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Scaling laws of dipolar magnetic systems at finite temperature
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We report theoretical and numerical results on scaling laws for systems with multiple time scales in the context
of kinetic dynamics of domain growth. The theoretical method has been tested by Monte Carlo simulations of
a planar magnetic Heisenberg model with long-range interactions. We show that the characteristic length of
the domain growth behaves according to a Lisfshitz-Allen-Cahn law with logarithmic corrections, such that the
exponent of the correction depends on the temperature.
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I. INTRODUCTION

Scaling laws provide general properties of physical phe-
nomena in a phenomenological manner. In fact, they can be
viewed as proportionality relations between parameters char-
acterizing a system and the spatiotemporal scales involved.
The scaling laws appear in several branches, for instance in
liquid crystals, polymers, fluids, and even in finance [1–6]. In
complex systems, they can provide guides to some underlying
general aspects of the system [6–9]. In particular, in magnetism
they provide a useful tool to characterize experiments and the-
ory based on Ising or (generalized) Heisenberg models [2,10].

One important application of scaling laws is the possibility
to explain universal features of the domain growth in a
wide range of physical systems [11–33]. In particular, the
kinetic dynamics helps us to understand the pattern formation
during domain growth, and typically coarsening or spinodal
decomposition is found [22,23]. To describe a given system
one can define an order parameter, which obeys a dynamical
law. The asymptotical behavior of these dynamical laws can be
algebraic laws [11–16,24,28], logarithmic ones [17,20,21,27],
and in more intricate situations a combination of both can
be found [25,29,33]. In particular, in the case of a magnetic
Heisenberg system we will show that a power law with
logarithmic corrections is obtained.

To characterize a system with two time scales we develop
in this work a method that is based on a generalization of
the differential equation for the characteristic length scale for
the domain growth in a two-dimensional lattice with fixed
distance d. We find a scaling law for the length scale, which
is a combination of an algebraic power law with a logarithmic
function. In order to gain more insight into the general model,
we finally analyze the scaling laws for the planar Heisenberg
model with dipole-dipole interaction through Monte Carlo
simulations. We find that it obeys the same kind of scaling
law with the coefficients depending on temperature, but being
almost independent of the lattice size. In addition, if the
interaction strength is varied by changing the lattice spacing d,
generally the same type of scaling law is found with the scaling
parameters depending on d. However, for larger d (smaller
interaction strength) the logarithmic corrections tend to unity

*dlarozen@uta.cl

and the pure algebraic power is law is obtained. The manuscript
is organized as follows: In Sec. II, the theoretical model for
domain growth in a system with two time scales is presented. In
Sec. III numerical simulations for a planar Heisenberg model
are performed and the scaling laws are computed. Finally,
conclusions are presented in Sec. IV.

II. THEORETICAL MODEL

Since pattern formation laws in nonequilibrium systems
have been well established and characterized by dynamical
scaling exponents, here we employ a method based on scaling
arguments from the dynamical systems point of view. We
assume for simplicity two time scales, although our arguments
can be generalized to more time scales. For two-dimensional
lattices one can define a characteristic length scale for the
domain growth, which it is denoted by L(t). This order
parameter evolves as [17]

dL

dt
= a(L,t,λ)

L
, (1)

where a is a function that depends on the physical system under
study, such that λ represents the set of parameters involved,
such as temperature, diffusion coefficient, or viscosity. This
method reduces the information regarding spatiotemporal
dynamics into a temporal dynamics, and it has been applied
in many different systems. For example, when the order
parameter in the system is conserved, L obeys L ∼ t1/3, called
the Lifshitz-Slyozov (LS) scaling law [11]. This situation
was derived in solid dynamics context, such that the rate of
change of domain size is associated with the chemical potential
gradient, dL/dt ∼ |∇μ|, μ being the chemical potential.
Lifshitz and Slyozov found that the chemical potential is in-
versely proportional to the domain length μ ∼ 1/L, obtaining
dL/dt ∼ 1/L2 [11]. When the order parameter of the system
is not conserved, such as in chemical reactions [24], the
characteristic length follows the Lifshitz-Allen-Cahn (LAC)
law L ∼ t1/2 [12]. It is obtained by studying the dynamics
of a droplet of radius L using a nonlinear diffusion equation
[23]. Following the arguments of the aforementioned reference
one can start with a spherical symmetric equation for the
concentration field φ,

∂φ

∂t
= ∇2φ − dV (φ)

dφ
= ∂2φ

∂r2
+ 1

r

∂φ

∂r
− dV (φ)

dφ
, (2)
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where V is a potential function of φ. In the case of a double-
well potential, this equation has two simple homogeneous
solutions φ = ±1, hence one can consider a single spherical
domain of φ = −1 immersed in a sea of φ = 1. Therefore,
the concentration has a heteroclinic connection between both
homogeneous states, such that its trajectory can be written as
φ(r,t) = f (r − L(t)) where L is the droplet radius. Inserting
this ansatz into Eq. (2), one finds that the droplet obeys an
equation of the form [12] dL/dt ∼ 1/L. A generalization
of the LAC law for the drop curvature in reaction-diffusion
systems was proposed by Binder and Stauffer [13]. The
authors essentially assumed that the average distance between
neighboring droplets is proportional to the average droplet
radius and the dynamics obeys dL/dt ∼ D/L2 such that the
diffusion coefficient depends on L as D ∝ L−x , producing a
general algebraic law [13,22] L ∼ t1/(x+2). In addition, specific
power laws such as L ∼ t and L ∼ t2/3 can found in fluids in
the viscous and inertial regimes, respectively [26]. On the other
hand, for slow dynamics, the typical behavior is logarithmic,
L ∼ ln(t) [20]. It was also found from Monte Carlo simulations
of Ising systems with first- and second-nearest neighbor
interactions [17]. Finally, we remark that some classifications
as a function of the temperature have been done in Ref. [21], in
which a generalization the logarithmic law, L ∼ [ln(t)]p, was
performed.

In all of the aforementioned cases, one needs only one a

function. In fact, to derive the LAC, LS and the logarithmic
laws, the function a can be written as a(L,t) = h(L)n(t) =
Lηn(t). For this case, Eq. (1) is reduced to L1−ηdL = n(t)dt .
The LAC and SL cases are found for η = 0 and η = −1, re-
spectively, with n(t) = a0 in both cases. The logarithmic law is
obtained for η = 3 and n(t) = a0t

−1. Such an inversely propor-
tional time dependence has been found in coarsening models
of crystal surfaces [34]. Another interesting way to derive
asymptotically the logarithmic law was made by Evans [27].

In situations with several spatiotemporal scales, we assume
that a(L,t) is a superposition of several functions. For two time
scales as a minimum, this is a combination of two functions,

a(L,t) = h1(L)n1(t) + h2(L)n2(t), (3)

where the two time-dependent components of the order
parameter are (n1,n2) and the coefficients (h1,h2) are scaling
functions of L. We assume that one of the time scales is slow
and the other one is significantly faster. We know that, for
slow dynamics, the function must contain a term of the form
nj (t) = t−1ñj (t), where ñj is a function of t . The additional
time scale is assumed to have a power law behavior, such
that ñ1(t) ∝ p and ñ2(t) ∝ tp. The slow component also
requires nonlinear terms of L in the h functions. Hence,
without loss of generality one can write the a function as
a(L,t) = a0t

−1L2(p + ε tp/εL−ε). In this case, Eq. (1) is
reduced to

dL

dt
− pL

t
= ε t−1+p/εL1−ε, (4)

which is a particular Bernoulli differential equation [35]. Note
that Eq. (4) can be solved analytically. To obtain the solution,
one introduces the new variable ψ = L1/ε leading to dψ/dt −
(pψ)/(tε) = t−1+p/ε. For μ = tp/ε, multiplying both sides by
μ, one obtains after some algebra d(t−p/εψ)/dt = 1/t . This

FIG. 1. Different behaviors of L as a function of time.

equation can be directly integrated ψ = tp/ε ln (βt), where β

is an arbitrary integration constant. In terms of the original
variable one has

L(t) = L0t
p[ln (βt)]ε. (5)

We remark that this formula can reproduce all the known
cases; for example with p → 0 and ε → 1 one obtains the
slow time scale behavior ln (βt), whereas for ε → 0 the
standard power law tp of scaling results. We remark that
there are several situations where particular cases of Eq. (5)
have been found [23,25,29,30,32,33]. For instance, in binary
mixtures subject to a uniform shear the domain growth follows
L ∼ [t5/ ln(t)]1/4 and L ∼ [t/ ln(t)]1/4 [25]. In addition, in
two-dimensional liquid crystals with long-range interactions
the domain growth shows a Lisfshitz-Allen-Cahn law with a
logarithmic correction [23,32,33] L ∼ [t/ ln(t)]1/2. Figure 1
shows the typical scaling laws of L as a function of time. We
can clearly observe that the amplitude of the t1/2 law is larger
than the logarithmic corrections ln(t) or [ln(t)]−1/2 as well
others power laws like t1/3. The pure logarithmic laws slowly
increase in time with respect to all the rest.

III. SIMULATIONS

In order to study a particular system that contains multiple
time scales, we consider a magnetic system with long-range
interactions at a finite temperature, T . This system has at
least two time scales. The first one is given by the collective
behavior due to the interaction among the particles. It is lower
than the second one, given by motions produced by thermal
fluctuations. Let us consider a two-dimensional square array of
N × N magnetic moments mi . The Hamiltonian of the system
is given by [36]

H =
N,N∑

j>i

1

r3
ij

[mi · mj − 3(mi · n̂ij )(mj · n̂ij )], (6)
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where ri denotes the vector position of the particle i and
rij = rj − ri = rij n̂ij is the relative position of i with respect
to j . We only consider planar spin rotations, hence the
magnetic moments can be written as mi = {cos θi, sin θi}.
Planar Heisenberg models with different static magnetic
properties, taking into account dipole-dipole interaction, have
been studied in Refs [36–46]. Note that the proper limit
of this system is an antiferromagnetically ordered lattice
[38,40]. Kinetic properties of planar models with exchange
interactions have been studied by Monte Carlo simulations
[15,16] as well as by molecular dynamics [18]. The authors
found that the characteristic length behaves as L ∼ tn with
the exponent, n, depending on the system’s parameters. In
addition, planar systems with long-range interactions in in the
context of liquid crystals show a characteristic length behavior
as L ∼ [t/ ln(t)]1/2 [33].

The Monte Carlo (MC) simulations are performed with
a standard Metropolis algorithm, such that in a MC move
a randomly chosen moment mi is rotated by an angle 
θi ∈
[−π/100,π/100]. This move is accepted or rejected according
to the probability p = 1, if 
H > 0, or p = exp(−
H/kBT ),
if 
H < 0, where 
H is the change in energy and kB

Boltzmann’s constant. Here we have used N = 90 and run
up to 2 × 104 MC steps. All statistical quantities presented
in the manuscript have been computed as averages over 15
independent runs. In dimensionless variables we explore a set
of temperatures in the range kBT ∈ (0.08,0.28) with with a
fixed lattice constant d = 1. For a Py (permalloy) array with
Ms = 840 kA/m and a lattice constant of d0 = 250 nm the
temperature range becomes approximately (115 K, 403 K).
From Fig. 2 one can observe that the system exhibits a complex
pattern formation with some clustering.

The magnetic domains growth with spatiotemporal scaling
laws that are characterized by the length L(t). A consequence
the correlation function, C(r,t), scales as [33]

C(r,t) = α〈cos2θ0cos2θr〉 − β = G(r/L(t)), (7)

where G is a time-independent function. The factors (α,β)
are calculated to ensure that C(0,t) = 1 and C(r,0) → 0 for

FIG. 2. Snapshots of the two-dimensional magnetic array at
different subsequent times at T = 173 K.

FIG. 3. Scaling plot of the correlation function as a function r/L

for different MC steps at T = 173 K.

r → ∞. The length scale L(t) is defined as the distance over
which the correlation function falls to half its maximum value.

Figure 3 shows the correlation function, Eq. (7), as a
function of r/L for different MC steps. We can observe that
all the curves collapse to a single one, exposing its universal
property. In addition, one can fit this curve by CGAF (r,t) =
1 + (1 − γ 2) ln(1 − γ 2)/γ 2 with γ = exp[−r2/(6L2)]. We
remark that a similar fitting function has been found in
nematic liquid crystals with long-range interactions in the
auxiliary Gaussian field approximation [33]. Figure 4 shows
the characteristic length L as a function of MC steps for
different values of the temperature. We can observe that L

increases as the time increases and all curves follow the law
L(t) ∼ √

t/ ln (t)ε , where ε depends on the temperature as
shown in the inset of Fig. 4. This law is of the LAC type, but
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FIG. 4. L as a function of time for different values of the
temperature. The inset shows the exponent ε in L(t) ∼ √

t/ ln (t)ε

as a function of temperature.
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FIG. 5. Snapshots of the two-dimensional magnetic array for
different temperatures T = 58,115,290,519 K or 2 × 104 MC steps
and d = 1.

with a logarithmic correction. At the same number of the MC
steps, the increment of the temperature produces a decrease
of L, and consequently of the correlation. Figure 5 shows
that when the temperature increases the size of the dipolar
domains decreases, producing a loss of magnetic order. This
issue is consistent with the behavior of L.

In addition, one can define the Fourier transform of the
correlation function, S(k,t) = ∫

d2r exp (ik · r)C(r,t), as the
structure factor. It is commonly related to experimental
measurements and is also connected to the characteristic
length with the scaling S = [L(t)]qF[k L(t)], where q is the
dimensionality (q = 2 in our case). Figure 6 shows S(k,t)/L2

as a function of kL. We can observe that all the curves collapse
in a single one, similar to the case of the correlation function.
In addition, the structure factor decays asymptotically with a
power law in kL.

A basic aspect of the statistical mechanics of magnetic
systems is the influence of the interaction strength on the mag-

kL(t)
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,t)
/L

2

10 -4
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10000 MCS
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-4

FIG. 6. Scaling plot of the structure factor as a function of kL

for different MC steps at T = 173 K. The straight line with slope −4
denotes the generalized Porod law S(k,t) ∼ L2(kL)−4.

FIG. 7. Snapshots of the two-dimensional magnetic array for
different distances d = (0.5,0.75,1.0,1.25) at 2 × 104 MC steps and
T = 173K .

netic order. Indeed, if the interaction strength among particles
is weak, magnetic order appears only at very low temperatures.
In our case the distance among magnetic moments, d, is the
control parameter of the interaction strength. Figure 7 shows
the magnetic domains for four different distances at the same
number of MC steps and temperature. Obviously, when d

increases the size of the magnetic domains strongly decreases.
Figure 8 shows the characteristic length L as a function

of MC steps for different values of the distance, d. We can
observe that L increases when the distance among the particles
is reduced, for the same number of MC steps, consistent with
what is observed in the Fig. 7. In addition, we find that all
the curves follow the law L(t) ∼ tb/ ln (t)ε , where b and ε

depend on the distance as shown in the inset of Fig. 8. Let us
remark that in contrast to what has been observed regarding the
temperature dependence, the effect of the interaction strength
requires not only a logarithmic generalization of the LAC law,

t (MC Steps)
10 2 10 3 10 4
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1
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d
1 1.5

0
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b

FIG. 8. L as a function of time for different values of the distance
d at T = 173 K. The inset show the exponents b and ε in L(t) ∼
tb/ ln(t)ε as functions of the distance.
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but also an exponent of the power law that depends on d.
Finally, one can observe that when d increases the coefficient
ε tends to zero (ε → 0), and b tends to values lower than 0.5.
Indeed, at d = 1.5 we obtain ε = 0.04 and b = 0.27. Hence,
large values of d implies that the two time scales disappears, the
particles behaves like noninteracting ones, and, consequently,
the characteristic length behaves with a power law, L ∼ tb.

IV. CONCLUSIONS

In summary, we show how multiple time scales can be
incorporated into a generalized scaling law for domain growth.
This law is fully consistent with diffusional growth in a
droplet model. The approach is illustrated by an analysis of
scaling lengths and correlation functions obtained from Monte
Carlo simulations of a two-dimensional antiferromagnet with
dipole-dipole interaction. We found that for a fixed distance

the domain growth behaves according to a generalized LAC
law with a logarithmic correction.
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