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We study the surface Andreev bound states (SABSs) and quasiparticle tunneling spectroscopy of three-
dimensional (3D) chiral superconductors by changing their surface (interface) misorientation angles. We obtain
an analytical formula for the SABS energy dispersion of a general pair potential, for which an original 4 × 4
BdG Hamiltonian can be reduced to two 2 × 2 blocks. The resulting SABS for 3D chiral superconductors
with a pair potential given by kz(kx + iky)ν (ν = 1,2) has a complicated energy dispersion owing to the
coexistence of both point and line nodes. We focus on the tunneling spectroscopy of this pairing in the presence
of an applied magnetic field, which induces a Doppler shift in the quasiparticle spectra. In contrast to the
previously known Doppler effect in unconventional superconductors, a zero-bias conductance dip can change
into a zero-bias conductance peak owing to an external magnetic field. We also study SABSs and tunneling
spectroscopy for possible pairing symmetries of UPt3. For this purpose, we extend a standard formula for
the tunneling conductance of unconventional superconductor junctions to treat spin-triplet nonunitary pairings.
Magnetotunneling spectroscopy, i.e., tunneling spectroscopy in the presence of a magnetic field, can serve as a
guide to determine the pairing symmetry of this material.
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I. INTRODUCTION

The surface Andreev bound state (SABS) is one of the
key concepts regarding unconventional superconductors [1–3].
To date, various types of SABSs have been revealed in
two-dimensional (2D) unconventional superconductors [4,5].
It is known that a flat band SABS exists in a spin-singlet
d-wave superconductor [6] that is protected by a topological
invariant defined in the bulk Hamiltonian [4,7–9]. The ubiq-
uitous presence of this zero energy SABS manifests itself
as a zero-bias conductance peak (ZBCP) in the tunneling
spectroscopy of high-Tc cuprates [10–16]. There has been
interest in the spin-triplet p-wave superconductor [17,18] with
a flat band SABS and sharp ZBCP, similar to the d-wave case
[19–21]. Apart from flat bands, it is known that chiral p-wave
superconductors host a SABS with a linear dispersion as a
function of momentum parallel to the edge, resulting in a
much broader ZBCP [21–25].

Magnetotunneling spectroscopy, i.e., tunneling spec-
troscopy in the presence of an applied magnetic field, is a
powerful tool to make distinctions among pairing symmetries.
Under an applied magnetic field, the shift of quasiparticle
energy spectra, which is proportional to the transverse momen-
tum, is generally known as the Doppler effect [13,26]. It has
been shown that the splitting of the ZBCP occurs in d-wave
superconductor junctions owing to this [13,26]. In contrast,
for spin-triplet p-wave cases, the ZBCP does not split into
two [20] since the perpendicular injection of quasiparticles
dominantly contributes to the tunneling conductance. For
perpendicular injection, the component of the Fermi velocity
parallel to the interface is zero and there is no energy shift
of the quasiparticles. Therefore we can distinguish between
d- and p-wave pairing with magnetotunneling spectroscopy
[27]. For chiral p-wave superconductors, the magnitude of the

ZBCP is enhanced or suppressed depending on the direction of
the applied magnetic field [20]. Chiral and helical supercon-
ductors also exhibit different features of magnetotunneling
spectroscopy, whereas both of these superconductors have
similarly broad ZBCP without magnetic field [28]. In any
case, a ZBCP generated from a zero-bias conductance dip by
applying magnetic field has not been found.

For three-dimensional (3D) unconventional superconduc-
tors, the energy dispersion of SABS becomes more compli-
cated [17,29–40]. Recently, the SABSs of 3D chiral super-
conductors have been studied [41], where a pair potential
is given by �0kz(kx + iky)ν/kν+1

F with a nonzero integer ν.
These pairing symmetries are relevant to typical heavy fermion
superconductors with ν = 1 and ν = 2, corresponding to the
candidate pairing symmetries of URu2Si2 [42–44] and UPt3
[45–50], respectively. The simultaneous presence of line and
point nodes gives rise to exotic SABS. It has been shown that
the flat band SABS is found to be fragile against the surface
misorientation angle α, as shown in Fig. 1. Although the
topological natures of the flat band SABS have been clarified
[41], the overall features of the energy dispersion of the SABS
have not been systematically analyzed. Thus it is a challenging
issue to identify 3D pairing states theoretically in terms of
magnetotunneling spectroscopy.

In this work, we study the SABS and quasiparticle tunneling
spectroscopy of 3D chiral superconductors by changing the
surface (interface) misorientation angle α. For this purpose,
we analytically derive a formula for the energy dispersion
of SABSs available of a general pair potential, for which
an original 4 × 4 matrix of a Bogoliubov-de Gennes (BdG)
Hamiltonian can be decomposed into two blocks of 2 × 2
matrices. We apply this formula to 3D chiral superconductors
with a pair potential given by �0kz(kx + iky)ν/kν+1

F (ν = 1,2).
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FIG. 1. We mainly consider above two types of normal (N)-
superconductor (SC) junctions. Here, α is the misorientation angle
from the kz axis. Magnetic field is applied in the x-y plane, rotated
from the x axis by γ .

The resulting SABS has a complex momentum dependence
due to the coexistence of point and line nodes. SABSs arising
from topological and nontopological origins are found to
coexist. The number of branches of the energy dispersion
of SABSs with topological origin can be classified by ν for
various α. On the other hand, if we apply our formula to
2D-like chiral superconductors with a pair potential given
by �0(kx + iky)ν/kν

F (ν = 1,2), the number of branches of
SABSs is equal to 2ν, where the pair potential has only point
nodes.

In order to distinguish between two 3D chiral superconduc-
tors with different ν, we calculate the tunneling conductance
of normal metal/insulator/chiral superconductor junctions in
the presence of an applied magnetic field, which induces
a Doppler shift. The obtained angle-resolved conductance
has a complicated momentum dependence reflecting on the
dispersion of SABS for nonzero α. In contrast to previous
studies of the Doppler effect on tunneling conductance,
a zero-bias conductance dip can evolve into a ZBCP by
applying magnetic field. This unique feature stems from the
complex nodal structures of the pair potential where both
line and point nodes coexist. Furthermore, we focus on
four possible candidates of the pairing symmetry of UPt3,
where the momentum dependencies of the pair potentials
are proportional to kz(kx + iky)2dz, (5k2

z − k2
F)(kx + iky)dz,

(5k2
z − k2

F)(dykx + dzky), and f + p-wave belonging to the
E2u representation. Here, we derive a general formula for
tunneling conductance, which is available even for nonunitary
spin-triplet superconductors. We show that these four pairings
can be classified by using magneto tunneling spectroscopy.
Thus our theory serves as a guide to determine the pairing
symmetry of UPt3.

The remainder of this paper is organized as follows. In
Sec. II, we explain the model and formulation. We analytically
derive a formula for the energy dispersion of SABSs available
for a general pair potential for which an original 4 × 4
matrix of BdG Hamiltonian is decomposed into two blocks
of 2 × 2 matrices. We also derive a general conductance
formula, available even for nonunitary spin-triplet pairing
cases. Besides these, to understand the topological origin of

SABS, we calculate winding number. In Sec. III A, based
on above formula, we calculate the SABS and tunneling
conductance for 3D chiral superconductors for various α. As
a reference, we also calculate the SABS for 2D-like chiral
superconductors. In Sec. III B, we calculate the tunneling
conductance in the presence of an external magnetic field
using so-called magnetotunneling spectroscopy. In Sec. III C,
we study the SABS and tunneling conductance for promising
pairing symmetries of UPt3. In Sec. IV, we summarize our
results.

II. MODEL AND METHOD

In this section, we introduce the mean-field Hamiltonian of
3D chiral superconductors. We derive an analytical formula for
SABS for which the original 4 × 4 BdG Hamiltonian can be
reduced to be two blocks of 2 × 2 matrices. We calculate
the tunneling conductance in the presence of an external
applied magnetic field. In order to study the case of nonunitary
spin-triplet pairings, we derive an analytical formula for the
tunneling conductance. The bulk BdG Hamiltonian is given as
follows:

H = 1

2

∑
k

�†(k)H (k)�(k),

H (k) =
(

ε̂(k) �(k)
�†(k) −ε̂(−k)

)
, (1)

�(k) = (ck,↑,ck,↓,c
†
−k,↑,c

†
−k,↓)T,

where ε̂(k) = diag[ε(k),ε(k)] and �(k) are 2 × 2 matrices.
Here, ε(k) denotes the energy dispersion h̄2k2/(2m) − μ in
the normal state. For spin-triplet pairing, the pair potential is
given by

� = d · σ iσ2,

by using a d vector, where (σ1,σ2,σ3) = σ are the Pauli
matrices. We consider normal metal (z < 0)/superconductor
(z > 0) junctions with a flat interface, as shown in Fig. 1. The
momentum parallel to the interface k‖ = (kx,ky) becomes a
good quantum number.

In the following, we explain eight types of pair potentials
and corresponding formulas for tunneling conductance and
SABS. In Sec. II A, we explain the case for which the BdG
Hamiltonian can be reduced to a 2 × 2 form [�ν=0,1,2

3d ,�
ν=1,2
2d ,

and �chiral
E1u

]. In Sec. II B, we explain the case for which the
4 × 4 BdG Hamiltonian cannot be reduced to two 2 × 2 blocks
[�planar

E1u
and �

f +p

E2u
]. In Sec. II C, we briefly summarize the zero-

energy SABS (ZESABS) stemming from topological numbers.

A. 2 × 2 BdG Hamiltonian

In this section, we introduce pair potentials for 3D and
2D-like chiral superconductors. We derive a formula for the
SABS for which the BdG Hamiltonian can be reduced to two
2 × 2 matrices. �(k) takes

�ν
3d(k) =

{
�̃ν

3diσ2 ν : odd,

�̃ν
3dσ3iσ2 ν : even,

(2)
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FIG. 2. Schematic illustration of nodal structures of �(k) with
α = 0. Red points and lines indicate the positions of nodes.

�ν
2d(k) =

{
s�̃ν

2dσ3iσ2 ν : odd,

�̃ν
2diσ2 ν : even,

(3)

�chiral
E1u

(k) = �̃chiral
E1u

σ3iσ2, (4)

�̃ν
3d = �0

r3d,νk
ν+1
F

k′
z(k

′
x + ik′

y)ν,

�̃ν
2d = �0

kν
F

(k′
x + ik′

y)ν,

�̃chiral
E1u

= �0

rE1u
k3

F

(
5k′

z

2 − k2
F

)
(k′

x + ik′
y),

k′
x = kx cos α − kz sin α,

k′
y = ky,

k′
z = kx sin α + kz cos α,

where α is the misorientation angle from the kz axis and
(r3d,ν=0,r3d,ν=1,r3d,ν=2,rE1u

) = (1, 1/2, 2/
√

27, 16/(3
√

15))
are the normalization factors so that the maximum value
of the pair potential becomes �0. Because the direction of
the d vector in spin-space does not affect conductance, i.e.,
conductance is invariant under spin rotation (Appendix C 3),
we fix the direction of the d vector given in Eqs. (2)–(4) for
the spin-triplet cases. �ν

3d and �ν
2d are chosen in Secs. III A

and III B. We study �ν=2
3d and �chiral

E1u
in Sec. III C. Under

the quasiclassical approximation, the magnitude of the
wave vector is pinned to the value on the Fermi surface,

kz =
√

k2
F − k2

x − k2
y . As shown in Fig. 2, �ν=0

3d has a line

node, �ν
3d(ν = 1,2) has two point nodes and one line node,

and �ν
2d (ν > 0) has two point nodes. �chiral

E1u
has two point

nodes and two line nodes.
Then, we show that the BdG Hamiltonian can be reduced to

a 2 × 2 form for all the cases. For the spin-singlet cases (�ν=1
3d

and �ν=2
2d ), Eq. (1) is reduced to

H(k) = 1

2

∑
k

�†(k)

⎛
⎜⎝

ε(k) 0 0 D

0 ε(k) −D 0
0 −D∗ −ε(k) 0

D∗ 0 0 −ε(k)

⎞
⎟⎠�(k)

= 1

2

∑
k

(c†k,↑ c−k,↓)

(
ε(k) D

D∗ −ε(k)

)(
ck,↑
c
†
−k↓

)

+ 1

2

∑
k

(c†k,↓ c−k,↑)

(
ε(k) −D

−D∗ −ε(k)

)(
ck,↓
c
†
−k↑

)
,

with Diσ2 = �ν=1
3d or �ν=2

2d . For the spin-triplet cases (�ν=0,2
3d ,

�ν=1
2d , and �chiral

E1u
), with a d vector, Eq. (1) becomes

H(k) = 1

2

∑
k

�†(k)

⎛
⎜⎝

ε(k) 0 0 d3

0 ε(k) d3 0
0 d∗

3 −ε(k) 0
d∗

3 0 0 −ε(k)

⎞
⎟⎠�(k)

= 1

2

∑
k

(c†k,↑ c−k,↓)

(
ε(k) d3

d∗
3 −ε(k)

)(
ck,↑
c
†
−k↓

)

+ 1

2

∑
k

(c†k,↓ c−k,↑)

(
ε(k) d3

d∗
3 −ε(k)

)(
ck,↓
c
†
−k↑

)
,

with (d3σ3)(iσ2) = �ν=2
3d , �ν=1

2d , or �chiral
E1u

.
In the following, we calculate the charge conductance

by using the extended version [1,10,51] of the Blonder–
Tinkham–Klapwijk (BTK) formula [52] for unconventional
superconductors [53]. Since we assume that the penetration
depth of the magnetic field λ is much larger than the coherence
length of the pair potential [26,54], we can neglect the spatial
dependence of the magnetic field. Therefore we can take the
vector potential as

A = (−Hλ sin γ,Hλ cos γ,0). (5)

Solving the BdG equation with the quasiclassical approxi-
mation, where μ is much larger than the energy of an injected
electron |eV | and |�(k‖)|, the wave function in the normal
metal (N) and superconductor (S) are obtained as

�N
σ (z < 0,k‖)

= ψN
e,σ eik·r +

∑
σ ′=±

(
aσ,σ ′ψN

h,σ ′e
ik·r + bσ,σ ′ψN

e,σ ′e
ik̃·r), (6)

�S(z > 0,k‖) =
∑
σ ′=±

(
cσ ′ψS

e,σ ′e
ik·r + dσ ′ψS

h,σ ′e
ik̃·r), (7)

and

ψN
e,σ = (1 + σ,1 − σ,0,0)T/2, (8)

ψN
h,σ = (0,0,1 + σ,1 − σ )T/2, (9)

ψS
e,σ = [1 + σ,1 − σ,(1 − σ )ρ�+,(1 + σ )�+]T/2,

ψS
h,σ = [(1 + σ )�−,(1 − σ )ρ�−,1 − σ,1 + σ ]T/2,

�+ = �∗(k)

Ẽ +
√

Ẽ2 − |�(k)|2
, (10)

�− = �(k̃)

Ẽ +
√

Ẽ2 − |�(k̃)|2
, (11)

Ẽ = eV − H

H0
�0

(
ky

kF
cos γ − kx

kF
sin γ

)
, (12)

with k̃ = (kx,ky, − kz) and H0 = �0/(eλvF). �(k) = �̃ν
3d(k),

�̃ν
2d(k), or �̃chiral

E1u
(k). Here, ρ = −1 for �ν=1

3d and �ν=2
2d (even

parity) and ρ = 1 for �
ν=0,2
3d , �ν=1

2d , and �chiral
E1u

(odd parity).
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The coefficients (aσ,σ ′ ,bσ,σ ′ ,cσ ,dσ ) are determined by the
boundary conditions:

�N
σ (0−,k‖) = �S(0+,k‖), (13)

d�S

dz

∣∣∣∣
z=0+

− d�N
σ

dz

∣∣∣∣
z=0−

= 2mU0

h̄2 �N
σ (0−,k‖), (14)

where the insulating barrier at z = 0 is simplified as V (z) =
U0δ(z). The angle-resolved conductance is given by [10,51]

σS(eV,k‖) = 1 + 1

2

∑
σ,σ ′=±

[|aσ,σ ′ |2 − |bσ,σ ′ |2]

= σN
1 + σN|�+|2 + (σN − 1)|�+�−|2

|1 + (σN − 1)�+�−|2 , (15)

σN(k‖) = 4 cos2 θ

4 cos2 θ + Z2
, (16)

with cos θ = kz/kF and Z = 2mU0/(h̄2kF).
In the procedure of obtaining conductance with magnetic

field, we neglect the Zeeman effect. For UPt3, the order of
λ ∼ 104 Å [55], kF ∼ 1 Å −1 [56]. Here the order of the energy
of Doppler shift is H�/H0 with H0 = h/(2eπ2ξλ) and ξ =
h̄2kF/(πm�) [26]. Since the Zeeman energy is given by μBH ,
the ratio of the energy of Doppler shift to Zeeman effect is
2λkF ∼ 104 times larger than that of Zeeman energy for UPt3.
Thus neglecting the Zeeman effect is a good approximation in
present case.

In Sec. III A, we discuss SABSs with H = 0, which is
determined by requiring the condition that the denominator of
Eq. (15) is zero for Z → ∞ (σN → 0). Then, at the energy
dispersion of the SABS, the denominator of Eq. (15) must
satisfy following the conditions

Re(�+�−) = 1, (17)

Im(�+�−) = 0. (18)

In this case, σS becomes two, which is the maximum value of
angle-resolved conductance owing to the perfect resonance.
We define E(k‖) = Ẽ, which satisfies Eq. (17) and Eq. (18).

Here, we derive a general formula of SABS for pair
potentials with arbitrary momentum dependence (details
are explained in Appendix B). There are two cases. For
Im[�∗(k)�(k̃)] �= 0, the energy dispersion of SABS E(k‖)
is given by

E(k‖) = Im[�∗(k)�(k̃)]

|�(k) − �(k̃)| , (19)

where �(k) and �(k̃) must satisfy

{|�(k)|2 − Re[�∗(k)�(k̃)]}
× {|�(k̃)|2 − Re[�∗(k)�(k̃)]} � 0. (20)

For Im[�∗(k)�(k̃)] = 0,

E(k‖) = 0, (21)

with
�(k)

|�(k)| = − �(k̃)

|�(k̃)| . (22)

This formula reproduces all of the known results of SABSs
in 2D unconventional superconductors, such as d-wave [1,6],
p-wave [18,21], d + is-wave [57,58], chiral p-wave [59], and
chiral d-wave.

In Secs. III B and III C, we discuss the normalized conduc-
tance given by

σ (eV ) =
∫
|k2

x+k2
y |<kF

dkxdkyσS(eV,kx,ky)∫
|k2

x+k2
y |<kF

dkxdkyσN(kx,ky)
, (23)

which can be measured experimentally [1].

B. 4 × 4 BdG Hamiltonian

In this section, we explain the case in which the BdG
Hamiltonian is in the 4 × 4 form. In Sec. III C, in addition
to �ν=2

3d and �chiral
E1u

, we choose �
planar
E1u

(Fig. 2) and �
f +p

E2u
.

�
planar
E1u

is a spin-triplet pair potential in a unitary state, i.e.,

q = id × d∗ = 0, while �
f +p

E2u
can incorporate nonunitary case

(q �= 0). �
planar
E1u

is given by

�
planar
E1u

(k) = �0

rE1u
k3

F

(
5k′

z

2 − k2
F

)
(ik′

xσ0 + k′
yσ1). (24)

It is noted that the time reversal symmetry is not broken for
�

planar
E1u

but �chiral
E1u

does not have time reversal symmetry.

�
f +p

E2u
is the combination of chiral p-wave and f -wave

pairings. The d vector of �
f +p

E2u
is given by

d = �0

rf +p

{
δ

1

kF
[(k′

x + iηk′
y)dx + i(ηk′

x + ik′
y)dy]

+ 1

k3
F

[k′
z(k

′
x

2 − k′
y

2) + 2iηk′
zk

′
xk

′
y]dz

}
, (25)

where δ is considered to be small [60] and rf +p is a normalized
factor that is determined numerically so that the maximum
value of the pair potential becomes �0. If (η,δ) = (1,0) is
satisfied, we obtain �

f +p

E2u
= �ν=2

3d . The position of nodes of
this f + p-wave pairing depends on the values of η and δ.
If δ = 0 is satisfied (Fig. 3), there are two cases. In the case
of η = 0 [Figs. 3(a-i)–3(a-iii)], there are three line nodes. For
η > 0 [Figs. 3(b-i)–3(b-iii)], there is a line node and two point
nodes. For δ > 0 (Fig. 4), there are three cases. For η < 1
[Figs. 4(a-i)–4(a-iii)], there are 16 point nodes on ky = ±kx

lines [Fig. 4(a-ii)]. In the case of η = 1 [Figs. 4(b-i)–4(b-iii)],
the positions of nodes are the same as that in the case of η > 0
and δ = 0 [Figs. 3(b-i)–3(b-iii)]. For η > 1 [Figs. 4(c-i)–4(c-
iii)], there are 16 point nodes on lines kxky = 0, as shown in
Fig. 4(c-ii).

The wave function for the normal metal side is shown in
Eq. (6) with Eqs. (8) and (9) and that for the superconducting
side is given in Eq. (7) with

(
ψS

e,↑ ψS
e,↓ ψS

h,↑ ψS
h,↓

) =
(

ue vh

ve uh

)
,
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FIG. 3. Red lines and dots indicate the positions of nodes of
the pair potentials �

f +p

E2u
for δ = 0. η = 0 for (a-i)–(a-iii). η > 0 for

(b-i)–(b-iii). (a-ii) and (b-ii) are nodes projected on the kz = 0 plane.
(a-iii) and (b-iii) are nodes projected on the ky = 0 plane. Dashed
lines in (a-iii) and (b-iii) indicate projected Fermi surface on ky = 0
plane.

with

ue(h) = [Ẽ + ω+(−)]σ0√
(Ẽ + ω+(−))2 + 1

2 Tr�+(−)�
†
+(−)

,

ve = �
†
+√

(Ẽ + ω+)2 + 1
2 Tr�+�

†
+

,

vh = �−√
(Ẽ + ω−)2 + 1

2 Tr�−�
†
−

,

ω± =
√

Ẽ2 − 1

2
Tr�±�

†
±,

�+ = �
planar
E1u

(k),

�− = �
planar
E1u

(k̃),

for �
planar
E1u

(k) and

ue = a+[|q+|σ0 + q+ · σ ](σ0 + σ3)

+ b+[|q+|σ0 − q+ · σ ](σ0 − σ3),

uh = a−[|q−|σ0 + q− · σ ∗](σ0 + σ3)

+ b−[|q−|σ0 − q− · σ ∗](σ0 − σ3),

a± = 1√
16|q±|[|q±| + (q±)3]

√
Ẽ + ω±,p

Ẽ
,

b± = 1√
16|q±|[|q±| + (q±)3]

√
Ẽ + ω±,m

Ẽ
,

ve = �
†
+ue(Ẽσ0 + ω̂+,pm)−1,

vh = �−uh(Ẽσ0 + ω̂−,pm)−1,

FIG. 4. Red lines and dots indicate the positions of nodes of the
pair potential �

f +p

E2u
for δ = 0.2. η = 0.5 for (a-i)–(a-iii). η = 1 for

(b-i)–(b-iii). η = 1.5 for (c-i)–(c-iii). (a-ii), (b-ii), and (c-ii) are nodes
projected on the kz = 0 plane. (a-iii), (b-iii), and (c-iii) are nodes
projected on the ky = 0 plane. Dashed lines in (a-ii), (a-iii), (b-iii),
(c-ii), and (c-iii) indicate the projected Fermi surface on the kz = 0
or ky = 0 plane.

ω̂±,pm =
(

ω±,p 0
0 ω±,m

)
,

ω±,p =
√

Ẽ2 − (|d±|2 + |q±|),

ω±,m =
√

Ẽ2 − (|d±|2 − |q±|),
q± = id± × d∗

±,

d+ = d(k),

d− = d(k̃),

for �
f +p

E2u
. The boundary conditions are given in Eqs. (13)

and (14). We derive a general formula for conductance,
which includes the nonunitary case. This formula is similar
to that derived in the context of doped topological insulators
[61]. In the present case, �± is available for a general
pair potential, including nonunitary spin-triplet pairing. The
derivation of conductance for a general pair potential is given
in Appendix C:

σS = σN

2
Tr[σ0 − (1 − σN)�̂†

+�̂
†
−]−1

× [1 + σN�̂
†
+�̂+ + (σN − 1) �̂

†
+�̂

†
−�̂−�̂+]

× [σ0 − (1 − σN)�̂−�̂+]−1, (26)
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with

�̂+ = �
†
+

Ẽ + ω+
,

�̂− = �−
Ẽ + ω−

,

for �
planar
E1u

, and

�̂+ = �
†
+

2

[(
1

Ẽ + ω+,p

+ 1

Ẽ + ω+,m

)

+
(

1

Ẽ + ω+,p

− 1

Ẽ + ω+,m

)
q+
|q+| · σ

]
,

�̂− = �−
2

[(
1

Ẽ + ω−,p

+ 1

Ẽ + ω−,m

)

+
(

1

Ẽ + ω−,p

− 1

Ẽ + ω−,m

)
q−
|q−| · σ ∗

]
,

for �
f +p

E2u
. It is noted that the charge conductance for �

planar
E1u

can be written by using �chiral
E1u

:

σS(eV,k‖) = σN

2
[1 + σN|�+|2 + (σN − 1)|�+�−|2]

×
(

1

S1
+ 1

S2

)
, (27)

S1 = 1

|1 + (σN − 1)�+�−|2 , (28)

S2 = 1

|1 + (σN − 1)�+�−|2 ,

�+ = �̃chiral
E1u

(k)

Ẽ +
√

Ẽ2 − ∣∣�̃chiral
E1u

(k)
∣∣2

, (29)

�− = [�̃chiral
E1u

(k̃)]∗

Ẽ +
√

Ẽ2 − ∣∣�̃chiral
E1u

(k̃)
∣∣2

,

where �± in Eq. (28) is the same as in Eqs. (10) and (11) if
� is replaced by �̃chiral

E1u
. SABS is given by Eq. (17), Eq. (18),

and

Re(�+�−) = 1, Im(�+�−) = 0.

FIG. 5. Schematic illustration of point nodes (red dots) for (a-i) α = π/8, (a-ii) π/4, and (a-iii) π/2. Point nodes projected on the kx − ky

plane corresponding to (a-i)–(a-iii) are shown in (b-i)–(b-iii). Schematic picture of pair potential for (c) �ν=1
2d and (f) �ν=2

2d . The angle-resolved
zero-bias conductance σS(eV = 0,k‖) at Z = 6 are plotted as functions of kx and ky for �ν=1

2d (d-i) α = π/8, (d-ii) π/4, and (d-iii) π/2. Similar
plots for �ν=2

2d for (g-i) α = π/8, (g-ii) π/4, and (g-iii) π/2. The energy dispersions of the SABS E(k‖) are plotted as functions of kx and ky

for �ν=1
2d [(e-i)–(e-iii)] and for �ν=2

2d [(h-i)–(h-iii)].

104511-6



THEORY OF SURFACE ANDREEV BOUND STATES AND . . . PHYSICAL REVIEW B 95, 104511 (2017)

Owing to the presence of time reversal symmetry, the energy
dispersion of the SABS is given by

E(k‖) = ±Echiral(k‖),

where Echiral(k‖) is the energy dispersion of the SABS for
�chiral

E1u
. The normalized conductance is given in Eq. (23).

C. Topological number

In this section, we briefly summarize the main discussion
about the number of the ZESABSs for �ν

2d and �ν
3d (ν � 2)

[41]. This result is used in Sec. III A. The ZESABSs for
�ν

2d are understood only from a 2D topological number
(Chern number) and those for �ν

3d are understood from a
one-dimensional topological number (winding number) and
the Chern number. Similar discussions for �ν>2

3d and �chiral
E1u

are
given in Appendix A. For �ν>2

3d with 0 < α < π/4, cylindrical
cuts must be used to calculate the Chern number.

Generally, if a Hamiltonian possesses time reversal sym-
metry, the winding number can be defined by using a chiral
operator � = −iCT (C = σ0τ1K: charge conjugation, T =
iσ2τ0K: time reversal. σi and τi are the Pauli matrices in spin
and Nambu spaces, respectively) which anticommutes with
the Hamiltonian. The winding number is given by [8,62,63]

W (k‖,�) = −1

4πi

∫ ∞

−∞
dk⊥Tr[�H−1(k)∂k⊥H (k)],

where k‖ and k⊥ are wave vectors parallel and perpendicular
to a certain surface, respectively. Although �ν

3d (ν � 1) does
not have time reversal symmetry, the BdG Hamiltonian hosts
a momentum-dependent pseudo time reversal symmetry [41]:

U †
ϕk

T UϕkH (k)U †
ϕk

T †Uϕk = H (−k),

with Uϕk = exp(−iνϕkσ0τ3/2) and ϕk = tan−1(ky/kx). Re-
placing � with �ϕk , we can define the winding number where
�ϕk is given by

�ϕk =
{
U †

ϕk
�Uϕk (ν : odd),

U †
ϕk

SzCT Uϕk (ν : even),

with Sz = σ3τ3.
The Chern number [64] at a fixed k‖,1 is defined by

N (k‖,1) = i

2π

∑
n∈occ

∫
BZ

dk⊥dk‖,2εab∂ka
〈un(k)|∂kb

|un(k)〉,

where |un(k)〉 is an eigenstate of H (k) and the summation is
taken over all of the occupied states.

These topological numbers connect the number of the
ZESABSs by the bulk-boundary correspondence. We show the
angle-resolved zero voltage conductance calculated by using
Eq. (15) in Fig. 5 (�ν

2d), Fig. 6 (�ν=0
3d ), and Fig. 7 (�ν=1,2

3d ).
The corresponding energy dispersion of SABS calculated by
using Eq. (19)–(22) are also shown in the same figures and we
discuss them in Sec. III A.

The position of a line node or point nodes or both on the
Fermi surface for each pair potential are shown in Figs. 5(a-i)–
5(a-iii), 6(b-i)–6(b-v), and 7(a-i)–7(a-v), and those projected
on the kx − ky (001) plane are shown in Figs. 5(b-i)–5(b-iii),
6(c-i)–6(c-v), and 7(b-i)–7(b-v). For �ν

3d , the position of a

FIG. 6. Schematic illustration of pair potential for (a) �ν=0
3d .

Schematic illustration of a line node (red line) for (b-i) α = 0,
(b-ii) π/8, (b-iii) π/4, (b-iv) 3π/8, and (b-v) π/2. The line node
projected on the kx-ky plane corresponding to (b-i)–(b-v) are shown
in (c-i)–(c-v). The energy dispersion of SABS E(k‖) for given α are
plotted as functions of kx and ky [(d-i)–(d-v)].

projected line node is given by

k2
x

cos2 α
+ k2

y = k2
F. (30)

The ZESABSs, including the spin degrees of freedom for
�ν=0

3d , are shown in Figs. 6(d-i)–6(d-v). The angle-resolved
conductance at zero-bias voltage reflects on the ZESABSs.
They are shown in Figs. 5(d-i)–5(d-iii) for �ν=1

2d and

104511-7
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FIG. 7. Schematic illustration of point nodes (red dots) and a line node (red line) for (a-i) α = 0, (a-ii) π/8, (a-iii) π/4, (a-iv) 3π/8,
and (a-v) π/2. Point nodes and a line node projected on the kx − ky plane corresponding to (a-i)–(a-v) are shown in (b-i)–(b-v). Schematic
illustration of pair potential for (c) �ν=1

3d and (f) �ν=2
3d . The angle-resolved zero-bias conductance σS(eV = 0,k‖) with Z = 6 is plotted as

functions of kx and ky for �ν=1
3d [(d-i)–(d-v)] and for �ν=2

3d [(g-i)–(g-v)]. The energy dispersion of the SABS E(k‖) for given α are plotted as
functions of kx and ky for �ν=1

3d [(e-i)–(e-v)] and for �ν=2
3d [(h-i)–(h-v)].

Figs. 5(g-i)–5(g-iii) for �ν=2
2d . They are also shown in Figs. 7(d-

i)–7(d-v) for �ν=1
3d and Figs. 7(g-i)–7(g-v) for �ν=2

3d .
In the case of �ν=0

3d , there are flat band SABSs within
the ellipse of Eq. (30) originated from the winding number
[Figs. 6(d-i)–6(d-v)]. There are two bands due to spin degrees
of freedom. For �

ν�1
3d with α = 0, there are flat band SABSs

within k2
x + k2

y � k2
F [see Figs. 7(d-i) and 7(g-i)]. The origin

of these flat bands is explained from the winding number. On
the other hand, there is no ZESABS for �ν

2d with α = 0 (not
shown). In the case of α = π/4 for �ν=1

3d , there is no ZESABS

[Fig. 7(d-iii)], while they exist on ky = 0 for α = π/4 with
�ν=2

3d [Fig. 7(g-iii)]. In other cases, (except for α = 0,π/4
for �

ν�1
3d and α = 0 for �ν

2d), the number of the arc shaped
ZESABSs which terminate at projected point nodes on the
kx-ky plane is 2ν, where two comes from the spin degeneracy
[see Figs. 5(d-i)–5(d-iii), 5(g-i)–5(g-iii) and Figs. 7(d-ii), 7(d-
iv), 7(d-v), 7(g-ii), 7(g-iv), and 7(g-v)]. For �ν

2d, the number
of ZESABSs connecting two projected point nodes is 2ν.

In addition to the ZESABSs those terminate at the projected
point nodes, the ZESABSs located on ky = 0 and cos α > |kx |
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TABLE I. Origin of ZESABSs for each pair potential. w and c

indicate winding number and Chern number, respectively.

� α = 0 0 < α < π

4 α = π

4
π

4 < α < π

2 α = π

2

�ν
2d − c c c c

�ν=0
3d w w w w −

�ν=1
3d w w − c c

�ν=2
3d w w w w and c c

appear for π/4 < α � π/2 with �ν=2
3d . For 0 < α < π/4 with

�
ν=1,2
3d , the ZESABSs are originated from the winding number.

For π/4 < α < π/2 with �ν=2
3d , the ZESABSs are originated

from both the winding number and the Chern number. The
ZESABSs for �ν

2d originate from the Chern number for
arbitrary α (Table I).

III. RESULTS

A. Andreev bound state with H = 0

In this section, we calculate the energy dispersion of the
SABS with H = 0 for two cases of chiral superconductors
where pair potentials are given by (k′

x + ik′
y)ν (ν = 1,2) and

k′
z(k

′
x + ik′

y)ν (ν = 1,2). Although the ZESABS has been
discussed in a previous paper [41], the energy dispersion of
the SABS with nonzero energy has not been clarified at all. To
resolve this problem, we calculate the energy spectrum of the
SABSs from Eqs. (19) to (22).

Here, we apply this formula for normal metal/3D chiral
superconductor junctions. First, we calculate the energy
dispersion and tunneling conductance of the 2D-like chiral
superconductor, where the pair potential is given by �ν

2d ∝
(k′

x + ik′
y)ν . The angle-resolved zero-bias conductance and the

energy dispersion of SABS are shown in Fig. 5. For ν = 1,
the angle-resolved zero voltage conductance is plotted from
Figs. 5(d-i) to 5(d-iii). As explained in Sec. II C, we can see
that the ZESABS appears on the line connecting two point
nodes at ky = 0. The region of the ZESABS spreads with
the increase of α. The corresponding energy dispersion of the
SABS E(k‖) is shown in Figs. 5(e-i)–5(e-iii). In this case, we
can obtain an analytical formula for the SABS, given by

E(k‖) = −�0ky/kF (31)

with k2
x + k2

y sin2 α � k2
F sin2 α. (32)

The number of SABSs including the zero energy state is two
(including the spin degeneracy). For ν = 2, two branches of
the ZESABS appear as arcs on the kx − ky plane connecting
two point nodes as shown from Figs. 5(g-i) to 5(g-iii). The
length of the arcs increases with the increase of α. The
corresponding E(k‖) is shown from Figs. 5(h-i) to 5(h-iii).
The number of SABSs including zero energy state is four.
Then, we can summarize that the number of SABSs stemming
from topological origins, including the ZESABS, is 2ν.

Next, we focus on the case of 3D chiral superconductors
[�ν

3d ∝ k′
z(k

′
x + ik′

y)ν , including the p-wave case]. In the
p-wave (ν = 0) case (see Fig. 6), the energy dispersion of
the SABS is shown from Figs. 6(d-i) to 6(d-v). It is located

inside the ellipse given by Eq. (30) and there only appears the
ZESABS.

For the ν = 1 and 2 cases, (see Fig. 7), the angle-resolved
zero voltage conductance is plotted in Figs. 7(d-i)–7(d-v)
for ν = 1 and the corresponding energy dispersion of the
SABS E(k‖) is shown in Figs. 7(e-i)–7(e-v). We can derive
an analytical formula of E(k‖) for α = π/4 and π/2 given by

E(k‖) = − �0

2
√

2r3d,ν=1

(
k̂x +

√
1 − k̂2

x − k̂2
y

)2

× (
k̂x −

√
1 − k̂2

x − k̂2
y

)
sgn(k̂y),

with 2k2
x + k2

y � k2
F,

where k̂i = ki/kF (i = x,y,z) and

E(k‖) = − �0

r3d,ν=1
k̂y |k̂x |,

respectively. The number of SABSs nABS, which includes
the ZESABS, is classified by whether (kx,ky) is inside the
ellipse [Eq. (30)] or not. Inside the ellipse, nABS becomes two
(including the spin degeneracy) for α < π/4 and zero for α �
π/4. On the other hand, outside the ellipse, nABS becomes zero
for α � π/4 and four for α > π/4. Besides this SABS with
topological origin, inside the ellipse, nonzero nontopologically
SABS which does not include the zero-energy state exists.

Next, we focus on the ν = 2 case. Angle-resolved zero
voltage conductance is plotted in Figs. 7(g-i)–7(g-v) and the
corresponding energy dispersion of the SABS E(k‖) is shown
in Figs. 7(h-i)–7(h-v). We can derive an analytical formula of
E(k‖) for α = π/2 given by

E(k‖) = �0

r3d,ν=2
sgn(k̂y)|k̂x |

(
1 − k̂2

x − 2k̂2
y

)
.

nABS is also classified whether (kx,ky) is inside the ellipse
or not. Inside the ellipse, nABS becomes two for α = 0. For
0 < α < π/4, nABS is four and nABS = 2 for α � π/4. On the
other hand, outside the ellipse, nABS becomes zero for α � π/4
and eight for α > π/4. Beside this SABS with topological
origin, nonzero nontopologically SABSs also exist.

We further calculate nABS up to ν = 4 (The ZESABSs for
0 < α < π/4 with ν = 3,4 are discussed in Appendix A 2). A
summary of nABS as a function of ν is shown in Table II. We

TABLE II. The number of SABS (nABS) which cross zero-energy
for �ν

3d. It is classified by inside or outside of the ellipse [Eq. (30)]
corresponding to projected line node [Figs. 6(c-i)–6(c-v) and 7(b-i)–
7(b-v)]. nABS is counted including the spin degeneracy. The dash “-”
means there is no area inside or outside the ellipse [Figs. 6(c-i) and
6(c-v)].

nABS

α Inside ellipse Outside ellipse

0 2 −
0 < α < π

4 2ν 0
α = π/4 2(ν − 1) 0
π

4 < α < π

2 2(ν − 1) 4ν

α = π/2 − 4ν
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TABLE III. The energy dispersion of SABS E(k‖)/�0 times
normalization factor r (r = r3d,ν for �ν

3d and r = 1 for �ν
2d) at

α = π/2 is shown for �ν
3d and �ν

2d. k̂i = ki/kF(i = x,y,z). For the
chiral 3D superconductor, the line kx = 0 does not express the energy
dispersion of SABS since �ν

3d(kx = 0) = 0 is satisfied for ν = 1,2,3.

�(k) E(k‖)r/�0

kx(−kz + iky) −k̂y |k̂x |
(−kz + iky) −k̂y

kx(−kz + iky)2 sgn(k̂y)|k̂x |
(
1 − k̂2

x − 2k̂2
y

)
[48]

(−kz + iky)2 sgn(k̂y)
(
1 − k̂2

x − 2k̂2
y

)
kx(−kz + iky)3 −|k̂x |k̂y

(
3 − 3k̂2

x − 4k̂2
y

)
sgn

(
1 − k̂2

x − 2k̂2
y

)
(−kz + iky)3 −k̂y

(
3 − 3k̂2

x − 4k̂2
y

)
sgn

(
1 − k̂2

x − 2k̂2
y

)

can also obtain the analytical formula of E(k‖) both for the 3D
and 2D-like chiral superconductors for α = π/2. The results
are summarized in Table III.

B. Conductance with magnetic field

In this section, we discuss the magnetic field dependence
of conductance. We consider the situation in which a magnetic
field is applied in the x-y plane [Eq. (5)] and is rotated along
the z axis by γ (Fig. 8). It is known that the applied magnetic
field shifts the energy of quasiparticle as a Doppler effect [26].
In the usual case, ZBCP without a magnetic field is split into
two [26,54] or the height of ZBCP is suppressed [20,65] by the
Doppler effect. For chiral p-wave superconductors, the height
of ZBCP is controlled by the direction of the applied magnetic
field [65]. In contrast to this standard knowledge, we show a
unique behavior whereby the Doppler effect can change the
line shape of conductance from zero-bias dip to zero-bias peak,
as shown in Fig. 9 (�ν=1

3d ) and Fig. 11 (�ν=2
3d ).

For α = π/8 with H = 0 [Figs. 9(f) and 11(f)], σ near
eV = 0 has a concave shape, and it changes into ZBCP for
H/H0 = 0.1 with γ = π [Figs. 9(c) and 11(c)]. The Doppler
effect shifts the energy dispersion of the SABS along the vector
(cos γ, sin γ,0), as shown in Fig. 8. The SABS that is slightly
above or below zero energy for H = 0 can contribute to zero-
bias conductance in the presence of the magnetic field. For ν =
1, in Fig. 9(e), there is no ZESABS. However, in the presence
of the magnetic field for γ = π , a SABS exists around zero
energy near (kx,ky) = (0, ± kF) [Fig. 9(b)]. We can also see the

FIG. 8. Dash dotted line (red line) represents a rectangular located
at ky/kF = [−1,1] and eV/�0 = [−1,1] on ky − eV plane which are
used for (b), (e), and (h) in Figs. 9, 11, and 13. Dashed line (green
line) represents the direction of magnetic field which corresponds to
the arrow in Fig. 1.

FIG. 9. Angle-resolved conductance σS(eV,k‖) for �ν=1
3d with

α = π/8 are plotted as functions of (kx,ky) with eV = 0 [(a), (d),
and (g)] and (ky,eV ) with kx = 0 [(b), (e), and (h)] (see Fig. 8) and
normalized conductance plotted as a function of eV [(c), (f), and (i)].
Normalized magnetic field H/H0 is chosen to be 0.1 with γ = π [(a),
(b), and (c)], 0 [(d), (e), and (f)], 0.1 with γ = 0 [(g), (h), and (i)].

circle near k2
x/ cos2(π/8) + k2

y = k2
F of ZESABS in Fig. 9(a),

which does not exist in Fig. 9(d). On the other hand, in the case
that the direction of the magnetic field is opposite, i.e., γ = 0,
SABS around zero energy remains absent [Figs. 9(g) and 9(h)].
As seen from Fig. 9(a), the angle-resolved conductance near
(kx,ky) = (±kF,0) is enhanced. In Fig. 10(a), we can see how
the ZBCP develops with increasing magnetic field. We can see
the generation of ZBCP even for small magnitudes of H with
H/H0 = 0.01. The magnitude of zero-bias conductance as a
function of H is shown in Fig. 10(b) and it is approximately a
linear function of H .

A similar plot for ν = 2 with the same α is shown in
Fig. 11. In this case, in contrast to Fig. 9, chiral edge mode
crossing ky = 0 exists [see Figs. 7(h-ii) and 11(e)]. There

 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4
 2.6

-0.2 -0.1  0  0.1  0.2

(a) (b)

Δ3d
ν=1, α= π/8, Z=6, γ=π/2

σ

eV/Δ0

H/H0
0

0.01
0.05

0.1

 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4
 2.6

 0  0.05  0.1

σ
(e
V=

0)

H/H0

FIG. 10. (a) Conductance is plotted as a function of eV for
H/H0 = 0, 0.01, 0.05, and 0.1 with γ = π/2. (b) Conductance at
eV = 0 is plotted as a function of H/H0. This plot is fitted by the
linear function f (H/H0) = aH/H0 + b with (a,b) = (12.4,1.27).
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FIG. 11. Angle-resolved conductance of �ν=2
3d with α = π/8. The

model parameters used in this calculation is the same as in Fig. 9
except for pair potential �.

are two kinds of branches of SABS: (1) chiral edge mode
crossing (kx,ky) = (0,0) and (2) SABS touching the ellipse
given by k2

x/ cos2(π/8) + k2
y = k2

F. The slope of the chiral
edge mode becomes gradual (steep) for γ = 0 (γ = π ) in
the presence of the magnetic field. The contribution to zero-
bias conductance becomes suppressed (enhanced) for γ = π

(γ = 0). On the other hand, the qualitative feature of SABS
touching the ellipse is similar to that for ν = 1 shown in Fig. 9.
In the presence of the magnetic field for γ = π , ZESABS ex-
ists near (kx,ky) = (±kF,0) and around the ellipse [Fig. 11(a)].
Since the contribution to zero-bias conductance from SABS
touching the ellipse is dominant as compared to that of the
chiral edge mode, the resulting σ has a ZBCP. On the other
hand, if the direction of the magnetic field is opposite, ZBCP is
absent [Fig. 11(i)]. In Fig. 12(a), we show how ZBCP develops
with increasing magnetic field. Even for small magnitude of
H (H/H0 = 0.01), ZBCP appears similar to Fig. 10(a). The

 0.8

 0.9

 1

 1.1

 1.2

 1.3

-0.2 -0.1  0  0.1  0.2

(a) (b)

Δ3d
ν=2, α = π/8, Z=6, γ =π/2

σ

eV/Δ0

H/H0
0

0.01
0.05

0.1

 0.8

 1

 1.2

 0  0.05  0.1

σ
(e
V=

0)

H/H0

FIG. 12. (a) Conductance is plotted as a function of eV for
H/H0 = 0, 0.01, 0.05, and 0.1 with γ = π/2. (b) Conductance at
eV = 0 is plotted as a function of H/H0. This plot is fitted by the
linear function f (H/H0) = aH/H0 + b with (a,b) = (3.49,0.796).

FIG. 13. Angle-resolved conductance of �ν=1
3d with α = π/4. The

parameters are the same as Fig. 9 except for α.

magnitude of conductance at zero bias as a function of H is
shown in Fig. 12(b) and it is an approximately linear function of
H . The slope a of the fitting function f (H/H0) = aH/H0 + b

is smaller than that for �ν=1
3d .

Next, let us discuss special case of �ν=1
3d for α = π/4, at

which there is no ZESABS without magnetic field [Fig. 7(d-
iii)]. The magnitude of the zero-bias conductance for H = 0
is very small [Fig. 13(f)] and it becomes larger for γ = π

[Fig. 13(c)] due to the similar mechanism explained in Fig. 9.
For γ = 0 [Fig. 13(i)], although there is no SABS at zero-
energy, the conductance becomes slightly larger than that for
H = 0.

Whether the magnitude of ZBCP becomes larger or smaller
by applying an infinitesimally small magnitude of magnetic
field is summarized in Table IV. For 2D-like chiral supercon-
ductors with ν = 1, since the energy dispersion of the SABS is
given by E(k‖) = −ky/kF [Eqs. (31) and (32)], the magnitude
of σ (eV = 0) becomes larger for γ = 0 and smaller for γ = π .
In other cases, there is no simple law owing to the complicated
energy dispersion of the SABS. Using this table, we can
classify five cases. If we make a junction for α = π/2, we
can distinguish between ν = 0 (k′

z), ν = 1 [k′
z(k

′
x + ik′

y),(k′
x +

ik′
y)], and ν = 2 [k′

z(k
′
x + ik′

y)2,(k′
x + ik′

y)2]. Further, if we
make a junction for α = 0, we can distinguish between
k′
z(k

′
x + ik′

y)ν and (k′
x + ik′

y)ν with (ν = 1,2).
To clarify the γ dependence of the conductance, we plot

σ (eV = 0) as a function of γ for α = π/4, and π/2 in Fig. 14.
For α = 0, σ (eV = 0) is constant as a function of γ owing
to the rotational symmetry of the pair potentials (not shown).
Since �ν=0

3d conserves time reversal symmetry, i.e., the energy
dispersion of the SABS has twofold rotational symmetry
[Figs. 6(d-i)–6(d-v)], σ has π periodicity [Figs. 14(b) and
14(c)]. In other cases, σ (eV = 0) has 2π periodicity due to
time reversal symmetry breaking.
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TABLE IV. Line shape of σ (eV ) near eV = 0 for H = 0. p: peak,
d: dip. Whether the magnitude of σ (eV = 0) is enhanced (suppressed)
by the magnetic field is indicated by ↑ (↓). We choose the infinitesimal
applied magnetic field as H/H0 = 10−4. In the case � ∝ k′

z, the
values of σ (eV = 0) at H > 0 with γ = 0 and γ = π are equivalent
because σ is a π periodic function of γ .

α

�(k) H/H0 γ 0 π/8 π/4 3π/8 π/2

k′
z 0 - p p p p d

10−4 0,π ↓ ↓ ↓ ↓ ↑
k′

z(k
′
x + ik′

y) 0 - p d d d p
10−4 0 ↓ ↓ ↑ ↑ ↑
10−4 π ↓ ↑ ↑ ↓ ↓

(k′
x + ik′

y) 0 - d d p p p
10−4 0 ↑ ↑ ↑ ↑ ↑
10−4 π ↓ ↓ ↓ ↓ ↓

k′
z(k

′
x + ik′

y)2 0 - p d d p d
10−4 0 ↓ ↓ ↑ ↑ ↓
10−4 π ↓ ↑ ↓ ↓ ↑

(k′
x + ik′

y)2 0 - d p p d d
10−4 0 ↑ ↑ ↑ ↓ ↓
10−4 π ↑ ↓ ↓ ↑ ↑

The values of γ that maximize σ (eV = 0) are summarized
in Table V. In the case of �ν=0

3d with α = π/2, σ (eV = 0)
becomes the smallest when the direction of the magnetic field
is parallel to the direction of the projected line node. This
result is consistent with that for the 2D d-wave case [54,66].
However, in the case of 3D chiral superconductors with �

ν=1,2
3d ,

this does not hold.

C. Symmetry of pairing potential of UPt3

Recently, the guide to determine the pairing symmetry of
UPt3 by using quasiparticle interference in a slab model was
theoretically proposed [67]. However, the role of the SABS
in determining the charge transport in junctions has not yet
been revealed. We also propose a way to determine the pairing
symmetry by using a Doppler shift. In this section, we consider
�ν=2

3d , �chiral
E1u

, and �
planar
E1u

as candidates of the pairing symmetry.
The crystal symmetry of UPt3 is P 63/mmc, so the pair

potential around the � point respects D6h. In addition,
various experiments [46] indicate a spin-triplet paring and
coexistence of point and line nodes. �ν=2

3d and �
planar
E1u

satisfy
these properties and are possible candidates for the pairing
symmetry of UPt3 [68]. �chiral

E1u
does not have time reversal

symmetry and �
planar
E1u

has time reversal symmetry. For �
planar
E1u

,
the conductance is given by Eq. (27).

Firstly, let us discuss the SABS of �chiral
E1u

and �
planar
E1u

(Fig. 15). The positions of point and line nodes are shown
on the Fermi surface for α = π/8 [Figs. 15(a-i)], α = π/4
[Figs. 15(a-ii)], α = 3π/8 [Figs. 15(a-iii)], and α = π/2
[Figs. 15(a-iv)]. The corresponding projected point and line
nodes on the kx − ky plane are replotted from Figs. 15(b-i)
to 15(b-iv). In the case of �

planar
E1u

, as explained in Sec. II B,
the energy dispersion of the SABS for �

planar
E1u

is ±Echiral(k).

FIG. 14. Normalized conductance at eV = 0 is plotted as a
function of γ for ν = 0,1,2 with Z = 6. Schematic pictures of the
pair potential are shown in (a), (d), (g), (j), and (m). α = π/4 for (b),
(e), (h), (k), and (n). α = π/2 for (c), (f), (i), (l), and (o). σmin is a
minimum value of σ (eV = 0) as a function of γ for H/H0 = 0.05
and H/H0 = 0.1.

For example, Fig. 15(e-i) is the same as Figs. 15(h-i), and
Figs. 15(h-i) and 15(i-i) are the energy dispersions of the SABS
for �

planar
E1u

. Owing to the presence of two line nodes, there is

no SABS at α = 0 for either �chiral
E1u

or �
planar
E1u

(not shown). For

TABLE V. γ at which σ (eV = 0) becomes maximum as a
function of γ with H/H0 = 0.1.

α

� π/8 π/4 3π/8 π/2

k′
z π/2,3π/2 π/2, 3π/2 π/2, 3π/2 0, π

k′
z(k

′
x + ik′

y) π π 0 0

(k′
x + ik′

y) π 0 π 0

k′
z(k

′
x + ik′

y)2 π 0 0 π

(k′
x + ik′

y)2 ∼0 ∼0 π π
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FIG. 15. Schematic illustration of point nodes (red dots) and line nodes (red lines) for (a-i) α = π/8, (a-ii) π/4, (a-iii) 3π/8 and (a-iv)
π/2. Point nodes and line nodes projected on kx-ky plane corresponding to (a-i)–(a-iv) are shown in (b-i)–(b-iv). Schematic picture of the pair
potential for (c) �chiral

E1u
and (f) �

planar
E1u

. Angle-resolved zero-bias conductance σS(eV = 0,k‖) with Z = 6 is plotted as a function of kx and ky

for �chiral
E1u

[(d-i)–(d-iv)] and for �
planar
E1u

[(g-i)–(g-iv)]. The energy dispersion of SABS E(k‖) for given α is plotted as a function of kx and ky for

�chiral
E1u

[(e-i)–(e-iv)] and for �
planar
E1u

[(h-i) and (i-i)]–[(h-iv) and (i-iv)].

α > 0, ZESABS of �chiral
E1u

[Figs. 15(d-i)–15(d-iv)] and that of

�
planar
E1u

[Figs. 15(g-i)–15(g-iv)] are the same because S1 = S2

[Eqs. (28) and (29)]. The number of ZESABSs is discussed in
Appendix A 1.

The energy dispersion of the SABS becomes very com-
plicated as seen from Figs. 15(e-i) to 15(e-iv) for �chiral

E1u
and

from Figs. 15(h-i) and 15(i-i) to Figs. 15(h-iv) and 15(i-iv) for
�

planar
E1u

. This is due to the presence of two line nodes and two

TABLE VI. The energy dispersion of SABS E(k‖)rE1u
/�0 at

α = π/2 is shown for �chiral
E1u

(k) and �
planar
E1u

(k). k̂i = ki/kF(i = x,y,z).

�(k) E(k‖)rE1u
/�0

�chiral
E1u

(k) −k̂y

∣∣5k̂2
x − 1

∣∣
�

planar
E1u

(k) ±k̂y

∣∣5k̂2
x − 1

∣∣

point nodes. The energy dispersion of the SABS at α = π/2
is summarized in Table VI.

The conductance for �ν=2
3d , �chiral

E1u
, and �

planar
E1u

is shown
in Fig. 16. Although the angle-resolved conductance (σS)
of �

planar
E1u

has a counterpropagating mode in addition to the
same chiral edge mode shown in �chiral

E1u
, the angular averaged

conductance (σ ) is the same [Fig. 16(b)]. Therefore we can
distinguish �ν=2

3d from (�chiral
E1u

, �planar
E1u

) by conductance but we

cannot distinguish between �chiral
E1u

and �
planar
E1u

.

To distinguish �chiral
E1u

from �
planar
E1u

, we discuss the direc-
tional dependence of the magnetic field on the conductance
(Fig. 17). Because �chiral

E1u
(�planar

E1u
) does not have (has) time

reversal symmetry, σ (eV = 0) has 2π (π ) periodicity. The
difference in conductance as a function of eV with H = 0
and that of γ with the magnetic field between �ν=2

3d , �chiral
E1u

,

and �
planar
E1u

are summarized in Table VII. Whether ZBCP
becomes larger or smaller when an infinitesimal magnitude

104511-13
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(a) Δ=Δ3d
ν=2 ∝kz(kx+iky)

2 (b) Δ=ΔE1u
chiral, ΔE1u

planar

Z=6,H=0 Z=6, H=0

σ

eV/Δ0

α
0

π /4
π/2

-1.5 -1 -0.5  0  0.5  1  1.5

x
chiral

Z

eV/Δ0

FIG. 16. Normalized conductance for spin-triplet f -wave sym-
metry as a function of eV for α = 0 (solid line), π/4 (dash-dotted
line), and π/2 (dotted line). (a) �ν=2

3d and (b) �chiral
E1u

, σ of �
planar
E1u

coincides with that of �chiral
E1u

.

of the magnetic field is applied is summarized in Table VIII
and γ which makes conductance largest is summarized in
Table IX.

Recently, Y. Yanase has proposed an extended version of
E2u symmetry [60] as a model of the pairing symmetry of
UPt3. It is a linear combination of the spin-triplet p and f -wave
pairings. It is interesting to clarify whether the obtained results
in Table VII are changed by the disappearance of a line node by
the mixing of a small magnitude of chiral p-wave pair potential
and �ν=2

3d . We consider the nonunitary pair potential given by
Eq. (25). For this purpose, we have used a general formula for
tunneling conductance Eq. (26) derived in Appendix C. For
η = 1, the obtained conductance is shown in Fig. 18. In this
case, there remain two point nodes and a line node [Figs. 3(b-
i)–3(b-iii) and 4(b-i)–4(b-iii)]. When nonzero δ is introduced,
ZBCP splits, but the shape of conductance is still distinct
from that of E1u symmetry [Fig. 16(b)]. For fixed δ, the line
shape of conductance σ does not change qualitatively with
the change of η [Figs. 19(a) and 19(b)]. Hence it is expected
that if the spin-triplet p-wave pair potential is additionally
introduced into �ν=2

3d , E1u and the extended version of E2u

can be distinguished by tunneling conductance.

 0

 0.2

 0.4

 0.6

 0  0.5  1

(a) ΔE1u
chiral (b) ΔE1u

planar

α = π /2 α = π /2

( σ
− σ

m
in

)/ σ
m

in

γ /2π

H/H0
0.05

0.1

 0

 0.1

 0.2

 0.3

 0  0.5  1
γ /2π

FIG. 17. Normalized conductance at Z = 6 as a function of γ

with α = π/2. H/H0 = 0.1 (solid line) and 0.05 (dashed line).
(a) �chiral

E1u
and (b) �

planar
E1u

.

TABLE VII. Position of conductance peak with (α,H ) = (0,0)
(Fig. 16) and period of σ (eV = 0) as a function of γ with α = π/2
in the presence of the magnetic field [Figs. 14(l) and 17].

�ν=2
3d �chiral

E1u
�

planar
E1u

Conductance peak eV = 0 eV = �0 eV = �0

Period of σ (γ ) 2π 2π π

IV. DISCUSSION AND CONCLUSION

In this paper, we have studied the surface Andreev bound
state (SABS) and quasiparticle tunneling spectroscopy of
three-dimensional (3D) chiral superconductors by changing
the misorientation angle of superconductors. We have an-
alytically derived a formula of the energy dispersion of
SABS available for general pair potentials when an original
4 × 4 matrix of BdG Hamiltonian can be decomposed into
two blocks of 2 × 2 matrices. We apply this formula to
calculate the SABS for 3D chiral superconductors, where the
pair potential is given by �0kz(kx + iky)ν/kν+1

F (ν = 1,2).
The SABS has a complex momentum dependence, owing
to the coexistence of point and line nodes. The number of
branches of the energy dispersion of SABS with topological
origin can be understood based on the winding and Chern
numbers. We have calculated the tunneling conductance of
normal-metal/insulator/chiral-superconductor junctions in the
presence of the applied magnetic field, which induces a
Doppler shift. In contrast to previous studies of Doppler
effect on tunneling conductance, a zero-bias conductance dip
can change into a zero-bias conductance peak by applying
the magnetic field. This unique feature originates from the
complicated energy dispersion of the SABS. We have also
studied the SABS and tunneling conductance of UPt3 focusing
on four possible candidates of the pairing symmetry: E2u,
E1u-planar, E1u-chiral, and extended version of E2u pairings.
Since the last pairing is nonunitary, we have developed a
conductance formula, which is available for a general pair
potential. By using this formula, we have shown that these
four parings can be identified by tunneling spectroscopy both
with and without magnetic field. Thus, our theory serves as a
guide to determine the pairing symmetry of UPt3.

TABLE VIII. Line shape of σ (eV ) near eV = 0 with H = 0.
p: peak, d: dip. Whether the magnitude of σ (eV = 0) is enhanced
(suppressed) by the magnetic field indicated by ↑ (↓). We choose the
infinitesimal magnitude of the magnetic field as H/H0 = 10−4. The
value of σ (eV ) for �

planar
E1u

at γ = 0 and γ = π are equivalent because
σ is a π periodic function of γ .

α

�(k) H/H0 γ 0 π/8 π/4 3π/8 π/2

�chiral
E1u

0 - d d d d p
10−4 0 ↑ ↓ ↑ ↑ ↑
10−4 π ↑ ↑ ↑ ↓ ↓

�
planar
E1u

0 - d d d d p
10−4 0,π ↑ ↑ ↑ ↑ ↑
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TABLE IX. The position of γ at which σ (eV = 0) becomes
maximum as a function of γ .

α

� π/8 π/4 3π/8 π/2

�chiral
E1u

π 0 0 0

�
planar
E1u

0,π 0,π 0,π 0,π

In this paper, we are focusing on SABS and quasiparticle
tunneling spectroscopy. As a next step, it will be interesting
to calculate the Josephson effect in chiral superconductors,
including spin-triplet nonunitary pairings [69], where both
point and line nodes exist. Especially, it is known from the
studies of d-wave superconductors, the role of α induces non-
monotonic temperature dependence of maximum Josephson
current [70–73]. The study of such a kind of exotic temperature
dependence of the Josephson current will be really interesting.

In this paper, we have studied the case where a normal metal
is ballistic. It is a challenging issue to extend our theory to
diffusive normal metal (DN)/superconductor junctions where
penetration of the Cooper pair owing to the proximity effect
modifies the total resistance of the junctions [74,75]. In
particular, it is known that the anomalous proximity effect
with zero energy peak of the local density of states in DN via
odd-frequency pairing occurs in spin-triplet superconductor
junctions [76–82]. An extension of previous two-dimensional
studies to three dimensions is also promising.

In the remainder, we discuss points related to the conduc-
tance formula [Eq. (26) or (C16)]. (i) Doppler shift. Although
the Doppler shift approximation is not quantitatively perfect,
it is useful for the classification of pairing symmetry [27].
When the penetration depth is much larger than the coherence
length of the superconductor, this approximation does work
as far as we are discussing surface Andreev bound states and
inner-gap tunneling conductance. This approximation has been
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FIG. 18. Normalized conductance σ by its value in the normal
state for �

f +p

E2u
is plotted as a function of eV for several δ with η = 1

and Z = 6. Inset is the magnification near eV = 0.
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FIG. 19. Normalized conductance σ by its value in normal state
for �

f +p

E2u
is plotted as a function of eV for several η with Z = 6.

(a) δ = 0 and (b) 0.1.

actually done in the previous work in Eilenberger equation
[65] and qualitatively reasonable results are obtained. Also,
these results are qualitatively same as the results obtained by
extended version of BTK theory [20].

(ii) Isotropic Fermi surface. In the point of view of the rela-
tion between topological invariant and surface Andreev bound
state (SABS), the essential feature of SABS is determined by
the node structure of the pair potential in momentum space
and the symmetry of the Hamiltonian when the magnitude
of the pair potential is much smaller than the Fermi energy.
Thus the qualitative nature of SABS is not so sensitive to the
band structure. In the case that an actual Fermi surface is not
topologically equivalent to the single isotropic Fermi surface,
we must calculate SABS with the Fermi surface. For UPt3, as
far as superconducting pairing is formed on the Fermi surface
nearest to the � point, it is expected that the qualitative shape
of SABS in our paper can be compared to experimental results.

On the other hand, the line shape of the tunneling con-
ductance is more or less influenced by band structures. When
the obtained SABS has a flat band dispersion, the tunneling
conductance has a zero-bias conductance peak (ZBCP) shown
by the previous studies of the tight-binding model [83]. On
the other hand, when the SABS has a linear dispersion like a
chiral p-wave superconductor, the resulting line shape of the
tunneling conductance depends on band structures [84].

As regards UPt3, the energy band structures are complex.
However, we think that one can design the experiment to
greatly reduce such effect. For example, one can choose a
kind of material belonging to UPt3 family or with similar
band structures as a normal side. As a result, the tunneling
characteristic would depend mainly on the nodal structure
of the superconducting gap instead of the anisotropy of the
continuous energy band. The superconducting gap structure
will play a dominant role in the tunneling spectroscopy which
this paper is focused on.

(iii) Applicability. If we focus on the low-energy physics
and the effective Hamiltonian of the material has a single
Fermi surface, the conductance formula can be useful to
discuss the qualitative nature of superconductors. Especially
to three-dimensional superconductors, which have complex
nodes, for example, heavy Fermion compounds [85].
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APPENDIX A: TOPOLOGICAL NUMBERS

The 3D chiral superconductors host both a winding number
and a Chern number relevant to ZESABSs. In a previous study,
two of the present authors have discussed relevant topological
numbers in 3D chiral superconductors with �ν=1

3d and �ν=2
3d by

taking into account an additional symmetry [41]. At this point,
we explain topological numbers in 3D chiral superconductors
with �chiral

E1u
and �ν>2

3d .

1. Winding number in the case �chiral
E1u

Following the discussion in Ref. [41], a winding number
is defined in a similar way to the case �ν=2

3d . However, �chiral
E1u

has two line nodes and is an even function of kz, leading
to a vanishing of zero-energy flat band for α = 0. Thus, in
the following, we consider a winding number for α �= 0 and
ky = 0. In the kx − kz plane, �chiral

E1u
is real, so we can define

the winding number using time reversal symmetry and spin-
rotation symmetry:

W (kx) ≡ −1

4πi

∫ ∞

−∞
dkzTr

[
�H−1(k)∂kz

H (k)
]∣∣

ky=0, (A1)

where H (k) is the BdG Hamiltonian with ε(k) = h̄2

2m
(k2 − k2

F)
and �chiral

E1u
. The chiral operator, which anticommutes with

H (k), is given by � = −σ1τ2, where σμ and τμ (μ = 0,1,2,3)
are the identity matrix and the Pauli matrices in the spin
and Nambu spaces, respectively. Furthermore, using the weak
pairing assumption, Eq. (A1) is reduced into

W (kx) =
∑

ε(k)=0

sgn[∂kz
ε(k)] · sgn

[(
5k′2

z − k2
F

)
k′

x

]
, (A2)

where k′
x = kx cos α − kz sin α and k′

z = kx sin α + kz cos α

and the summation is taken for kz satisfying ε(k) = 0.
To evaluate the winding number (A2), we define the

characteristic angles: α1 = tan−1 ( 2√
5+1

), α2 = tan−1 ( 2√
5−1

),

and α3 = tan−1(2) and the positions of point and line nodes
projected onto the kx line in the (001) plane: kline

1 = kF√
5
(sin α +

2 cos α) and kline
2 = kF√

5
(− sin α + 2 cos α) for the line nodes

and kpoint = kF sin α for the point nodes (see Fig. 20). These
angles satisfy 0 < π

8 < α1 < π
4 < α2 < α3 < 3π

8 < π
2 . Calcu-

lating Eq. (A2), we obtain the winding number as follows:

(1) 0 < α � α1

W (kx) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2 −kline
1 < kx < −kline

2

−2 −kpoint < kx < kpoint

2 kline
2 < kx < kline

1

0 otherwise

.

(2) α1 < α � α2

W (kx) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2 −kline
1 < kx < −kpoint

−2 −kline
2 < kx < kline

2

2 kpoint < kx < kline
1

0 otherwise

.

(3) α2 < α � α3

W (kx) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−2 −kpoint < kx < −kline
1

−2 −kline
2 < kx < kline

2

−2 kline
1 < kx < kpoint

0 otherwise

.

(4) α3 < α � π
2

W (kx) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−2 −kpoint < kx < −kline
1

2 kline
2 < kx < −kline

2

−2 kline
1 < kx < kpoint

0 otherwise

.

The factor 2 comes from the spin degrees of freedom. The
obtained results are consistent with the ZESABSs in Fig. 15.

2. Chern number in the case �ν>2
3d

In 3D chiral superconductors with �ν=1
3d and �ν=2

3d ,
ZESABSs are understood from both the winding number and
the Chern number. On the other hand, 3D chiral superconduc-
tors with �ν>2

3d have the redundant ZESABSs for 0 < α � π
4 .

To understand this type of ZESABSs, we introduce the Chern
number defined on a cylinder:

N = i

2π

∑
n∈occ

∫ ∞

−∞
dkz

∫ 2π

0
ρdθ εab∂ka

〈un(k)|∂kb
|un(k)〉,

(A3)

where the cylindrical coordinate is defined by (ρ cos θ ±
kF sin α,ρ sin θ,kz), |un(k)〉 is an eigenstate of H (k), and the
summation is taken over all of occupied stats. We choose
ρ in such a way that the cylinder includes a single-point
node and does not touch the line node. Then, Eq. (A3) gives
±2ν in analogy with the Chern number on the ky − kz plane
[41], where 2 comes from the spin degrees of freedom. The
nontrivial Chern number predicts 2ν ZESABSs terminated at
the point nodes. As shown in Figs. 7(d-ii) and 7(g-ii), single
and double ZESABSs terminated at the point nodes appear
on the kx line, respectively. For ν > 2, we find 2ν ZESABSs
terminated at the point nodes [Figs. 21(d) and 21(g)]. Note that
the winding number also exists and explains ZESABSs in the
kx line.
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(a) α = 0 (b) 0< α < α1 (c) α = α1 (d) α1< α < α2 (e) α = α2 (f) α2< α < α3 (g) α = α3 (h) α3< α < π/2 (i) α = π/2

kline
1

kline
2

kpoint

-kF kF
-kF

kF

k y

kx kx kx kx kx kx kx kx kx

FIG. 20. The position of point nodes and line nodes for �chiral
E1u

projected on the kx − ky plane are shown for (a) α = 0, (b) 0 < α < α1, (c)
α = α1, (d) α1 < α < α2, (e) α = α2, (f) α2 < α < α3, (g) α = α3, (h) α3 < α < π/2 and (i) α = π/2. (b), (d), (h), and (i) are the same as
Figs. 15(b-i), 15(b-ii), 15(b-iii), and 15(b-iv), respectively. kline

1 , kline
2 , and kpoint for 0 < α < α1 are shown in (b).

APPENDIX B: SABS

In Appendix B, we show how to derive the SABS. Since
|�±| = 1 [�± is given by Eqs. (10) and (11)] is satisfied in
in-gap state, we introduce θ± as follows:

E = |�+| cos θ+, (B1)

= |�−| cos θ−. (B2)

with �+ = �(k), �− = �(k̃). Since θ+ and θ− are not
independent, we obtain

κ
cos θ+
cos θ−

= 1, (B3)

with

κ = |�+|
|�−| .

θ+ (θ−) is used for the definition of �+ (�−) and is confined
in the domain 0 � θ± � π . Then, �± is given by

�+ = exp [i(−φ+ − θ+)],

�− = exp [i(φ− − θ−)],

where φ± is defined by �± = |�±| exp(iφ±). Then, the SABS
satisfies the following conditions:

0 = Im�+�− = sin (φ − θ+ − θ−), (B4)

1 = Re�+�− = cos (φ − θ+ − θ−), (B5)

with

φ = −φ+ + φ−.

From Eqs. (B4) and (B5), the relation between φ and θ± is
obtained,

φ − θ+ − θ− = −2nπ,
(B6)

⇔ θ+ + θ− = 2nπ + φ,

where n is an integer. The dispersion relation is given by
Eqs. (B1) and (B6) or Eqs. (B2) and (B6).

In order to eliminate θ−, substitute Eq. (B6) for Eq. (B3).
Then, we get

cos θ+(κ − cos φ) = sin θ+ sin φ,
(B7)

⇒ cos2 θ+[(κ − cos φ)2 + sin2 φ] = sin2 φ.

(I) φ = 2mπ (m: integer) with κ = 1.
(θ+, θ−) �= (π/2, π/2) is satisfied by Eq. (B6). From

Eq. (B3), we obtain

cos θ+ = cos θ−.

This condition is held with (θ+,θ−) = (0, 0) or (π, π ).
However, from Eqs. (B1) or (B2), E = ±|�+| = ±|�−| is

FIG. 21. (a) Schematic illustration of point nodes (red dots) and a line node (red line) for α = π/8. Point nodes and a line node projected
on the kx-ky plane corresponding to (a) are shown in (b). Schematic picture of pair potential for (c) �ν=3

3d and (f) �ν=4
3d . (d) The angle-resolved

zero-bias conductance σS(eV = 0,k‖) at Z = 6 are plotted as functions of kx and ky for (d) �ν=3
3d and (g) �ν=4

3d . The energy dispersions of the
SABS E(k‖) are plotted as functions of kx and ky for �ν=3

3d (e) and for �ν=4
3d (h).
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satisfied. This means that the obtained energy dispersion is not
inside the energy gap and is not the SABS (in-gap state).

(II) φ �= 2mπ or κ �= 1.
From Eq. (B7), we obtain cos θ± and sin θ± as follows:

cos θ+ = ± sin φ√
(κ − cos φ)2 + sin2 φ

, (B8)

sin θ+ = |κ − cos φ|√
(κ − cos φ)2 + sin2 φ

, (B9)

cos θ− = ± sin φ√
(κ−1 − cos φ)2 + sin2 φ

, (B10)

sin θ− = |κ−1 − cos φ|√
(κ−1 − cos φ)2 + sin2 φ

, (B11)

where the sign of cos θ+ and cos θ− are the same. We must
check whether four equations from Eq. (B8) to Eq. (B11) are
consistent with Eq. (B6) or not. From Eq. (B6), we obtain the
following relations:

sin(θ+ + θ−) = sin φ,

⇔ ± sin φ(|κ − cos φ| + |κ−1 − cos φ|)
= sin φ

√
(κ − cos φ)2 + sin2 φ

√
(κ−1 − cos φ)2 + sin2 φ,

(B12)

cos(θ+ + θ−) = cos φ,

⇔ sin2 φ − |κ − cos φ||κ−1 − cos φ|
= cos φ

√
(κ − cos φ)2 + sin2 φ

√
(κ−1 − cos φ)2 + sin2 φ.

(B13)

From Eq. (B12), we must consider following four cases.
(II-1) sin φ = 0.
(i) φ = 2lπ (l: integer).
Substituting φ = 2lπ for Eq. (B13); the left-hand side of

Eq. (B12) is negative but the right-hand side of it is positive.
Therefore there is no SABS.

(ii) φ = (2l − 1)π (l: integer).
φ = (2l − 1)π satisfies Eq. (B13). From Eq. (B6), we

obtain

θ+ + θ− = π.

This equation contradicts the fact that the sign of cos θ+ is
equal to that of cos θ− except for θ± = π/2. Only for θ+ =
θ− = π/2, we obtain

�+
|�+| = − �−

|�−| .

This is the condition known for zero-energy SABS in uncon-
ventional superconductors [1,10],

(II-2) sin φ �= 0.
Hereafter, we suppose κ � 1. In the case of κ > 1, the same

discussion can be held with replacing κ by κ−1.
(i) κ − cos φ � 0.
In this case, Eq. (B12) becomes

±(κ + κ−1 − 2 cos φ) =
√

(κ − cos φ)2 + sin2 φ

×
√

(κ−1 − cos φ)2 + sin2 φ.

The case of the negative sign of the left-hand side does not
satisfy the above equation. If we choose positive sign, it is not
difficult to confirm that the above equation is always satisfied.

On the other hand, Eq. (B13) becomes

sin2 φ − 1 + cos φ(κ + κ−1) − cos2 φ

= cos φ[(κ + κ−1) − 2 cos φ]

= cos φ
√

(κ − cos φ)2 + sin2 φ
√

(κ−1 − cos φ)2 + sin2 φ.

(B14)

For cos φ = 0, Eq. (B14) is satisfied and and it means that it
is a solution of the SABS. In the case of cos φ �= 0, Eq. (B13)
becomes the same as Eq. (B12) when we choose plus sign in
Eq. (B13). For κ − cos φ � 0, there always exists a solution
of the SABS for arbitrary φ.

(ii) κ − cos φ < 0.
Equation (B12) becomes

±(−κ + κ−1) =
√

(κ − cos φ)2 + sin2 φ

×
√

(κ−1 − cos φ)2 + sin2 φ.

The negative sign of the left-hand side does not satisfy this
equation. By taking the square of this equation, we obtain

(κ − κ−1)2 = 2 + (κ2 + κ−2) + 4 cos2 φ − 4 cos φ(κ + κ−1),

⇔ cos φ = 1
2 [κ + κ−1 ±

√
(κ − κ−1)2]

= κ, κ−1.

The relation cos φ = κ contradicts κ − cos φ < 0 and cos φ =
κ−1 contradicts κ−1 � 1. Then, there is no solution of the
SABS.

To summarize, if sin φ = sin(−φ+ + φ−) �= 0 is satisfied,
the energy dispersion of the SABS is given by

E(k‖) = |�+||�−| sin φ√
|�+|2 + |�−|2 − 2|�+||�−| cos φ

= |�+||�−| sin φ

|�+ − �−| ,

with

( |�+|
|�−| − cos φ

)( |�−|
|�+| − cos φ

)
� 0.

For sin φ = 0,

E(k‖) = 0,

with
�+
|�+| = − �−

|�−| .

APPENDIX C: CONDUCTANCE FOR GENERAL
PAIR POTENTIAL

In this Appendix, we derive a conductance formula for
any pair potential with single band superconductor where
ε̂(k) in Eq. (1) does not have an off-diagonal element. In
Sec. C 1, we introduce eigenvectors used for the wave function
of superconducting side. In Sec. C 2, we solve boundary
conditions and derive conductance. In Sec. C 3, we explain
that the conductance is invariant under the spin rotation.
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1. Derivation of eigenvectors

In this section, we derive the eigenvectors of the BdG
Hamiltonian. In Eq. (7), we define ψS

e,σ and ψS
h,σ as

ψS
e,↑ =

(
u+,p

v+,p

)
, ψS

e,↓ =
(

u+,m

v+,m

)
,

ψS
h,↑ =

(
v−,p

u−,p

)
, ψS

h,↓ =
(

v−,m

u−,m

)
.

u±,p(m) and v±,p(m) satisfy(
ω̃+,p(m)σ0 �+

�
†
+ −ω̃+,p(m)σ0

)(
u+,p(m)

v+,p(m)

)
= E

(
u+,p(m)

v+,p(m)

)
,

(C1)(−ω̃−,p(m)σ0 �−
�

†
− ω̃−,p(m)σ0

)(
v−,p(m)

u−,p(m)

)
= E

(
v−,p(m)

u−,p(m)

)
,

(C2)

where σ0 is the 2 × 2 identity matrix and

�± = [D± + d± · σ ]iσ2

ω̃±,p =
√

E2 − (|d±|2 + |D±|2 + |J±|), (C3)

ω̃±,m =
√

E2 − (|d±|2 + |D±|2 − |J±|), (C4)

J± = ±F± + q±
F± = D±d∗

± + D∗
±d±,

q± = id± × d∗
±,

with D+ = D(k), D− = D(k̃), d+ = d(k), d− = d(k̃). and
k̃ = (kx,ky, − kz). F± and q± are real-valued functions and
perpendicular to each other. D is a spin-singlet pair amplitude
and d is a triplet one.

From Eqs. (C1) and (C2), we obtain the following equa-
tions:

u+,p(m)(E − ω̃+,p(m))(E + ω̃+,p(m)) = �+�
†
+u+,p(m), (C5)

u−,p(m)(E − ω̃−,p(m))(E + ω̃−,p(m)) = �
†
−�−u−,p(m). (C6)

To simplify the above equations, we define 2 × 2 matrices as

ω̌±,pm =
(

ω̃±,p 0
0 ω̃±,m

)
,

u± = (
u±,p u±,m

)
,

v± = (
v±,p v±,m

)
.

Equations (C5) and (C6) become

u+(Eσ0 − ω̌+,pm)(Eσ0 + ω̌+,pm) = �+�
†
+u+,

u−(Eσ0 − ω̌−,pm)(Eσ0 + ω̌−,pm) = �
†
−�−u−.

u+ and u− are given by [86]

u+ = ã+(|J+|σ0 + J+ · σ )(σ0 + σ3)

+ b̃+(|J+|σ0 − J+ · σ )(σ0 − σ3), (C7)

u− = ã−(|J−|σ0 + J− · σ ∗)(σ0 + σ3)

+ b̃−(|J−|σ0 − J− · σ ∗)(σ0 − σ3), (C8)

with

ã±(b̃±) =
√

1

16|J±|[|J±| + (J±)3]

E + ω̃±,p(m)

E
.

By using u±, v± can be expressed as

v+ = �
†
+u+(Eσ0 + ω̌+,pm)−1, (C9)

v− = �−u−(Eσ0 + ω̌−,pm)−1. (C10)

2. Conductance

The tunneling conductance for a general pair potential
is obtained by solving the following boundary conditions
[Eqs. (13) and (14)]:

eσ +
(

bσ

aσ

)
=

(
u+ v−
v+ u−

)(
c

d

)
, (C11)

ikz

(
u+ v−
v+ u−

)(
σ0 0
0 −σ0

)(
c

d

)
− ikzeσ

+ ikz

(
σ0 0
0 −σ0

)(
bσ

aσ

)
= 2mU0

h̄2

[
eσ +

(
bσ

aσ

)]
, (C12)

with

e↑ = (1,0,0,0)T, e↓ = (0,1,0,0)T, aσ = (aσ,↑,aσ,↓)T,

bσ = (bσ,↑,bσ,↓)T, c = (c↑,c↓)T, d = (d↑,d↓)T.

We define

�̂± = v±(u±)−1, Z′ = 2mU0

kzh̄
2 , G =

(
u+ v−
v+ u−

)
.

From Eqs. (C9) and (C10), �̂+ and �̂− satisfy

�̂+ = �
†
+u+(Eσ0 + ω̌+,pm)−1u−1

+ ,

�̂− = �−u−(Eσ0 + ω̌−,pm)−1u−1
− .

We can check that following u−1
± given by Eqs. (C13) and

(C14) satisfy u±u−1
± = σ0:

u−1
+ = ǎ+(σ0 + σ3)(|J+|σ0 + J+ · σ )

+ b̌+(σ0 − σ3)(|J+|σ0 − J+ · σ ), (C13)

u−1
− = ǎ−(σ0 + σ3)(|J−|σ0 + J− · σ ∗)

+ b̌−(σ0 − σ3)(|J−|σ0 − J− · σ ∗),

ǎ± =
√

1

4|J±|[|J±| + (J±)3]

E

E + ω̃±,p

,

b̌± =
√

1

4|J±|[|J±| + (J±)3]

E

E + ω̃±,m

, (C14)
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From Eqs. (C13) and (C14), �̂+ and �̂− are obtained as

�̂+ = �
†
+

2

[(
1

E + ω̃+,p

+ 1

E + ω̃+,m

)
+

(
1

E + ω̃+,p

− 1

E + ω̃+,m

)
J+
|J+| · σ

]
,

�̂− = �−
2

[(
1

E + ω̃−,p

+ 1

E + ω̃−,m

)
+

(
1

E + ω̃−,p

− 1

E + ω̃−,m

)
J−
|J−| · σ ∗

]
.

If F± + q± = 0 is satisfied, from Eqs. (C3), (C4), (C9), and (C10), we obtain ω̃±,p = ω̃±,m, and

�̂+ = �
†
+

E + ω̃+,p

, �̂− = �−
E + ω̃−,p

.

We obtain aσ and bσ from Eqs. (C11) and (C12):(
bσ

aσ

)
=

[
I4 + G

(
σ0 0
0 −σ0

)
G−1

(
(1 + iZ′)σ0 0

0 (−1 + iZ′)σ0

)]−1[
−I4 + (1 − iZ′)G

(
σ0 0
0 −σ0

)
G−1

]
eσ ,

where I4 is the 4 × 4 identity matrix. From the general relation of 2n × 2n matrix,(
A B

C D

)−1

=
(

(A − BD−1C)−1 (C − DB−1A)−1

(B − AC−1D)−1 (D − CA−1B)−1

)
, (C15)

where A, B, C, and D are n × n regular matrices, we obtain the following relation:

G

(
σ0 0
0 −σ0

)
G−1 =

(
(σ0 − �̂−�̂+)−1(σ0 + �̂−�̂+) −2(σ0 − �̂−�̂+)−1�̂−

2(σ0 − �̂+�̂−)−1�̂+ −(σ0 − �̂+�̂−)−1(σ0 + �̂+�̂−)

)
.

We define 2 × 2 matrices αij as(
α11 α12

α21 α22

)
=

[
I4 + G

(
σ0 0
0 −σ0

)
G−1

(
(1 + iZ′)σ0 0

0 (−1 + iZ′)σ0

)]−1

.

From Eq. (C15), αij are obtained

α11 = (2 − iZ′)[Z′2�̂−�̂+ − (4 + Z′2)σ0]−1(�̂−�̂+ − σ0)−1

(
σ0 + −iZ′

2 − iZ′ �̂−�̂+

)
(σ0 − �̂−�̂+),

α22 = (2 + iZ′)[Z′2�̂+�̂− − (4 + Z′2)σ0]−1(�̂+�̂− − σ0)−1

(
σ0 + iZ′

2 + iZ′ �̂+�̂−

)
(σ0 − �̂+�̂−),

α12 = 2(−1 + iZ′)[(4 + Z′2)σ0 − Z′2�̂−�̂+]−1(σ0 − �̂−�̂+)−1�̂−(σ0 − �̂+�̂−),

α21 = − 2(1 + iZ′)[(4 + Z′2)σ0 − Z′2�̂+�̂−]−1(σ0 − �̂+�̂−)−1�̂+(σ0 − �̂−�̂+).

Finally, bσ and aσ are obtained

bσ = −iZ′

2 + iZ′ (σ0 − �̂−�̂+)[σ0 − (1 − σN)�̂−�̂+]−1ẽσ ,

aσ = σN�̂+[σ0 − (1 − σN)�̂−�̂+]−1ẽσ ,

where ẽσ is defined by eT
σ = (ẽT

σ ,0,0). Then a general formula of the tunneling conductance is expressed compactly by using �̂+
and �̂−:

σS = 1

2

∑
σ

[1 + a†
σ aσ − b†σ bσ ]

= σN

2
Tr{[σ0 − (1 − σN)�̂†

+�̂
†
−]−1[σ0 + σN�̂

†
+�̂+ + (σN − 1)�̂†

+�̂
†
−�̂−�̂+][σ0 − (1 − σN)�̂−�̂+]−1}. (C16)

3. Spin rotation

In this section, we explain that the conductance is invariant under the spin rotation. Under the spin rotation (� → U�),

U =
(

R 0
0 R∗

)
,

R = e−iθ ·σ/2,
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pair potential �± and J± are transformed as

�± →R�±RT

J+ · σ →RJ+ · σR†,

J− · σ ∗ →R∗J− · σ ∗RT.

�̂± is transformed as

�̂+ → R∗�†
+R†

2

[(
1

E + ω+,p

+ 1

E + ω+,m

)
+

(
1

E + ω+,p

− 1

E + ω+,m

)
RJ+ · σR†

|J+|
]

= R∗�̂+R†,

�̂− → R�−RT

2

[(
1

E + ω−,p

+ 1

E + ω−,m

)
+

(
1

E + ω−,p

− 1

E + ω−,m

)
R∗J− · σ ∗RT

|J−|
]

= R�̂−RT.

Then the conductance is invariant under the spin rotation:

σS →Tr[σ0 − (1 − σN)R�̂
†
+RTR∗�̂†

−R†]−1[1 + σNR�̂
†
+RTR∗�̂+R† + (σN − 1)R�̂

†
+RTR∗�̂†

−R†R�̂−RTR∗�̂+R†]

× [σ0 − (1 − σN)R�̂−RTR∗�̂+R†]−1

= TrR[σ0 − (1 − σN)�̂†
+�̂

†
−]−1R†R[1 + σN�̂

†
+�̂+ + (σN − 1)�̂†

+�̂
†
−�̂−�̂+]R†R[σ0 − (1 − σN)�̂−�̂+]−1R†

= σS.
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