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In magnets with noncollinear spin configuration the expectation value of the conventionally defined spin
current operator contains a contribution which renormalizes an external magnetic field and hence affects only
the precessional motion of the spin polarization. This term, which has been named angular spin current by Sun
and Xie [Phys. Rev. B 72, 245305 (2005)], does not describe the translational motion of magnetic moments.
We give a prescription for how to separate these two types of spin transport and show that the translational
movement of the spin is always polarized along the direction of the local magnetization. We also show that at
vanishing temperature the classical magnetic order parameter in magnetic insulators cannot carry a translational
spin current and elucidate how this affects the interpretation of spin supercurrents.

DOI: 10.1103/PhysRevB.95.104436

I. INTRODUCTION

The notion of spin currents describing the motion of
magnetic moments associated with the spins of the electrons in
solids is of central importance in the field of spintronics where
one tries to use the spin degree of freedom to store and process
information. Unfortunately, in systems lacking spin-rotational
invariance (which can be broken by an external magnetic field
or by relativistic effects such as spin-orbit coupling or dipole-
dipole interactions) the proper definition of the quantum me-
chanical operator representing the spin current is ambiguous,
because the magnetization does not satisfy a local conserva-
tion law. In the past decade several authors have proposed
resolutions of this ambiguity [1–16], but a generally accepted
agreement on the correct definition of the spin current operator
in systems without spin conservation has not been found.

The purpose of this work is show that the distinction
between translational and angular spin currents proposed by
Sun and Xie [8] leads to a simple and unique definition of the
concept of spin transport in condensed matter systems. Sun
and Xie [8] pointed out that spin currents describe moving
magnetic dipoles and that generally the transport of any vector
can be decomposed into a translational part characterized by
some velocity v(r) and an angular part described by some
angular velocity ω(r), see Fig. 1. In the context of spin
transport Sun and Xie [8] called the latter contribution the
angular spin current, although this can be also viewed as
the spin torque discussed earlier by Culcer et al. [6]. We
will explicitly show below that the equation of motion of
a magnetic moment mi at lattice site Ri with magnitude
mi = |mi | and polarization m̂i = mi/|mi | can be decomposed
into a translational part

∂tmi +
∑

j

〈I ‖
i→j 〉 = 0 (1)

that corresponds to the physical movement of magnetic dipole
moments and an angular part

∂t m̂i = ωi × m̂i (2)

that describes the precessional motion of the magnetization.
We will provide expressions for the translational spin current
operator I

‖
i→j and the precession frequency ωi valid for

itinerant as well as localized systems. Although the explicit
construction of this decomposition is very simple, it entails

profound physical consequences: Since only the translational
movement of magnetization corresponds to the physical dis-
placement of magnetic moments, in equilibrium only station-
ary translational spin currents can generate an electrical field
[17]. Angular spin currents on the other hand only transport the
polarization, hence a stationary angular spin current is simply
an inhomogeneous configuration of the local magnetic order
and does not create an electrical field. Furthermore, we also
show that in generic magnetic insulators the classical magnetic
order cannot support translational spin transport at vanishing
temperature; incoherent thermal or quantum fluctuations are
mandatory for the physical transport of magnetization in these
systems. This also implies that spin superfluidity in magnetic
insulators [18–26] must be angular spin transport that can be
visualized as transporting the spin polarization but does not
correspond to the physical movement of magnetic moments.

The remainder of this work is organized as follows: In
Sec. II we will derive general expressions for the operators
corresponding to the translational spin current and to the pre-
cession frequency of the magnetization, first for itinerant sys-
tems and then for localized magnetic moments. We proceed to
illustrate the usefulness of the decoupling procedure in Sec. III,
where we discuss spin superfluidity in easy-plane ferromag-
nets and persistent spin currents in Heisenberg rings. Finally,
in Sec. IV we present our conclusions. The Appendix con-
tains some additional details of the self-consistent spin-wave
expansion we employ to describe easy-plane ferromagnets.

II. SEPARATING TRANSLATIONAL FROM
ANGULAR SPIN TRANSPORT

In this section, we explicitly show how translational and
angular spin transport can be defined on the operator level.

A. Itinerant electrons

To construct the proper quantum mechanical definition of
the translational spin transport operator let us consider a lattice
model describing electrons with spin-dependent hopping tσσ ′

ij

in an inhomogeneous magnetic field hi . The second quantized
Hamiltonian of our model is

H =
∑
ijσσ ′

tσσ ′
ij c

†
iσ cjσ ′ −

∑
i

hi · si + U , (3)
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FIG. 1. The two kinds of spin transport. (a) Translational motion
of the magnetic moment m with a velocity v, corresponding to the
physical movement of a magnetic moment with magnitude |m|.
(b) Precessional motion of the magnetic polarization m̂ = m/|m|
with a frequency ω. The latter motion is purely angular and leaves
the magnitude |m| of the magnetic moment invariant.

where U is some spin-rotationally invariant interaction, ciσ

annihilates a fermion with spin-projection σ at lattice site Ri ,
and the itinerant spin operators are defined by

si = 1

2
c
†
i σci, ci =

(
ci↑
ci↓

)
. (4)

Here σ is the vector of Pauli matrices. The spin-dependent
hopping energies tσσ ′

ij are of the form

tσσ ′
ij = tij δσσ ′ + i(λij · σ )σσ ′, (5)

where the vectors λij are proportional to the strength of
the spin-orbit coupling. The hermiticity of the Hamiltonian
implies the symmetries tij = t∗ji and λij = −λ∗

ji . Using the

canonical anticommutation relations {ciσ ,c
†
jσ ′ } = δij δσσ ′ and

the fact that the interaction is spin-rotationally invariant,
[si ,U] = 0, we obtain the Heisenberg equation of motion for
the itinerant spins,

∂si

∂t
+

∑
j

I i→j = −hi × si , (6)

where we have defined the operator

I i→j = − 1

2i
(tij c

†
i σcj − t∗ij c

†
jσci) − 1

2
(λij c

†
i cj + λ∗

ij c
†
j ci)

− 1

2i
(c†i (σ × λij )cj − c

†
j (σ × λ∗

ij )ci). (7)

It is tempting to associate this operator with the spin current
describing the transport of spin from lattice site Ri to lattice
site Rj . It turns out, however, that a certain part of this
operator simply renormalizes the external magnetic field and
therefore cannot be associated with translational spin transport.
To isolate this contribution and identify the angular part which
renormalizes the precessional motion of the spins, we take the
quantum mechanical expectation value of both sides of the
equation of motion (6) and obtain a formally exact equation of
motion for the magnetic moments mi(t) = 〈si(t)〉,

∂t mi + T i = −hi × mi , (8)

where the spin torque is defined by

T i =
∑

j

〈I i→j 〉. (9)

To identify the contribution responsible for translational
spin transport, we further decompose the vector T i into a
longitudinal and a transverse part,

T i = T
‖
i m̂i + T⊥

i , (10)

where m̂i = mi/|mi | is the local spin polarization and

T
‖
i =

∑
j

m̂i · 〈I i→j 〉, (11)

T⊥
i = T i − (T i · m̂i)m̂i . (12)

Writing

T⊥
i = (m̂i × T i) × m̂i = δh⊥

i × mi , (13)

where

δh⊥
i = m̂i × T i

|mi | =
∑

j

m̂i

|mi | × 〈I i→j 〉 (14)

is the induced magnetic field perpendicular to the direction
of mi , we see that the transverse part T⊥

i renormalizes the
external magnetic field. The total angular frequency relevant
for the precessional motion of the magnetic moments is

ωi = −hi − δh⊥
i . (15)

The term −δh⊥
i × mi can be called angular spin current [8]

or spin torque [6] and should be added to the external torque
−hi × mi acting on the magnetic moments. The expectation
value of the equation of motion (8) can now be written as

∂t mi + m̂iT
‖
i = ωi × mi . (16)

From this expression it is easy to show that the spin torque does
not contribute to the time evolution of the magnitude mi =
|mi | of the magnetic moments, which satisfies the equation of
motion [5]

∂tmi +
∑

j

m̂i · 〈I i→j 〉 = 0. (17)

In contrast, the precessional motion of the spin polarization is
governed solely by the spin torque,

∂t m̂i = ωi × m̂i . (18)

In summary, the renormalized precession frequency asso-
ciated with the angular spin current is

ωi = −hi −
∑

j

m̂i

|mi | × 〈I i→j 〉, (19)

while the operator representing the translational spin current
is

I
‖
i→j = m̂i · I i→j . (20)

Note that time-dependent changes in the length of the magneti-
zation are always accompanied by translational spin transport.
On the other hand, stationary translational spin currents are
also possible if the length of the magnetization is constant [4].
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B. Localized spins

The above expressions have been derived for a lattice
model for itinerant electrons. It is instructive to work out the
explicit form of the rotation vector ωi and the translational spin
current operator I

‖
i→j for a localized spin model containing

only the spin degrees of freedom. For simplicity, let us
specify the interaction to the on-site Hubbard interaction
U = U

∑
i ni↑ni↓, where niσ = c

†
iσ ciσ . Assuming U � |tσσ ′

ij |
and a half-filled lattice, we can use a canonical transformation
[27] to derive from Eq. (3) an effective Hamiltonian involving
only spin 1/2 operators Si acting on the reduced Hilbert space
of singly occupied lattice sites. The effective spin Hamiltonian
can be written as [28]

Hspin = − 1

2U

∑
ij

(|tij |2 + |λij |2) + 1

2

∑
ij

∑
αβ

Kαβ

ij Sα
i S

β

j

−
∑

i

hi · Si , (21)

where the spin-spin interaction tensor has three contributions,

Kαβ

ij = δαβJij + εαβγ D
γ

ij + 	
αβ

ij . (22)

Here the isotropic exchange coupling Jij and the antisym-
metric Dzyaloshinskii-Moriya vector Dij are given by

Jij = 4

U
(|tij |2 − |λij |2), (23)

Dij = − 8

U
Re[tijλji] = 8

U
Re[tijλ

∗
ij ], (24)

while 	
αβ

ij is a symmetric tensor in spin space with matrix
elements

	
αβ

ij = − 4

U

(
λα

ijλ
β

ji + λ
β

ijλ
α
ji

) = 8

U
Re

[
λα

ij

(
λ

β

ij

)∗]
. (25)

The Heisenberg equation of motion can be written as

∂t Si +
∑

j

I spin
i→j = −hi × Si , (26)

where the operator

I spin
i→j = Si × Kij Sj (27)

is the strong coupling limit of the operator I i→j defined
in Eq. (7) in the reduced spin Hilbert space. Here Kij is a
tensor in spin space with matrix elements given by Eq. (22).
Alternatively, Eq. (27) can be obtained directly from Eq. (7) via
a canonical transformation [27]. With the substitution I i→j →
I spin

i→j the expressions (19) and (20) for the local precession
frequency and the longitudinal spin transport operator remain
valid, so that we obtain

ωi = − hi −
∑

j

m̂i

|mi | × 〈Si × Kij Sj 〉, (28)

〈I ‖
i→j 〉 =m̂i · 〈Si × Kij Sj 〉. (29)

In the classical limit and at vanishing temperature the quantum
mechanical expectation value 〈Si × Kij Sj 〉 can be factorized,

〈Si × Kij Sj 〉 → 〈Si〉 × Kij 〈Sj 〉 ≡ mi × Kij mj . (30)

Consequently the expectation value of the longitudinal spin
current operator vanishes identically in this limit. This implies
that for a generic magnetic insulator with a spin Hamiltonian
of the form of Eq. (21) incoherent thermal or quantum
fluctuations are a necessary prerequisite for the transport of
actual magnetization. The local precession frequency reduces
in the same limit to

ωi = − hi −
∑

j

m̂i × (m̂i × Kij mj )

= − hi +
∑

j

[Kij mj − m̂i(m̂i · Kij mj )]. (31)

The last term in Eq. (31) is proportional to m̂i and hence does
not contribute to ωi × mi so that we may write ωi × mi =
(−hi − δhi) × mi , where the renormalization of the magnetic
field is given by

δhi = −
∑

j

Kij mj . (32)

Note that Eq. (32) can also be obtained by means of a simple
mean-field decoupling of the spin Hamiltonian in Eq. (21).

III. SPIN SUPERFLUIDITY AND PERSISTENT
SPIN CURRENTS

To illustrate the differences between translational and
angular spin transport and how this affects the interpretation
of spin supercurrents, it is instructive to consider simple model
systems that can support translational and angular spin currents
in equilibrium or in metastable states.

A. Easy-plane ferromagnet

Let us first consider an easy-plane ferromagnet described
by the spin S Heisenberg Hamiltonian

Hplane = −1

2

∑
ij

Jij Si · Sj + K

2

∑
i

Sz
i S

z
i (33)

on a simple cubic lattice, with exchange coupling Jij = J > 0
for nearest neighbors only, and an easy-plane anisotropy
K > 0. This kind of system has served in the literature as an el-
ementary example for spin superfluidity [18,20,21,23,25,26].
We will now calculate the local precession frequency (28) and
the translational spin current (29) for this system to leading
order in a 1/S expansion. To facilitate this we expand the spin
operators in a local basis defined by the instantaneous direction
of the spin polarization m̂i(t) = 〈Si(t)〉/|〈Si(t)〉|:

Si = S
‖
i m̂i + S

(1)
i e(1)

i + S
(2)
i e(2)

i . (34)

Here, e(1)
i (t) and e(2)

i (t) are unit vectors chosen such that
{e(1)

i ,e(2)
i ,m̂i} form a right-handed basis at every lattice site. In

this basis we may now bosonize the spin operators by means
of a Holstein-Primakoff (HP) transformation,

S
‖
i = S − a

†
i ai, (35a)

S
(1)
i + iS

(2)
i =

√
2Sai + O(S−1/2), (35b)

where the ai are canonical Bose operators. Especially note that
since we self-consistently define the quantization axis as the
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direction of the local magnetization, m̂i(t) = 〈Si(t)〉/|〈Si(t)〉|,
by definition the HP bosons can never condense [29]. This is
completely analogous to the fact that in the superfluid phase
of interacting bosons the Bogoliubov quasiparticles, which are
the Goldstone modes associated with the spontaneous breaking
of the U(1) symmetry in the superfluid state, do not condense
provided the condensate wave function is self-consistently
defined via the solution of the Gross-Pitaevskii equation.

With the HP bosonization (35), we find that the leading
order contributions to the precession frequency and the
spin current are of order S. Explicitly, the local precession
frequency (28) becomes

ωi = −
∑

j

SJij m̂j + SK(m̂i · ez)ez. (36)

To this order, the polarization equation of motion (2) recasts
the Landau-Lifshitz equation of classical spin dynamics.
Assuming that the magnetic texture m̂i = m̂(Ri) varies only
slowly in space, we can take the continuum limit. The exchange
contribution to the polarization equation of motion can then
be identified with the divergence of the classical spin current,

∑
j

SJij m̂j × m̂i →
∑

μ

∂μ Jμ, (37)

where the classical spin current is defined as

Jμ = −SJa2m̂ × ∂μm̂. (38)

Here ∂μ = ∂/∂rμ, and a is the distance between nearest
neighbors. An exact equilibrium solution for the polarization is
then given by m̂(r) = [ex cos φ(r) + ey sin φ(r)], with a local
phase satisfying ∇2φ(r) = 0. The U (1) freedom associated
with the choice of φ(r) lies at the heart of the concept of
spin superfluidity [20,26]. Out of equilibrium we can make
the general ansatz

m̂(r,t) =
√

1 − ρ2(r,t)
[
ex cos φ(r,t) + ey sin φ(r,t)

]
+ ezρ(r,t), (39)

which is depicted graphically in Fig. 2.
If the system is only slightly driven out of equilibrium, the

equation of motion (2) for the spin polarization becomes to

FIG. 2. Magnetic polarization in the easy-plane ferromagnet. ρ

denotes the deviation from the ground state with the magnetization
lying in the x-y plane. Superfluid angular transport is possible due to
the U (1) freedom of the phase φ in this plane.

lowest nonvanishing order in deviations from equilibrium

∂tφ = SKρ, (40a)

∂tρ = SJa2∇2φ. (40b)

The above Eqs. (40) are of the form of the Josephson
equations of superconductivity; hence they are conventionally
interpreted as describing a spin supercurrent carried by the
magnetization texture [20,23]. However, since this current
does not correspond to translational transport of the local mag-
netization |mi | = |〈Si〉|, this supercurrent is not equivalent to
the superfluid transport of magnetic moments. In particular, a
stationary angular supercurrent with ∇φ = const is simply an
inhomogeneous magnetic texture; while it can be viewed as
a stationary transport of polarization, it does not correspond
to any physical movement of magnetic moments which would
generate an electrical field [17].

To evaluate the O(S) contribution to the translational spin
current (29), we will assume for simplicity a slowly varying
magnetic texture m̂i in a metastable superfluid state with ρ�1.
Applying the HP transformation (35) to the spin current (29)
then yields

〈I ‖
i→j 〉 = Im[−2SJij 〈a†

i aj 〉 + δijSK〈aiai〉], (41)

which can be evaluated to

〈I ‖
i→j 〉 = 1

Na

∑
k

v
μ

k

[
nk + 1

2

(
1 − Ek

Ak

)]
, (42)

where Ri and Rj = Ri + aeμ are nearest neighbor lattice
sites. Here nk are the distribution functions of magnons with
dispersion

Ek = S
√

(K + Jk=0 − Jk)(Jk=0 − Jk) (43)

and velocity v
μ

k = ∂Ek/∂kμ, and the remaining coefficient of
the quantum-mechanical zero-point fluctuations is

Ak = S(Jk=0 − Jk) + SK/2. (44)

A detailed derivation of the Hamiltonian in the local basis and
of the magnon dispersion (43) is relegated to the Appendix. In
equilibrium the translational current (42) of course vanishes by
symmetry, i.e., 〈I ‖

i→j 〉 = 0. Therefore there is no translational
movement of magnetic moment in this superfluid spin state.

Lastly, let us note that the complete decoupling of the
magnetic texture and the incoherent magnons is an artifact of
the lowest order approximation in the 1/S expansion, and of
the assumption of a slowly varying texture. If one relaxes either
of these approximations, there will be a coupling, resulting in
a two-fluid description of spin transport like the one discussed
in Ref. [25]. We emphasize however that from the point of
view we adopted, the superfluid does not arise due to the
condensation of magnons. We rather consider the magnons
as fluctuations on top of the superfluid ground state; these
magnons cannot condense by definition.

B. Heisenberg ring

Next, let us consider a system where the translational spin
current is finite even in equilibrium, i.e., there is a persistent
translational spin current corresponding to the physical move-
ment of magnetic moments. Consider a ferromagnetic spin S
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me z i
i

FIG. 3. Magnetization configuration of a ferromagnetic ring in a
radial magnetic field. Due to the exchange field the angle ϑm between
the magnetization and the z axis is slightly smaller than the angle ϑ

between the external field and the z axis, see Ref. [4].

Heisenberg model in a radial inhomogeneous magnetic field
with quantum mechanical Hamiltonian

Hring = −1

2

∑
ij

Jij Si · Sj −
∑

i

hi · Si , (45)

where the sums are over the N sites of the lattice of
localized spins on the ring coupled by ferromagnetic exchange
interactions Jij = J > 0 if i and j label nearest neighbors. hi

is a crown-shaped inhomogeneous magnetic field of the form

hi = h[sin ϑ(ex cos ϕi + ey sin ϕi) + ez cos ϑ], (46)

where the angles ϕi label the positions of the spins on the ring,
as illustrated in Fig. 3.

In Ref. [4] it has been shown that at finite temperature
T > 0 spin-wave excitations carry a persistent equilibrium
spin current

〈I ‖
i→i+1〉 = 1

L

∑
n

vn

e(εn+|h|)/T − 1
(47)

circulating the ring. Here L is the length of the ring, vn =
∂εn/∂kn is the magnon velocity, and the magnon dispersion
is εn = SJa2k2

n, with lattice spacing a and quantized wave
vectors kn = 2π

L
(n − �

2π
). � is the solid angle traced out by

the local magnetization direction m̂i on the unit sphere in order
parameter space as it moves around the chain. This finite solid
angle �, i.e., the topology of the spin configuration on the ring,
is responsible for the finiteness of the equilibrium current (47).
The situation is completely analogous to persistent electrical
currents in mesoscopic metal rings pierced by a magnetic flux
[4]. These electrical currents generate a magnetic dipole field;
one of us has shown in Ref. [4] that the persistent spin current
(47) similarly generates an electric dipole field. This can be
understood as follows [17]: A magnetic dipole moment m
moving with velocity v generates a magnetic field B in its rest
frame. Lorentz transforming back to the laboratory frame, we
find that to lowest order in v/c (where c is the speed of light)
this magnetic field generates an electrical field E = − v

c
× B.

At zero temperature the equilibrium current (47) vanishes
because there are no spin waves in the ferromagnetic ground
state. However, Bruno and Dugaev [7] pointed out that in this
system the classical spin current Jμ defined in Eq. (38) is finite
and argued that therefore the system exhibits an equilibrium
spin supercurrent even at T = 0. While this interpretation
is possible, we stress that this classical current is angular

and not translational; hence it cannot be associated with the
motion of magnetic dipoles, but should rather be considered
as a renormalization of the external magnetic field [5]. To
understand this, let us explicitly calculate the inhomogeneous
magnetization configuration in the classical ground state of the
Hamiltonian (45). Just as in the easy-plane ferromagnet, the
equation of motion for the magnetic texture m̂i is to leading
order in 1/S the classical Landau Lifshitz equation

∂t m̂i = m̂i × (
hi + δhex

i

)
, (48)

where the exchange field is δhex
i = S

∑
ij Jij m̂j . The equilib-

rium solution of the Landau-Lifshitz equation (48) is

m̂i = sin ϑm(ex cos ϕi + ey sin ϕi) + ez cos ϑm, (49)

where the angle ϑm is slightly smaller than the angle ϑ between
the magnetic field and the z axis, as discussed in Ref. [4].
The deviation of ϑm from ϑ is determined by the exchange
field δhex

i . As for the easy-plane ferromagnet discussed in
the last section, the continuum limit of the exchange torque
is the divergence of the classical spin current, δhex

i × m̂i →∑
μ ∂μ Jμ. For the classical ground state (49), the classical spin

current has a finite component ∝ ez∇ϕ. However, as in the
easy-plane ferromagnet, this finite current merely signals an
inhomogeneous magnetization configuration and is not related
to the physical transport of magnetization; hence it also will
not generate any electrical field. If one would on the other
hand incorrectly associate the classical spin current Jμ with
the stationary movement of physical dipoles, it would have to
be accompanied by an electrical field. This would imply that
a purely static inhomogeneous magnetization configuration
is always accompanied by an electric field, in contradiction
with the elementary fact that in classical electromagnetism
magnetostatics and electrostatics are completely decoupled.

Finally, let us also point out that although the classical
ground state (49) of the Heisenberg ring is very similar to the
classical ground state of the easy-plane ferromagnet discussed
in the last section, it does not support spin superfluidity,
i.e., angular spin supercurrents, because the phase ϕi of the
magnetization is pinned by the external magnetic field hi ,
Eq. (46).

IV. SUMMARY AND CONCLUSIONS

We conclude that in the classical limit the angular spin
current introduced by Sun and Xie [8] can be absorbed
into a renormalization of the external magnetic field which
contributes to the torque acting on the magnetic moments.
In equilibrium, this term does not describe any current of
magnetic moments because the equilibrium configuration of
the magnetization is such that the total torque on each moment
vanishes. Translational transport of spins is described by the
longitudinal spin current defined in Eq. (29), which is only
finite due to thermal or quantum fluctuations. An example
for a system exhibiting a finite longitudinal spin current in
equilibrium is a mesoscopic Heisenberg ring in a crown-shaped
magnetic field, as discussed in Ref. [4].

Our considerations imply that in equilibrium the classical
spin current Jμ defined in Eq. (38) does not describe any
motion of magnetization. While it can be interpreted as a
stationary current of magnetic polarization, such an interpre-
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tation is by no means mandatory since there is no physical
movement. In nonequilibrium on the other hand, the classical
spin current Jμ contributes to the angular spin current, i.e., to
the precessional motion of the spins, and does transport spin
polarization. In particular, this implies that spin superfluidity,
which is based on the formal similarity of Eq. (40) with a mass
supercurrent of superfluid bosons [20,26], does not correspond
to the physical movement of magnetization but of polarization.
This means that in equilibrium, a superfluid spin state will not
be accompanied by an electrical field, in contrast to a persistent
translational spin current [4]. This physical difference between
the two types of spin transport persists also out of equilibrium:
As already shown by Sun and Xie [8], an angular spin current
with finite ω × m̂ will generate an electrical field Eω ∝ 1/r2

for large distance r from the source, whereas the electrical
field of translational spin currents decays as E‖ ∝ 1/r3.

We have also shown that spin superfluidity can be described
entirely without referring to off-diagonal long-range order
[30,31] and magnon condensation. This is achieved by
quantizing the spins in a self-consistently defined frame of
reference with the local z axis pointing in the direction m̂
of the instantaneous magnetization. Magnons defined with
respect to this reference frame can never condense or display
off-diagonal long-range order, hence they are not superfluid.
This is in agreement with the general proof of Kohn and
Sherrington [31] that bosonic quasiparticles which are formed
as bound states of particle-hole pairs of the underlying
fermionic system (such as excitons or magnons) do not
exhibit off-diagonal long-range order in coordinate space.
Hence, the Bose-Einstein condensation of this type of boson
is not accompanied by superfluidity. Although the change
in magnetic order in a magnetic insulator can be viewed as
Bose-Einstein condensation of magnons [25,26,32,33], the
resulting state can always be characterized by magnons that
exhibit neither off-diagonal long-range order nor superfluidity.
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APPENDIX: MAGNONS IN THE ROTATING
REFERENCE FRAME

This Appendix is devoted to the derivation of the dispersion
(43) of the magnons in the local reference frame defined by
the magnetic polarization m̂i(t) = 〈Si(t)〉/|〈Si(t)〉|. We have
already derived the general setup of a spin-wave expansion
in this local and possibly time dependent reference frame in
Ref. [29]. The first step is to rotate the z axis of the laboratory
frame to the direction m̂i(t) of the local magnetization by
means of a unitary transformation U(t) acting on the spins.
The explicit form of U(t) is given in Ref. [29]. It then turns out
that the rotated Hamiltonian H̃plane = Hplane + HB contains
an additional Berry-phase term acting as a magnetic field due

to the time dependence of m̂i(t),

HB = −iU†∂tU = −
∑

i

Bi · Si . (A1)

Writing the spin polarization as

m̂i = sin θi[ex cos φi + ey sin φi] + ez cos θi, (A2)

we can choose the transverse basis vectors as

e(1)
i = −ex sin φi + ey cos φi, (A3)

e(2)
i = − cos θi[ex cos φi + ey sin φi] + ez sin θi . (A4)

Expanding the Berry-phase magnetic field in this basis, Bi =
B

(1)
i e(1)

i + B
(2)
i e(3)

i + B
‖
i m̂i , we explicitly find

B
(1)
i = ∂tθi = −e(2)

i · ∂t m̂i , (A5a)

B
(2)
i = sin θi∂tφi = e(1)

i · ∂t m̂i , (A5b)

B
‖
i = cos θi∂tφi . (A5c)

Applying the Holstein-Primakoff transformation (35) to the
rotated Hamiltonian then yields

H̃plane = E0 + H1 + H2 + O(S1/2). (A6)

Here the classical ground state energy is

E0 = −S2

2

∑
ij

Jij m̂i · m̂j + S2

2
K

∑
i

(m̂i · ez)
2 − S

∑
i

B
‖
i .

(A7)
The term linear in the Bose operators can be written as

H1 =
√

S

2

∑
i

ai

(
e(2)
i + ie(1)

i

) · (∂t m̂i − ωi × m̂i) + H.c.,

(A8)

where ωi is the O(S) local precession frequency, Eq. (36).
Because the magnetic polarization satisfies the equation of
motion ∂t m̂i = ωi × m̂i up to this order in 1/S, we conclude
that H1 vanishes identically. Note that this implies that
the Holstein-Primakoff bosons cannot condense, a statement
which remains true to all orders in 1/S due to the self-
consistency of the basis. Up to this point the discussion is
completely general and applies to all magnetic insulators.

To evaluate the quadratic part of the rotated Hamiltonian we
will assume as in the main text that the magnetic texture varies
only slowly in space and is only slightly out of equilibrium.
Then we may approximate m̂i · m̂i+1 ≈ 1, e(p)

i · e(p′)
i+1 ≈ δpp′

,

e(p)
i · m̂i+1 ≈ 0, with p,p′ ∈ {1,2}, and cos θi ≈ 0. With these

simplifications we immediately obtain

H2 =
∑

k

[
S

(
Jk=0 − Jk + K

2

)
a
†
kak

− S
K

4

(
aka−k + h.c.

)
+ S

K

4

]
, (A9)

which describes free magnons with the dispersion (43).
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