 8(a)]. Since the Fermi wave
lengths mismatch occurs at the two sides of the interface, the
spin-flip reflection is not perfect and R↓↑ is slightly smaller
than 1 at Z = 0 and |E| < �. By increasing the barrier
strength Z, the spin-flip reflection, the normal transmission,
and the spin-flip transmission are gradually reduced, whereas
the normal reflection is strengthened. However, for Z = 0.3
and 1.0, the spin-flip reflection remains considerably large
[see Figs. 8(b) and 8(c)]. In addition, there always exists an
incident energy E between 0 and � that R↓↑ = 1 at this energy,
regardless of the system’s parameters.

After obtaining the reflection and transmission coef-
ficients, the particle current can be calculated from the
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Landauer-Büttiker formula [4]

Iσ = 1

h
[(Rσ̄σ + Tσ̄σ + Tσσ )μLσ − Rσσ̄μLσ̄ ]. (31)

Then, one can obtain the charge current Ie, the spin current
Is , as well as the differential charge conductance Ge and the
differential spin conductance Gs straightforwardly.

Figure 9 shows the differential charge conductance Ge and
the spin conductance Gs under the charge voltage and the spin
voltage. In the case of the charge voltage, both Ge and Gs are
zero when the voltage eVs is less than the gap � [see Figs. 9(a)
and 9(b)], which is similar to the graphene-based normal-spin
superconductor junction. Note that the spin superconductor
is a charge insulator, and the charge voltage cannot drive the
current. When the voltage satisfies eVs > �, although the spin
conductance Gs is small, the charge conductance Ge has a large
value, due to the existence of the quasiparticle states above the
gap. In the case of the spin voltage, the spin conductance Gs has
a large value even if the voltage is eVs < � [see Figs. 9(c) and
9(d)]. For small barrier strengths Z, Gs can exceed 2 (in units
of e/4π ), because of the occurrence of the spin-flip reflection.
Although the potential Z can suppress Gs , Gs can always

reach its maximum 4(e/4π ) at a certain voltage eVs below the
gap �, regardless of the potential Z. These results indicate
that the spin current can flow through the normal metal-spin
superconductor junction due to the spin-flip reflection. In fact,
the spin-flip reflection dominates the spin transport and the
spin conductance is proportional to the spin-flip reflection
coefficient, with Gs = e

2π
(R↓↑ + R↑↓) for eVs < �. When

eVs > �, the spin conductance Gs can be also large because
of the tunneling of the quasiparticle. Nevertheless, under the
spin voltage, the charge conductance Ge is always very small.

V. SUMMARY

In summary, we study the spin-flip reflection at the normal
metal-spin superconductor interface, where a spin-up electron
incident from the normal metal can be reflected as a spin-down
one and a dissipationless super spin current can be generated
in the spin superconductor. We consider two cases in detail:
the normal state has linear dispersion relation (graphene-
based normal-spin superconductor junction) and quadratic
dispersion relation. For the graphene-based junction, a normal
incident electron is perfectly spin-flip reflected at the interface,
in spite of the Fermi wave lengths mismatch at the two
sides. The oblique incidence slightly suppresses the spin-flip
reflection and the Fermi wave lengths mismatch begins to take
effect. In addition, the spin-flip reflection can be either specular
reflection or retro-reflection, depending on the incident and
reflected electrons locating in the same band or the different
bands. As a comparison, the quadratic dispersion normal
metal-spin superconductor junction is also studied, where the
spin-flip reflection coefficient can reach 1 at certain incident
energies. We calculate the differential charge conductance and
the spin conductance under a charge voltage or a spin voltage.
In usual, the spin voltage can drive a large spin current through
the junction, in which the spin conductance is determined by
the spin-flip reflection when the voltage is less than the gap
of the spin superconductor. These results will help us get a
better understanding of the spin transport through the normal
metal-spin superconductor junction.
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