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We combined magneto-infrared spectroscopy and first-principles calculations to unravel the role of spin-
phonon coupling in the vicinity of the magnetic field-driven phase transitions in two chemically similar § = 1/2
Heisenberg antiferromagnets, CuF,(H,0),(3-Clpy) and [Cu(pyz),(HF,)]PFs. This comparison resolves questions
about the conditions under which the lattice participates in magnetic-field-driven transitions and, at the same
time, provides a way to predict how the lattice is likely to support microscopic spin rearrangements.
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I. INTRODUCTION

Copper halide coordination polymers provide a superb
platform for fundamental investigations of quantum phase
transitions due to their overall low energy scales and simple
tunable chemical structures [1-9]. The field-driven antiferro-
magnetic — fully polarized state transition is a classic example
[10,11]. While high field magnetization and microscopic
modeling demonstrate that magnetic interactions dominate this
process [11-13], magnetically driven transitions are not always
spin-only processes. There is, for instance, plenty of evidence
suggesting that spin and lattice can be inextricably linked
[14—-19]—at least under certain circumstances—although a
test to determine the requirements for a lattice contribution has,
so far, been missing. Two S = 1/2 Heisenberg antiferromag-
nets, [Cu(pyz),(HF,)]PF¢ and CuF,(H,;0),(3-Clpy), provide
an opportunity to unravel this puzzle (Fig. 1). They display
many chemical similarities including copper centers and soft
flexible ligands (halides like F and Cl; rings like pyrazine
and pyridine) that act as superexchange ligands and engage
in hydrogen bonding. While both sport magnetic saturation
transitions (at 37 and 24 T) [20,21], their different physical
structures (Fig. 1) make it possible to unveil the role of specific
local lattice distortions. To our surprise, this analysis affords a
way to predict, in advance of any measurement, how the lattice
supports microscopic spin rearrangements.

In this article, we explore spin-lattice coupling in
[Cu(pyz),(HF,)]PF¢ and CuF,(H,0),(3-Clpy) in order to test
and for the first time delineate the conditions under which local
lattice distortions are required to stabilize the fully polarized
magnetic state. We find that while out-of-plane pyrazine
ring distortions reinforce the magnetic saturation transition
in quasi-two-dimensional [Cu(pyz),(HF,)]PFg, spin-lattice
coupling is strikingly absent in CuF,(H,0),(3-Clpy). The
difference arises from the fact that [Cu(pyz),(HF;)]PFg has
ligands linking the magnetic centers that distort in order to
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FIG. 1. (a) Crystal structure of quasi-two-dimensional
[Cu(pyz),(HF,)]PFs [22]. This tetragonal system has robust
atom- - -atom linkages in the plane. These Cu-pyrazine layers are held
together in the interlayer direction by hydrogen-bonded HF, ligands
while the PFy counterion sits in the cation pocket. The primary
magnetic superexchange takes place via in-plane Cu-pyrazine-Cu
linkages. (b) Crystal structure of CuF,(H,0),(3-Clpy) [21]. This
monoclinic system is molecular in nature, held together by hydrogen
bonding and van der Waals interactions. The most important
magnetic exchange pathway involves OH - - - F hydrogen bonds.

reduce the overall energy of the high field state, whereas
CuF,(H,0),(3-Clpy) is molecular, and, as a result, inter-
molecular hydrogen bonding alone provides for magnetic
exchange and supports the fully polarized state. In addition
to unveiling the circumstances under which energy transfer
between the spin and lattice is relevant, these ideas can be used
to anticipate the cooperative role of the lattice in other quantum
materials. As examples, we discuss the magnetization steps in
SrCuy(BO3); and CdCr,04 [23,24], the blocking temperature
in Mnj,-acetate [25,26], and the sublattice coalescence in
bimetallic [Ru;(0,CCH3)4]3[Cr(CN)g] [27] among others.
Single crystals were prepared by aqueous reaction as
reported in Refs. [21,28] and suspended in polyethylene or KBr
in polycrystalline form to control the optical density. Infrared
transmission (30-5000 cm™!) was carried out as a function
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FIG. 2. (a) Close-up view of the absorption of [Cu(pyz),(HF,)]PF¢ at 0 and 35 T along with the full field absorption difference spectrum
at 4.2 K. The latter is defined as Ao = a(w,B) — a(w,B = 0T). (b) Waterfall plot of the absorption difference spectra with increasing field.
A dashed gray 500-cm™! scale bar is indicated. (c) The field-induced frequency shift of the 491-cm~! out-of-plane pyrazine bending mode
as a function of applied field along with magnetization [20] and the square of the magnetization. (d) Calculated spin-density distributions
in the antiferromagnetic and ferromagnetic states of [Cu(pyz),(HF,)]PFs. (e) Close-up view of the absorption of CuF,(H,0),(3-Clpy) in the
vicinity of the O-H and C-H stretch modes at 0 and 35 T along with the full field absorption difference spectrum at 4.2 K. (f) Absorption
difference of this system with increasing magnetic field. Here, the dashed gray scale bar is 10 cm™'. (g) The field-induced frequency shift of
CuF,(H,0),(3-Clpy) in the vicinity of the O-H and C-H stretching modes as a function of applied field compared with magnetization [21] and
magnetization squared. (h) Calculated spin-density distributions in the antiferromagnetic and ferromagnetic states of CuF,(H,0),(3-Clpy).

of temperature, and absorption was calculated as a(w) =
—ﬁln[T(w)], where T (w) is the measured transmittance, ¢
is the concentration, and d is the thickness. The multiplex
advantage in Fourier transform infrared spectroscopy allows
simultaneous collection of data across a wide spectral range.
We therefore had no need to focus on one mode or another
during an experiment because—by default—the response
of all infrared active modes is obtained at the same time.
We performed magneto-infrared experiments at the National
High Magnetic Field Laboratory (4.2 K, 0-35 T). Absorption
differences, Ao = a(w,B) — a(w,B = 0T), were calculated
in order to highlight field-induced effects. Standard peak
fitting techniques were employed as appropriate. Spin-density
distributions for the antiferromagnetic and ferromagnetic
states were calculated using density-functional theory and the
Vienna ab initio simulation package [18,29-33].

II. RESULTS AND DISCUSSION

Figure 2 summarizes the magneto-infrared response of
[Cu(pyz),(HF,)]PF¢ and CuF,(H,0),(3-Clpy) in the vicinity
of the 37 and 24 T magnetic phase transitions. Traditionally,
local lattice distortions accompany this type of field-driven
transition in copper halide coordination polymers. This occurs

to lower Japm and stabilize the fully polarized state [18,19].
We therefore focus on the vibrational modes that are related to
important superexchange pathways in these materials.

Figure 2(a) displays a close-up view of the absolute absorp-
tion and full field absorption difference for the out-of-plane
pyrazine bending mode near 490 cm~! in [Cu(pyz),(HF,)]PF.
This feature softens with applied field—consistent with ex-
pectations for a frequency shift. Moreover, the derivative-
like structure in the absorption difference spectrum develops
gradually and grows systematically with increasing field
[Fig. 2(b)]. The changes are on the order of 12% at 35 T.
All other modes are rigid (with the exception of the higher
frequency out-of-plane pyrazine bend). In order to quantify
these effects, we determined the field-induced shift of the
490-cm~! mode as a function of field. These results are
summarized in Fig. 2(c) where they are compared with the
previously reported magnetization [20].

The standard scaling model [34] relates the square of
the magnetization to the frequency shift as M2(B) ~ Aw ~
w(B) —w(B =0T). As shown in Fig. 2(c), the spectral
data are in excellent agreement with the predicted trend.
This indicates that field-induced changes in the out-of-plane
pyrazine bending mode connect the lattice to the primary
effect, which is spin canting and (eventually) development of
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the fully polarized state. At the same time, the corresponding
spin densities of [Cu(pyz),(HF,)]PFg are predicted to be out of
phase and in phase for the antiferromagnetic and ferromagnetic
states, respectively [Fig. 2(d)]. The spin density resides on the
metal centers and pyrazine linkers in both states, so it makes
sense that applied field primarily affects modes that modulate
the exchange integral. The field-induced frequency shift also
provides a chance to estimate the spin-phonon coupling
constant as w = wp + A(S;-S;) [35,36]. Here w and w, are
the perturbed and unperturbed frequencies, A is the coupling
constant, and (S;-S;) is the spin-spin correlation function.
Assuming a limiting low temperature value of S? for (S;-S;)
and a frequency shift of 0.5 cm ™!, we find that A is on the order
of 2 cm~!. Finally, we point out that based on the relationship
between Aw and M?(B), the spin-lattice interactions are
anticipated to saturate above 37 T where the antiferromagnetic
— fully polarized state transition is complete [20]. This is
just beyond the current range of available powered magnets
3571

Comparison with CuF,(H,0),(3-Clpy) provides an oppor-
tunity to test whether local lattice distortions support the
magnetically driven phase transition in a purely molecular
system [37]. Strikingly, none of the infrared-active vibrational
modes change across the 24 T transition. This includes the
F-Cu-F symmetric stretch, the O-Cu-O asymmetric bend,
the out-of-plane pyridine bend, and the libration of the
3-chloropyridine ring around the C-Cl bond—all of which
are important in the pressure-induced magnetic crossover
[38]. Figure 2(e) shows a close-up view of the superimposed
O-H and C-H stretches. Even at full field, the frequency
shift Aw = w(B=35T)— w(B=0T) is zero within our
sensitivity, which is better than 1%. This demonstrates that
the O-H stretching mode (which is a superb local probe
of the OH-: - -F superexchange pathway) does not participate
in the field-driven antiferromagnetic — fully polarized state
transition at 24 T. In other words, the field-driven out-of-phase
— in-phase spin density on the two-dimensional hydrogen
bonded sheets is not coupled to the aforementioned vibrational
modes, even though our spin-density calculations predict
the characteristic patterns [Fig. 2(h)]. We therefore surmise
that the local lattice distortions that are required to lower
Japum in [Cu(pyz),(HF;)]PFs and many other molecule-based
materials [18,19] are not needed here. This is because magnetic
exchange in CuF,(H,0),(3-Clpy) is wholly determined by
the hydrogen bonding network [21]. This finding is consistent
with the mechanism of the antiferromagnetic — ferromagnetic
crossover under compression which is driven by dimensional-
ity switching of the hydrogen bonding network [38].

One of the outcomes of this work with copper halide
coordination polymers is the ability to more broadly anticipate
the role of the lattice in the magnetic transitions of other
quantum materials. This capability is based on the finding that
superexchange through chemical bonds requires a distortion,
whereas that through space does not. It clearly does not apply
to every circumstance, but there are many instances where this
insight will be useful. For example, SrCu,(BO3), and CdCr, 04
are extended solids with important metal-oxygen-metal ex-
change pathways that are well known for their magnetic-
field-induced transitions and, in particular, the various plateau
states that are manifest as steps in the magnetization [23,24].
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The lattice connectivity between metal centers immediately
portends cooperative spin-lattice effects, which is exactly what
is observed [24,39,40]. In other words, because the exchange
interaction J goes as t>/U, where ¢ is the transfer integral
(f¢:H¢jdr) and U is the on-site Coulomb interactions, it is
natural that field-induced changes in the microscopic spin state
impact bond length and angles and vice versa [41]. Another
system of contemporary interest is the multiferroic metal-
organic framework [(CHj3),NH;]Mn(HCOO); [42]. Based
on its metal---ligand - - - metal connectivity, we anticipate
spin-lattice interactions involving the formate group. This
remains to be tested.

The molecular magnet Mnj,-acetate is different. It sports
quantum tunneling and a 3 K blocking temperature [25,26].
While there is modest spin-lattice coupling due to modulation
of the exchange integral by a few intramolecular vibrations
[43], there are no field-induced changes in the intermolecular
interactions of this system, and we predict that the lattice is
rigid across the blocking temperature. As a second example,
we consider the unusual interpenetrating lattice structure in
bimetallic [Ru,(0,CCHj3)4]3[Cr(CN)g] [27]. There is practi-
cally no coupling between the two spin sublattices so there
are many degenerate configurations, which can be aligned by
an 0.08 T magnetic field [44]. This compound thus represents
an interesting example of a three-dimensional system with
frustration that can be lifted by external stimuli. Based on
connectivity issues, it is not surprising that there is no evidence
for spin-lattice coupling in [Ru, (O, CCH3)4]3[Cr(CN)g] across
the 0.7 T magnetic sublattice coalescence because it involves
independent magnetic frameworks [45]. Finally, we point
out emerging interest in the molecule-based multiferroic
(NHy4),FeCls-H,O [46]. Based on an analysis of this system,
we predict modest spin-phonon coupling.

We now turn briefly to temperature effects. Figure 3
brings together the variable-temperature infrared response of
[Cu(pyz),(HF,)]PFs. Analysis of peak shifts and splittings
reveals the presence of a weak structural distortion around
75 K. The most important point is that these changes primarily
involve the pyrazine ligand. The cluster near 850 cm~' (which
represents the out-of-plane C-H bending mode of the pyrazine
ring) is a perfect example of this effect. It has one component
that softens through 7., another branch that is relatively
insensitive, and a third that splits into a clear triplet below 75 K,
indicating a structural component to this transition. The Cu
center is also affected to the extent that it is modulated by the
surrounding ligands. These subtle modifications act to stabilize
the low-temperature long-range ordered state although there
is no spin-lattice coupling across Ty within our sensitivity.
Getting back to the overall temperature trend, we point out that
modulation of the exchange integral by lattice vibrations may
lead to temperature dependence of exchange constants [14]. By
contrast, CuF,(H,0),(3-Clpy) shows no evidence of structural
changes or local lattice distortions down to 4.2 K [38]. This is
further support that local lattice distortions are necessary when
atom-atom linkages are present but of lesser importance when
superexchange occurs via intermolecular interactions.

To summarize, we have drawn together the vibrational
and magnetic response of two chemically similar S = 1/2
Heinsenberg antiferromagnets to determine the conditions
under which local lattice distortions participate in a magnetic
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FIG. 3. [(a)—(e)] Close-up view of selected infrared-active vibrational modes of [Cu(pyz),(HF,)]PFs as a function of temperature along
with their mode assignments. The curves are offset for clarity. [(f)—(j)] Frequency vs. temperature for the same features. Vibrational changes
near 75 K are due to local lattice distortions. The gray band near 75 K denotes the transition region.

phase transition. We find that while the pyrazine ligands distort
to reduce the antiferromagnetic exchange and stabilize the
fully polarized state in [Cu(pyz),(HF,)]PFg, the OH stretch
in CuF,(H,0),(3-Clpy) (and all other ligands involved in
intermolecular hydrogen bonding) are rigid. This comparison
shows, in a very dramatic manner, that striction is not an
essential aspect of the magnetic phase transition in these
materials unless there are robust atom-atom linkages involved
in the superexchange pathway. We illustrate the breadth and
utility of these simple ideas with predictions for several
other quantum materials: SrCu,(BOs3), and CdCr,O4 (where
magnetization steps take place with changes in the lattice)
[24,39,40] and the blocking temperature in Mn ,-acetate and

sublattice coalescence in [Ru,(O,CCH3)4]5[Cr(CN)g] [45]
which are uncorrelated with the structure.
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