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We show theoretically that π Josephson junctions may be constructed by use of antiferromagnetic (AF) metals
between superconducting electrodes. We argue that the AF magnetic ordering introduces the energy difference
of electrons in a Cooper pair due to the effect of the exchange field varying in space. Such an energy difference is
quadratic in the amplitude of exchange field and this is sufficient to change the behavior of a Josephson junction
from 0 to π junction if the width of the AF metal is big enough. The advantage of using an AF barrier instead
of a ferromagnetic one is that it does not suppress Cooper pairing in superconducting electrodes as much as the
ferromagnet barrier does. However, to reach π -junction regime the AF metal should be a clean one with the
electron mean free path bigger than the junction width.
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Initially a ferromagnetic barrier between superconductors
was proposed to produce a S-F-S Josephson junction with
phase difference π in the ground state [1]. This proposal was
realized experimentally by Ryazanov et al. [2] by using a CuNi
alloy. The π junction can be used as a battery to generate phase
differences in superconducting circuits or as a storage of digital
information. This is due to the fact that the shortening of the
superconducting electrodes by superconducting wire results
in the spontaneous supercurrent circulating in the loop formed
by the junction and the wire.

The idea behind the use of a ferromagnetic metal as a
barrier in Josephson junction in order to change the sign of
the critical current was based on the following arguments.
The exchange field h inherent to ferromagnets splits energies
of electrons with opposite spins in Cooper pair by the
amount 2μh, where μ is the magnetic moment of conducting
electrons in the ferromagnetic metal. As a result, the Cooper
pair moving in the x direction with the Fermi velocity vF

acquires the phase difference ϕf = 2μhd/h̄vF , while the
pair moving in the opposite direction acquires the phase
difference −ϕf . Here d is the width of the ferromagnetic
barrier between superconducting electrodes, and for simplicity
we take in the following h̄ = 1 and μ = 1. As a result, due
to the presence of the exchange field, the Josephson current
between the superconducting electrodes is modified from
∝ sin ϕ to ∝(1/2)[sin(ϕ + ϕf ) + sin(ϕ − ϕf )] = sin ϕ cos ϕf .
It changes sign as the product hd increases. Correspondingly,
the Josephson junction switches periodically from a 0 to π

junction as long as d is smaller than the electron mean free path.
Here we will show that the ferromagnetic barrier in the

Josephson junction may be replaced by that of a metallic anti-
ferromagnet. Such a barrier affects superconducting electrodes
much less than the ferromagnetic one. Indeed, the destruction
effect of AF exchange field on the Cooper pairing is not so
strong as that of ferromagnets because the average exchange
field acting on the conducting electrons, due to magnetic
moments, vanishes in the AF. Although the first order effect in
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exchange field h is absent in the AF, the second order effects
in h still change the behavior of Cooper pairs entering the
AF metal. They result in the splitting of the Cooper electron
energies in the AF metal by the amount εa which is quadratical
in h. Such a splitting may be sufficient to produce an oscillatory
dependence of the critical current on the exchange field, if the
AF width d is smaller than the electron mean free path �s . We
will show in the following that the transverse spiral exchange
field he(r) with the wave vector q along the z axis,

he(r) = 2h[cos(q · r), sin(q · r),0], (1)

splits the energies of the Cooper pair electrons inside the AF
by a value εa ≈ (vF q/2)[(4h2/v2

F q2 + 1)1/2 − 1] resulting in
the acquired phase difference ϕa = 2εad/vF and thus in the
additional oscillating factor cos ϕa in the critical current. This
result is correct when vF q � εF (εF is the Fermi energy),
and this limit will be considered in the following. It was
predicted previously in Ref. [3] that in this limit and at h �
vF q the energy difference εa ≈ h2/(vF q) of the Cooper pair
electrons in clean superconducting antiferromagnets results
in the formation of a nonuniform FFLO-like state below
the Neel temperature TN when TN < εa . In fact, formation
of nonuniform state in bulk AF superconductors and of the
phase difference ϕa in the Josephson system S-AF-S are
both consequences of the energy splitting εa of Cooper pair
electrons in an antiferromagnetically ordered system.

Obviously, the AF coordinate dependent exchange field
results in the net phase difference ϕa only if the electron
mean free path � is bigger than d. Hence, sufficiently clean
antiferromagnets may be used to produce a π junction. The
condition � � d is a disadvantage of AF barrier at low h

in comparison with a ferromagnetic one, but the advantage
is that superconductivity in the electrodes is damaged much
weaker. One can hope that a rich variety of antiferromagnetic
metals provides a broad choice of parameters h, q to fulfill
the condition �s � d and obtain the phase difference needed
for π junction. In the following we will discuss rare earth
metals with spiral structure like Ho metal with a very
strong exchange field acting on conduction electrons. We
will consider also antiferromagnetic metals with localized
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FIG. 1. The S-AF-S Josephson junction with spiral antiferromag-
net between two BCS superconductors.

alternating magnetic moments like molibdenites MMoS8, see
Refs. [4–6] and borocarbides MNi2B2C (M is rare earth),
where h � vF q since q = π/a is large [7–9]. Here a is the
distance between magnetic moments. The phase transition into
antiferromagnetic phase in such crystals occurs at quite low
Neel temperatures of the order 10–30 K which indicates not
very strong alternating exchange AF field acting on conducting
electrons. This allows us to give quantitative treatment of
effect of AF ordering on the Josephson current. We note that
molibdenites and borocarbide metals become superconducting
and thus one can use them as a barrier in Josephson junction
only at temperatures higher than their superconducting critical
temperatures.

We consider S-AF-S Josephson junction made of alter-
nating BCS superconductor (S), normal state metal with
antiferromagnetic spiral ordering (AF) and another BCS
superconductor, see Fig. 1. The length of the AF part along the
z axis is d, and its boundaries are at z = −d/2 and z = +d/2.
We will use the Bogolyubov-de Gennes equation to describe
this system, and we find the Josephson current through the
junction at a given phase difference ϕ of the superconductors
S. Previously a similar approach was used for S-F-S junction
[1,10,11], and the formation of a π junction was successfully
predicted in that way [1,10]. We will ignore the scattering
of electrons due to impurities, i.e., we assume that the mean
free path of electrons in AF � � d. We will follow notations
and derivations of the Josephson current in the S-N-S junction
presented in the book of Kopnin [12]. The Hamiltonian of the
conducting electrons in the AF is

Ĥ = He −Hex, He =
∫

d3rψ̂+
α (r)(ε(p) − εF )ψ̂α(r),

Hex = 2ψ̂+
α (r)hi(r)(σi)αβψ̂β(r). (2)

Here ε(p) = p2/2m and m is the electron mass, while α,β

are electron spin indexes and σi are the Pauli matrices,
σ± = σx ± iσy . We consider transverse spiral spin ordering
which induces exchange field he(z) given by Eq. (1). In the
Bogolyubov-de Gennes approach the wave functions u(r) and
v(r) for electrons and holes, respectively, are determined by the

equations

HU (r) + 
V (r) = EU (r), (3)

H∗
V (r) + 
∗U (r) = −EV (r), (4)

H∗ = He −H∗
ex,

H∗
ex = 2h[σx cos(qz) − σy sin(qz)] = h(σ+eiqz + σ−e−iqz),

(5)

where 
 is the superconducting order parameter, h is the
amplitude of the spiral exchange field, and E is the electron
energy. In a normal AF metal we take 
 = 0. We consider a
quasiparticle with a momentum parallel to the z axis and with
up and down spins. The wave function of the quasiparticle is

U (r) =
∫

dkxdkye
ikxx+ikyy[U↑(z)η↑ + U↓(z)η↓] (6)

and similar for the hole wave function. Here η↑ and η↓
are spin functions for up and down spins, respectively. We
obtain equations for the type 1 quasiparticles in the Fourier
representation Uα(z) = ∫

dkz exp(ikzz)Uα(kz):

He(kz)U↑(kz) − hU↓(kz + q) = εU↑(kz), (7)

He(kz + q)U↓(kz + q) − hU↑(kz) = εU↓(z), (8)

He(kz) = k2
z /2m − εF , (9)

and similar equations with reversed spins and signs of q for
the type 2 quasiparticles. Here ε = E − Exy , where Exy is
the quasiparticle kinetic energy in the x,y plane, while E

is that of motion along the z axis. In the following we will
use quasiparticle z-axis momentum accounted from the Fermi
vector, k = kz − kF . We will see that important wave vectors
contributing to the Josephson current are well below kF at h �
εF . First we get results in the quasiclassical approximation
assuming q � kF and later we will show corrections to this
approximation. The wave function of the type 1 quasiparticles
is a superposition of spin up and down contributions (the spiral
exchange field does not conserve spin):

U1(z) = ei(ε+εa )z/vz

[
η↑ + h

vzq + εa

eiqzη↓

]
, (10)

with the dispersion relations for electrons in the AF

vzk − ε = −vzq/2 ± [(vzq/2)2 + h2]1/2. (11)

Here and in the following we account only for energies
ε � vzq, ignoring contributions from high energies ε ≈ 2vzq.
Typically they lay well above 
, while the main contribution
to the Josephson current at low temperatures comes from the
Andreev bound states with energies |ε| below 
. From Eq. (11)
we see that k is indeed small, k � kF as was assumed early,
at h � εF and ε � 
. Then vzk − ε = εa , where

εa(vz) ≈ vzq

2

[(
4h2

v2
z q

2
+ 1

)1/2

− 1

]
. (12)

To obtain results beyond the quasiclassical approach we need
to renormalize vzq as vzq(1 + q/2mvz). For the hole wave
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function Vα the quasiclassical equations have the form

−ivz∂zV↑(z) − heiqzV↓(z) = −εV↑(z), (13)

−ivz∂zV↓(z) − he−iqzV↑(z) = −εV↓(z). (14)

We find

V1(z) = e−i(ε+εa )z/vz

[
η↑ − h

vzq + εa

e−iqzη↓

]
. (15)

Solutions for the equations (13), (14) with reversed spins and
opposite signs of q provide another set of quasiparticles of the
type 2, (U2,V2), for which all spins in solutions for (U1,V1)
should be reversed and εa(vz) replaced by −εa(vz):

U2(z) = ei(ε−εa )z/vz

[
η↓ − h

vzq − εa

e−iqzη↑

]
, (16)

V2(z) = e−i(ε−εa )z/vz

[
η↓ + h

vzq − εa

eiqzη↑

]
. (17)

The next step is to find the Andreev bound states for electrons
and holes inside the antiferromagnet. We denote the phase
difference between top and bottom superconductors by ϕ. For
electrons moving up in the top superconductor the functions
Uα(z) and Vα(z) for the energies ε < 
 decay as

U1 = e−λSz

[
η↑ + h

vzq + εa

eiqd/2η↓

]
U0 exp(iϕ/4), (18)

V1 = e−λSz

[
η↑ − h

vzq + εa

e−iqd/2η↓

]
V0 exp(−iϕ/4), (19)

λS =
√

|
|2 − ε2

vz

, U0,V0 = 1√
2

(
1 ± i

√
|
|2 − ε2

ε

)1/2

.

(20)

Here we assume conservation of spin at the boundary AF-S. We
find the wave functions of the type 1 quasiparticle moving up
in the AF region and the corresponding reflected quasiparticle
moving down as

U1(z) = A exp

(
i
(ε + εa)z

vz

)[
η↑ + h exp(iqz)

vzq + εa

η↓

]
, (21)

V1(z) = AR1 exp

(
−i

(ε + εa)z

vz

)[
η↑ − h exp(−iqz)

vzq + εa

η↓

]
,

(22)

and similar for the type 2 solution. Here A is the normalization
factor and R is the reflection coefficient. Continuity of the
wave function across the boundary between AF and the top
superconductor for the type 1 quasiparticle leads to the
relations

A exp[i(ε + εa(vz))d/2vz] = U0 exp(−λsd/2 + iϕ/4),

AR1 exp[−i(ε + εa(vz))d/2vz] = V0 exp(−λsd/2 − iϕ/4).

These equations give the reflection coefficient for the type 1
quasiparticles:

R1 = (V0/U0) exp(iεd/vz) exp[−i(ϕ − ϕa)/2], (23)

ϕa = 2εa(vz)d/vz = 2
[(

h2
/
v2

z + q2/4
)1/2 − q/2

]
d. (24)

Continuity at the bottom interface gives for the same reflection
coefficient the expression

R1 = (U0/V0) exp(−iεd/vz) exp[i(ϕ − ϕa)/2]. (25)

Comparing these relations to those for normal junction S-
N-S (obtained at h = 0) we see that the phase difference
is renormalized due to the AF exchange field by the value
−ϕa(vz) for the type 1 states and by the value +ϕa(vz) for the
type 2 states. The spectra of the Andreev bound states are also
renormalized in the same way. Equating R1 given by Eqs. (23)
and (25) we obtain the energies of bound states of the type 1
quasiparticles as

ε(vz) = ±|ωz|
[
ϕ − ϕa

2
∓ arcsin

ε

|
| + π

(
� ± 1

2

)]
, (26)

where −π/2 < arcsin(ε/|
|) < π/2 and ωz = d/vz, while �

is an integer. Here upper signs are for vz > 0 and lower signs
are for vz < 0. For the type 2 quasiparticles we get Eq. (26)
with opposite sign of ϕa .

Let us now consider the Josephson current in S-AF-S
junction. The current is given as

I = − ie

m

∑
n

[fnu
∗
n(r)∇un(r) + (1 − fn)vn(r)∇v∗

n(r) − c.c.],

where n labels various quantum states and fn =
1/(exp εn/T + 1) is the Fermi-Dirac distribution function. The
quantum number n describes states belonging to various quan-
tum states kx,ky , and kz(ε) within the area S of the junction.
Applying the semiclassical approximation, we calculate the
derivatives only of the rapidly varying functions exp(ikF · r).
At low temperatures one needs to account for the Andreev
states with energies ε < |
|.

In S-N-S junction the conditions of a small or large width
of the normal region depends on whether ωz is large or
small in comparison with |
|. Due to the condition −π/2 <

arcsin(ε/|
|) < π/2 at d < ξ0 only � = −1 for vz > 0 and
� = 0 for vz < 0 remain as solutions. For a junction with AF
barrier such a short-junction definition becomes meaningless
due to the renormalization of the phase difference by the term
ϕa . At h � |
| the phase ϕa can be large in comparison with
ϕ even for d � ξ0 = vF /
. Hence, we are not necessarily
limited to the values � = −1 for vz > 0 and � = 0 for vz < 0 as
in the case without the AF exchange field (see, e.g., Ref. [12]).
As a result, the number of states contributing to the Josephson
current depends on ϕa . Hence, the simple result (at T = 0)

Iz = π |
|
eRN

sin
ϕ

2
(27)

of Ref. [12] for point contact S-N-S is valid in the case of the
AF barrier only when ϕa(vF ) � 1.

To find the Josephson current in long junctions, d � ξ0, we
follow derivations in Ref. [12]. We account first for the type 1
states. It follows from expression (3.39) of Ref. [12] that the
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dependence of the Josephson current on the phase difference
is renormalized by ϕa(vz):

Iz = −
∑
vz>0

vze

2d

�0∑
�=−�0

tanh
|ωz|[ϕ − ϕa(vz) − π + 2π�]

4T
. (28)

Here �0 = |
|/(π |ωz|) � 1. For the type 2 states we obtain a
similar expression but with an opposite sign of ϕa . Summing
them up and replacing summation over � by summation over
Matsubara frequencies, as described in Ref. [12], we obtain

Iz = 8T e sin ϕ
∑
vz>0

cos[ϕa(vz)] exp(−2πT d/vz). (29)

At low temperatures vF /2πT d � 1 the Josephson current
via AF barrier is

I = Ic sin ϕ cos ϕa, ϕa = qd[(α2 + 1)1/2 − 1], (30)

α = 2h/vF q, (31)

Ic = 4vF

eRN
d exp(−d/ξ ), ξ = vF /2πT, (32)

where RN is the resistance of the AF barrier in the normal state.
The factor cos(ϕa) oscillates and changes sign as the product
hd increases resulting in a 0- or in a π -junction.

Next we will discuss the range of parameters when our
approach is valid. At q = 0 equation (30) provides result for
clean ferromagnetic barrier, ϕf = 2hd/vF . It was shown in
Ref. [10] that such a result for S-F-S junction holds if hτs � 1
or d � � = vF τs , where τs = �s/vF is the impurity scattering
time. If hτs � 1 the oscillatory dependence of the Josephson
current on the width d vanishes on the characteristic length
(D/h)1/2, where D = v2

F τs/3 is the diffusion coefficient.
These conditions are due to the fact that the accumulation
of phase on the length L is 2hL/vF , while the dispersion
of the phase accumulation is of the order of hDL/vF . For
a coordinate dependent AF exchange field the situation is
more complicated. The energy difference εa is now taken
at distances r � 2π/q and thus the electron mean free path
should be bigger than 2π/q. In addition, as in the case of a
ferromagnet, one needs εad/vF � 1. Thus the electron mean
free path should be bigger than both vF /εa and 2π/q.

Now we will discuss whether known antiferromagnets may
be useful as a candidate for the Josephson π -junction S-AF-S.
Two families of metallic antiferromagnets are well studied:
rare earth metals and crystals like rare earth borocarbides.
Let us consider first the AF with a short period of the
exchange field and thus small α. It is the case of borocarbide
antiferromagnets MNi2B2C with a square lattice of alternating
magnetic moments M such as Er. They have large q = π/a,
where a ≈ 4 Å is the distance between magnetic atoms (see
Fig. 2). We may estimate the value of h by assuming that
the antiferromagnetic ordering and thus the Neel temperature
TN is determined predominantly by RKKY coupling of
spins mediated by the conduction electrons. Then for erbium
borocarbide TN ≈ h2/εF , while the Fermi energy εF is of the
same order as vF q. Hence, the corresponding energy splitting
of Cooper pair electrons is of the order of TN . To reach π

y

x

FIG. 2. The S-AF-S Josephson junction with metallic antiferro-
magnet between two BCS superconductors. The magnetic structure
of the antiferromagnet is a square lattice of alternating up and down
spins as in rare earth borocarbides.

junction one needs d ≈ πvF /TN of the order 2×10−4 cm
and the electron mean free path of the size or bigger than this
value (we use the estimates TN = 5 K and vF = 5×107 cm/s).
Smaller d and � may be needed if antiferromagnet crystals
with larger TN are used. Up to now we do not have precise
information on the electron mean free path in borocarbide
crystals and at this stage cannot conclude whether to use them
in S-AF-S π junctions is realistic or not.

Next we discuss the possibility to use rare earth metals
with a larger period of helicoidal exchange field [13–15].
Information on Ho is most available. The Neel temperature
of Ho is TN = 133 K. Below TN and down to the temperature
20 K the magnetic structure is a spiral with the wave vector
q = 2π/6c along the c axis, where c = 5.6 Å is the distance
between the magnetic moments along this axis [14]. Below
20 K a conic structure with a ferromagnetic component along
the c axis was observed in crystals, though it was absent in
thin films [16]. According to the estimates in Ref. [17] in a
conic phase, the ferromagnetic component of the exchange
field along the c axis, hf , is about 1.1 eV, while the amplitude
hs of the spiral field is about 7 eV (the observed cone angle is
≈80◦). The amplitude of the exchange field in the spiral phase
between 20 K and 50 K is also about hs . Electron parameters in
Ho metal were estimated as vF = 108 cm/s and εF = 7.7 eV.
Thus the value α = 2h/h̄vF q = 10 is large in comparison with
unity. As a result, the energy splitting of Cooper pair electrons
in such spiral phase, εa ≈ 2h − vF q ≈ 13.6 eV, is close to the
Fermi energy. Then our results cannot be used to describe this
situation because the assumed conditions h,vF q � εF are not
fulfilled.

In conclusion, we have shown that the exchange field in an-
tiferromagnetic clean metals results in oscillating dependence
of the critical current on the junction width and the amplitude
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of the exchange field. Thus the AF barriers may be used to
transform 0 junctions into π junctions. We discussed S-AF-S
junctions made of borocarbide crystals MNi2B2C with rare
earth ions M. In this class we see that a barrier with the width
of the order micron is needed to reach a π junction and the
mean electron scattering path should be of the same size. For

Ho metal as an AF barrier our analytical results cannot be used
and less crude numerical methods should be applied to make
definite conclusions.

The authors thank V.P. Mineev and A.I. Buzdin for useful
discussions.
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