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Spin-orbit-based device for electron spin polarization
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We propose quantum devices having spin-orbit coupling (but no magnetic fields or magnetic materials) that,
when attached to leads, yield a high degree of transmitted electron polarization. An example of such a simple
device is treated within a tight binding model composed of two one-dimensional chains coupled by several
consecutive rungs (i.e., a ladder) and subject to a gate voltage. The ensuing scattering problem (with Rashba
spin-orbit coupling) is solved, and a sizable polarization is predicted. When the ladder is twisted into a helix
(as in DNA), the curvature energy augments the polarization. For a system with random spin-orbit coupling, the
distribution of polarization is broad; hence a high degree of polarization can be obtained in a measurement of a
given disorder realization. When disorder occurs in a double helix structure then, depending on scattering energy,
the variance of the polarization distribution can increase even further due to helix curvature.
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I. INTRODUCTION

Considerable interest has recently been focused on spin-
tronic devices that give rise to spin polarization [1–3]. Of
particular importance for spintronics are devices that do not
resort to external magnetic fields or magnetic materials [4],
in contrast with those that do [5]. A major advantage of
semiconductor spintronic devices requiring only electric fields
for manipulating spins is the lack of design complexities
associated with incorporating local magnetic fields [4]. Interest
in such devices was heightened following the measurement
of spin-selective transmission of electrons through double-
stranded DNA with spin polarizations exceeding 60% at
room temperature (the spin polarization efficiency depends
on the length of the DNA and its organization) [6,7]. Here
we propose a simple structure that yields outgoing polarized
electrons given an incident beam of unpolarized electrons. It
has a ladder-type structure (see Fig. 1) made of materials in
which only spin-orbit (SO) is active (no magnetic fields). For
simplicity and elegance, the SO is introduced as a non-Abelian
gauge [8].

This paper is arranged as follows. The description of the
tight-binding model is presented in Sec. II and is used is Sec. III
to study electron polarization in a few mesoscopic systems:
(1) a clean planar and (2) a clean twisted two-chain ladder, in
Secs. III A and III B, respectively. (3) In Sec. III C we argue
that a twisted disordered ladder emulates, in some sense, a
DNA system and we evaluate the distribution of polarization
for such system. Our main results are summarized in Sec. IV,
where we suggest the following. (a) For clean systems with
the geometry of a planar ladder, one can achieve a high degree
of electron polarization that is due solely to SO coupling.
(b) The effect of twisting the ladder into double helical strands
with links is reflected by a negative curvature energy that
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enhances the polarization dramatically when the Fermi energy
is close to the band center. (c) For a twisted disordered
system (reminiscent of DNA, in a sense to be discussed
below), the distribution of polarization has zero mean, but
it is broad enough to expect a sizable degree of polarization
measured on a given disorder realization. Moreover, the effect
of curvature augments the variance of the distribution even
further. Some relevant topics are clarified in the Appendixes,
including the transfer matrix solution to the scattering problem,
the definition of the Aharonov-Casher phase, a proof that in a
system respecting time reversal symmetry with a single source
and a single drain leads such that both leads are strictly one
dimensional, there is no polarization, and a discussion of
spin density, spin-current, spin-torque, and a useful relation
between spin flux and spin-torque.

II. TIGHT BINDING MODEL

Guided by Fig. 1, we describe the system using a
tight-binding model for an electron hopping on two chains
numbered α = 1,2, where the sites on each chain are numbered
n = 0, ± 1, ± 2, . . . and the lattice constant is a. Hopping
between the two chains occurs along N adjacent links. For
α = 1,2, sites n < 0 (n > N − 1) form the left (right) leads,
while sites n = 0,1, . . . ,N − 1 form the sample in which SO
is active. Hopping between two sites (α,n) ↔ (α,n ± 1) and
(α,n) ↔ (β,n) within the sample is encoded by SU(2) matrices
eiλn̂m·σ , where λ is the dimensionless spin-orbit strength
parameter, σ is the vector of Pauli spin matrices, and the unit
vector n̂m determines the direction of the effective magnetic
field acting on the electron on link m (either along a chain or
between chains). The representation of SO coupling in terms
of SU(2) matrices, an extension of the Peierls substitution [9]
for a non-Abelian gauge, is discussed elsewhere; see e.g.,
Refs. [10,11]. In semiconductors there are various sources
of SO coupling [12], such as the Dresselhaus term (spin
component parallel to the wave number k), and the Rashba
term due to structural inversion asymmetry (spin component
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FIG. 1. Geometry of the device and the tight-binding model.
Electrons hopping on two parallel chains (lying on the x-z plane)
can also hop between chains along N adjacent consecutive rungs.
Free electrons moving in the leads (tight-binding sites marked by
red points) are scattered off the sample in which SO is active
(tight-binding sites marked by blue points). Two cases are considered.
(1) When the sample is acted upon by a homogeneous electric
field Eŷ, Rashba SO coupling generates SU(2) hopping matrices
U (z) = e±iλσz along horizontal links and U (x) = e±iλσx along vertical
links, i.e., the rungs (this case is shown in the figure, and can
be naturally extended to include other SO scattering mechanisms,
e.g., Dresselhaus). (2) Any arbitrary specified inhomogeneous field
configuration or Rashba/Dresselhaus coupling case can also be
solved. When the field configuration is too complicated for accurate
description (e.g., in the case of DNA), the corresponding hopping
can be encoded by random SU(2) matrices (in the same spirit as the
treatment of energy levels of complex nuclei with random matrices).

perpendicular to k), or any combination thereof. The SO
interaction strength is significantly enhanced compared to its
value in vacuum. Moreover, the SO strength and Fermi energy
can be controlled by applying gate voltages (see Ref. [13],
which studies an array of mesoscopic InGaAs rings controlled
by Au gate electrodes).

The model Hamiltonian for the device in Fig. 1 is written in
second-quantization using the annihilation operator ĉαnσ for
an electron at site (α,n) with spin projection σ = ↑,↓,

H = −t
∑

α

⎡
⎣N−2∑

n=0

ĉ†αne
iλn̂n·σ ĉαn+1+

∑
n/∈[0,N−1]

ĉ†αnĉαn+1

⎤
⎦

−t

N−1∑
n=0

ĉ
†
1n eiλn̂n·σ ĉ2n + H.c., (1)

where ĉαn = (ĉαn↑,ĉαn↓)T and t is the (real) hopping amplitude
(we take t = 1 in what follows).

A. Scattering problem

The Schrödinger equation with scattering boundary con-
ditions is solved by the transfer matrix technique; see
Appendix A. For definiteness, we consider scattering of
an incoming electron at Fermi energy ε = −2 cos ka as it
approaches the sample from the left in channel β = 1,2 with
spin direction μ = ↑,↓. It can be reflected or transmitted into
channel α = 1,2 with spin direction σ = ↑,↓. The reflection
and transmission amplitudes are the 4 × 4 matrices rασβμ and
tασβμ, where the initial and final states are denoted by |βμ〉
and |ασ 〉, respectively. Unitarity and time-reversal constraints
imply [14]

Tr[t†t + r†r] = 4, t ′ανβμ = (−1)ν−μt∗βμ̄αν̄ ,

rανβμ = (−1)ν−μrβμ̄αν̄ , (2)

where t ′ is the transmission matrix for scattering of incoming
electrons from the right, and σ̄ = −σ . Time reversal invariance
implies rασαμ = ρ δνμ, where |ρ| � 1.

B. Order of magnitude of spin order strength λ

Let αR denote the SO strength parameter defined through
the Rashba Hamiltonian, HR = αR

h̄
(p × σ ) · ẑ, for a two-

dimensional electron gas in an asymmetric quantum well, and
let the lattice constant a ≈ 1μ. The dimensionless spin-orbit
strength parameter is λ = m∗aαR/h̄2, where m∗ is the effective
electron (or hole) mass [15]. λ can be varied in the range
0 � λ � 4 (e.g., see Ref. [13], which studied SO effects on
the conductance of a 2D network of InGaAs rings with radius
r ≈ 1μ).

III. OBSERVABLES

We are mainly interested in the dimensionless conductance
[16], g, and the polarization of the transmitted electrons, Pz =
(N↑ − N↓)/(N↑ + N↓), where Nσ is the number of transmitted
electrons with spin projection σ = ↑,↓. Generically, the
transmitted and reflected polarizations PT and PR are vectors
in spin space. Thus

g = Tr[t†t], PT = Tr[t†�t]

g
, PR = Tr[r†�r]

g
, (3)

where � = I2×2 ⊗ σ . All physical measurable observables
(see Appendix D), such as g and P, depend on the spin-
orbit strength λ, the wave number k (equivalently on the
Fermi energy ε = −2 cos ka), and the number of rungs N

(equivalently the length L of the sample). We shall see below
that the behavior of these quantities as functions of k for fixed
λ or vice versa are qualitatively similar because λ appears
together with k in the expression for the covariant wave number
(k − λ

a
n̂ · σ ). This is completely analogous to the U (1) case

where the vector potential (e.g., for an electron in a ring) is
present in the covariant wave number (k − φAB/a), where φAB

is the dimensionless magnetic flux through the ring of radius a,
responsible for the Aharonov-Bohm effect. For a single square
in our ladder, λ is directly related to the Aharonov-Casher
phase, λAC (see Appendix B). Note that φAB is directly
proportional to the strength of the U(1) vector potential, but
the relation between λAC and the coupling strength λ of the
SU(2) vector potential is less simple,

cos λAC = 1 − 2 sin4 λ. (4)

A. Plannar ladder

The strength of the Rashba SO coupling due to structural
inversion asymmetry can be controlled by applying a gate
voltage generating a perpendicular homogeneous electric field
E ‖ ŷ on sites n ∈ [0,N − 1]; see Fig. 1. The correspond-
ing SU(2) matrices in Fig. 1 are then U (x) = e±iλσx and
U (z) = e±iλσz . In Fig. 2 we plot the conductance g and the
transmitted polarization PT,z for N = 9 links. In (a) g is
plotted for fixed k as a function of λ, while in (b) g is
plotted for fixed λ as a function of k. The pattern of the
conductance is characterized by a series of peaks reflecting the
miniband structure commensurate with the number of links. As
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FIG. 2. Results for nine links. (a) Conductance as function of λ

with k = 1. (b) Conductance as function of k with λ = 1. (c) PT,z as
function of λ with k = 1. The sharp variation, accompanied by sign
change, around λ = π/2 is discussed in the text. (d) PT,z as function
of k with λ = 1. The results shown in (c) and (d) imply that the sign
of polarization can be controlled either by tuning the Fermi energy
or by tuning the strength of the SO coupling.

anticipated in our discussion above, the qualitative similarity
of the two patterns is evident, except at the band center where
resonant transmission sometimes occurs, and at the band edges
k = 0,π where the conductance vanishes. The corresponding
transmitted polarizations are shown in (c) and (d). At the
peaks, the magnitude of the polarization is remarkably high.
Achieving 80% polarization with such a simple structure based
solely on spin-orbit coupling is a godsend for spintronics. Just
like the patterns of conductance in (a) and (b), the similarity
between the patterns of polarization shown in (c) and (d) is
evident.

As is evident from Figs. 2(c) and 2(d), PT,z(k,λ) varies
sharply and changes sign at k = π/2 (the band center) and
at λ = π/2. Consequently, the sign of the polarization is
controllable by a gate voltage, an attractive feature from the
spintronics point of view. The sharp slope of PT,z near the sign
reversal point λ = π/2 occurs due to the term (i sin λ n̂ · σ )
[that controls the spin physics within the hopping matrix
eiλn̂·σ = cos λ + i sin λ n̂ · σ ], which is maximal at π/2.

B. Twisted ordered ladder

Now we modify the geometry to be closer to that of DNA
by twisting the ladder so that each strand becomes a helix
[17]. After writing the Schrödinger equation for an electron
on a single one-dimensional (1D) helical strand, we treat the
dynamics of an electron on the twisted ladder within a tight-
binding model. The resulting Hamiltonian is similar to that
of Eq. (A1), albeit with one modification: The kinetic energy
term includes a constant negative energy due to the curvature
of the helix. The consequences of this modification will be
analyzed for ordered and disordered ladders below. We start
from Eq. (9) of Ref. [18] and modify it such that the SO enters
as an SU(2) gauge. Using s as a length coordinate along the
helix, the Hamiltonian for an electron moving along a (strictly)
1D helix is

H1D = h̄2

2m

(
−i

∂

∂s
+ e

h̄c
A

)2

− h̄2κ2

8m
+ V (s), (5)

where A = h̄
4mc

σ × E(s) is a local space-dependent SU(2)
vector potential [18]. Here V (s) is a local potential (assumed to
be zero for simplicity), and εc = −h̄2κ2

8m
is the curvature energy,

where κ is the curvature of the helix.
Before turning to the tight-binding formulation, it is impor-

tant to point out that one should not expect polarization in a
strictly 1D structure because, without a closed loop, the vector
potential can be eliminated by a suitable gauge transformation
(see Appendix C). Moreover, in 1D, time reversal invariance,
Eq. (2), implies that the 2 × 2 reflection matrix r ∝ 12×2 so
that according to Eq. (3), PR = 0. Similar considerations hold
for the transmitted polarization; hence PT = 0.

For the ordered ladder, we assume that the electric field
E is also “twisted” in the sense that its action on a given
link in the twisted and nontwisted ladders is the same.
Consequently, the sole effect of twisting is the occurrence of
the curvature energy. If the length coordinate s is expressed in
units of (1/κ) then energies are measured in units of h̄2κ2

2m
and

εc = −1/4 (dimensionless). Thus the energy on sites (α,n),
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FIG. 3. (a) Conductance g and (b) polarization PT,z as function
of number of links N with k = 1.57 and λ = 1 for the non-twisted
ladder (as shown in Fig. 1, with zero curvature εc = 0) and for the
twisted ladder with finite curvature εc = −1/4.

α = 1,2, and n = 0,1,2, . . . ,N − 1 is lowered by εc. The
effect of curvature is expected to be significant when |εc| >

|ε| = |2 cos ka|. Hence the wave number is chosen close to
the band center where the Fermi energy is small.

The conductance g and the polarization PT,z are plotted
in Fig. 3 versus N = 2,3, . . . ,19 (the number of links) for
k = 1.57 and λ = 1 for the nontwisted ladder (εc = 0, as in
Fig. 1) and for the twisted ladder (εc = −1/4). The curvature
has a dramatic effect on the polarization. In the absence of
curvature, the polarization at the band center virtually vanishes,
but when the curvature is included, the polarization saturates
close to 80%. This result depends on the position of the
Fermi energy; far away from the band center, the polarization
generally remains high, but the curvature has just a small effect.

C. Combination of twisting and disorder

We now turn to the case where the SO coupling on the
various links are not solely determined by the Rashba SO
mechanism, and where the underlying electric fields are not
necessarily homogeneous. For example, in DNA [6,7], the
pattern of local fields responsible for SO coupling (strengths,
directions, etc.) is extremely complicated and may vary sharply
as a function of position. We model this by assuming that
the Hamiltonian (A1) is a random matrix drawn from a
GSE. Similar concepts are prevalent in many branches of

FIG. 4. Polarization distributions D(PT,z) in a disordered ladder
with 15 links, for fixed wave number k = 1.5, based on ensembles
of 6000 samples. A comparison is made between the cases of
εc = 0 (orange) and εc = −1/4 (blue); see Eq. (5) (corresponding
to nontwisted and twisted ladder, respectively). The first moment
vanishes for both distributions but the variances (and also the average
conductance, not shown here) are very different; for εc = 0 we
find 〈g〉 = 0.211, v(PT,z) = 0.0689, while for εc = −1/4 we find
〈g〉 = 0.629, v(PT,z) = 0.101. Thus the effect of curvature is to
augment the conductance by a factor �3 and the variance of the
polarization distribution by a factor �1.5.

physics since the early days of random-matrix theory that was
employed for analyzing the energy spectra of complex nuclei.
To implement this in our disordered ladder, the SU(2) hopping
matrices on the links are assumed to be random, independently
and identically distributed. Now, the problem of generating
an ensemble of these matrices must be addressed. An SU(2)
matrix is determined by three Euler angles,

U =
(

eiγ cos θ eiβ sin θ

−e−iβ sin θ e−iγ cos θ

)
, (6)

where 0 � θ � π , 0 � β � 2π , and 0 � γ � 2π . Gener-
ating random SU(2) matrices should take into account
the Haar measure, dμ(γ,β,x) = 1

2d[x2]dβ dγ = x dβ dγ dx,
where x = cos θ . We follow the method introduced in
Ref. [19], but with a trivial modification [20].

The calculation of the distribution is now carried out em-
ploying a large ensemble of random SU(2) matrices. Our aim
here is to elucidate the distribution D(PT,z) of the transmitted
polarization and its two lowest moments for a given number
of links N and wave number k. The transmitted polarization is
expected to be finite in all three directions in spin space, i.e.,
PT,x , PT,y , and PT,y �= 0, but here we focus for simplicity on
PT,z. It is expected that 〈PT,z〉 = 0, but the interesting quantity
here is the variance v(PT,z) ≡ 〈P 2

T ,z〉 because large variance
means that there is a significant probability for detecting a
high degree of polarization in a measurement of a given
disorder-realization.

Figure 4 shows the distributions D(PT,z) for εc = 0 and
εc = −1/4 for a ladder of 15 links with k = 1.5. The effect
of curvature is to enhance the variance of the polarization
distribution (see the figure caption for details). This augments
the probability to achieve higher polarization in a measurement
of a given disorder-realization. Thus, by tuning the Fermi
energy close to the band center, we can substantially increase
the width of the polarization distribution.
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IV. SUMMARY AND CONCLUSIONS

We have shown that SO coupling in a 2D mesoscopic
device having a simple ladder geometry yields a high degree
of transmitted electron polarization. Moreover, similar to
the study of conductance in InGaAs samples [13], applying a
gate voltage allows control of the polarization either by tuning
the SO strength or the electron density (equivalently, the Fermi
energy). When the ladder is twisted into a helix (as in DNA),
the curvature energy plays an important role by increasing
the polarization, particularly for Fermi energy near the band
center. For complicated systems with rapidly and randomly
varying local electric fields, it is reasonable to assume that the
parameters determining the local SO strength λ and direction n̂
are independently and identically distributed random numbers,
i.e., the hopping terms eiλn̂·σ appearing in Eq. (A1) are random
SU(2) matrices. The resulting distribution of transmitted
polarization is broad enough to expect a high degree of
polarization in a measurement of a given disorder-realization.
The variance of the distribution can be increased even further,
as shown in Fig. 4, due to the curvature of the helix. The
results reported here show that simple spintronic devices that
polarize electrons can be designed without resorting to the use
of magnetic materials or external magnetic fields [21].

Finally, it is worth mentioning the relevance of Refs. [22]
and [23] to our work. Reference [22] demonstrated that
a perpendicularly magnetized cobalt quantum dot can be
switched at room temperature by injecting an in-plane current.
The symmetry of the switching field is consistent with the
spin accumulation induced by Rashba interaction and also
with the torque induced by the spin Hall effect. The relevance
to our work is that the effective magnetic field that drives
the switching is due to Rashba SO coupling. However,
our motivation is entirely different, as we are interested in
obtaining a current of polarized electrons and not in reversing
the polarization of a magnetic material. Reference [23] uses
the spin Hall effect to generate a strong spin current that
induces efficient spin-torque switching of ferromagnets at
room temperature. Here also our motivation is very different,
as explained above. In both these works, the relevance of
spin-torque is stressed. Indeed, spin-torque is an important
ingredient in contemporary spintronics. Using the continuity
equation for spin currents, we show in Appendix D that the
volume integrated spin-torque of the ladder system is directly
related to the transmitted and reflected polarizations defined
in Eq. (3).
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APPENDIX A: SOLUTION OF THE LADDER MODEL BY
THE TRANSFER MATRIX METHOD

Here we solve the scattering problem for the model whose
Hamiltonian is introduced in Eq. (1) (rewritten here for
self-consistency) and compute transmission and reflection

amplitudes. The model Hamiltonian for the device in Fig. 1 is
written in second-quantization using the annihilation operator
ĉαnσ for an electron at site (α,n) with spin projection σ = ↑,↓,

H = −t
∑

α

⎡
⎣N−2∑

n=0

ĉ†αne
iλn̂n·σ ĉαn+1+

∑
n/∈[0,N−1]

ĉ†αnĉαn+1

⎤
⎦

− t

N−1∑
n=0

ĉ
†
1n eiλn̂n·σ ĉ2n + H.c., (A1)

where ĉαn = (ĉαn↑,ĉαn↓)T and t is the (real) hopping
amplitude.

Our aim is to solve the Schrödinger equation H |�〉 = ε|�〉
for the two component spinor |�〉, subject to scattering bound-
ary conditions. Here ε = −2 cos k is the scattering energy and
k is the wave number (where we have taken the lattice constant
a = 1). For definiteness, we consider a scattering problem
wherein an incoming electron approaches the link at n = 0
from the left (n < 0) in channel β = 1,2 with spin direction
μ = ± = ↑,↓. It can be reflected or transmitted into channel
α = 1,2 with spin direction σ = ± = ↑,↓. Henceforth, the
spinor wave functions and the scattering amplitudes depend
on (and should carry) the initial quantum numbers |βμ〉. Thus
the corresponding reflection and transmission amplitudes are
written as rασ ;βμ and tασ ;βμ.

We expand the spinor in a complete set of basis func-
tions in the [chain ⊗ site ⊗ spin] space. The basis functions
are denoted by |αnσ 〉; explicitly, |αn↑〉 = |αn〉 ⊗ (1

0

)
and

|αn↓〉 = |αn〉 ⊗ (0
1

)
. Thus

|�〉βμ =
∑
αnσ

ψασ ;βμ(n)|αnσ 〉, ψα;βμ(n) =
(

ψα↑(n)

ψα↓(n)

)
βμ

.

(A2)

It is useful to use compact notation and define a 4 × 4
wave-function matrix [�(n)] whose elements are the spinor
components ψασ,βμ(n) defined in Eq. (A2),

[�(n)]ασ,βμ = ψασ,βμ(n), (A3)

where the order of rows (counting from the top) or columns
(counting from the left) is (1↑,1↓,2↑,2↓).

Now we define the 8 × 8 transfer matrices Tn, n =
−1,0,1,2, . . . ,N , and a total transfer matrix T ,(

�(n)

�(n − 1)

)
= Tn−1

(
�(n − 1)

�(n − 2)

)
,

T = TNTN−1[TN−2 . . . T1]T0T−1 for N > 2,

(A4)

while the product in the square parenthesis in Eq. (A4) is
the 8 × 8 identity matrix for N = 2. For an ordered lattice
the spin-orbit (SO) potential is periodic and all the matrices
forming the product inside the square parenthesis are identical,
i.e., T1 = T2 = · · · = TN−2 ≡ T̄ , and the product is equal to
T̄ N−2. For the random ladder, all the matrices in the square
parentheses are different. The transfer matrices act on 8 × 4
wave function matrices. The above construction implies that
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the total transfer matrix T across the ladder satisfies(
�(N + 1)

�(N )

)
= T

(
�(−1)

�(−2)

)
. (A5)

Knowing the 8 × 8 transfer matrix T , one obtains the 4 × 4
transmission and reflection matrices t and r with elements
tασ ;βμ and rασ ;βμ.

Starting from Eq. (A5) we find

�(−1) = I4×4 + r, �(−2) = e−ikI4×4 + eikr,

�(N ) = t, �(N + 1) = eikt. (A6)

This enables us to express r and t in terms of the four 4 × 4
blocks of T , denoted as Tij , with (i,j = 1,2). The explicit
expressions are

r = [eik(T21 − T12) + e2ikT22 − T11]−1

× [T11 + e−ikT12 − eikT21 − T22],

t = eikT11(I4×4 + r) + e−ikT12(e−ikI4×4 + eikr). (A7)

As a test of the correctness of these relations one can confirm
the time-reversal and unitarity constraints,

t ′ανβμ = (−1)ν−βt∗βμ̄αν̄ ,

rανβμ = (−1)ν−μrβμ̄αν̄ ,

r ′
ανβμ = (−1)ν−μr ′

βμ̄αν̄ ,Tr[t†t + r†r] = 4. (A8)

Here σ̄ = −σ , and t ′ and r ′ are the transmission and reflection
matrices for scattering of incoming electrons from the right.
Note that these relations connect matrix elements of the
transmission matrices on different sides of the sample, and
matrix elements of the reflection matrices on the same side of
the sample. These relations imply the absence of spin-flip in
the reflection amplitude of the same channel, i.e., rαναν̄ = 0,
and also that the diagonal elements of the reflection matrix are
equal, rα↑,α↑ = rα↓,α↓ for each channel. We shall see below
that these relations also imply the absence of transmitted and
reflected polarizations.

It remains to determine the 8 × 8 local transfer matrices
{Tn}. A glance at Fig. 1 suggests that there are three kinds
of sites. (1) For n = −1 and n = N the coordination number
is 2 and the two links attached to it are bare. (2) For n = 0
and n = N − 1 the coordination number is 3; one link is bare
and two links are “dressed” with SU(2) hopping matrices.
(3) For n = 1,2, . . . ,N − 2 the coordination number is 3, and
all three links are dressed with SU(2) hopping matrices. This
respectively requires three slightly different definitions. For
this purpose it is useful to define the following 4 × 4 matrices:

X ≡
(

0 eiλσx

e−iλσx 0

)
, Z ≡ I2×2 ⊗ eiλσz .

After some algebra we find

T−1 =
(− ε

t
−1

1 0

)
, T0 =

(−Z†( ε
t
+ X) −Z

1 0

)
,

Tn =
(−Z†( ε

t
+ X) −Z2

1 0

)
, n = 1,2, . . . ,N − 2,

TN−1 =
(−( ε

t
+ X) −Z

1 0

)
, TN = T−1, (A9)

FIG. 5. Electron hopping on the corners of a square in the x-z
plane subject to a homogeneous electric field Eŷ. Rashba (actually
Pauli) SO coupling generates SU(2) hopping matrix elements e±iβσz

along the horizontal links and e∓iβσx along the vertical links.

where every entry in these matrices is a 4 × 4 matrix in channel
⊗spin space.

APPENDIX B: AHARONOV-CASHER PHASE FOR A
SQUARE SUBJECT TO A HOMOGENEOUS

PERPENDICULAR ELECTRIC FIELD

Consider a closed contour in the form of a square of side
a = 1 lying on the x-z plane subject to a constant electric
field E along y. Within a tight-binding model an electron
hops between its corners, as in Fig. 5. Upon traversing the
square counterclockwise, starting and ending at (0,0), the wave
function of an electron gains an SU(2) phase factor

F ≡ eiλσze−iλσx e−iλσze−iλσx , (B1)

where λ = eEa/(4mc2) is dimensionless. Since F is an SU(2)
matrix, it can be written as

F = eiλAC n̂·σ = cos λAC + i sin λAC n̂ · σ , (B2)

where λAC is the Aharonov-Casher phase. The value of λAC is
given by

cos λAC = 1
2 TrF = 1 − 2 sin4 λ. (B3)

The fact that calculation of λAC involves a trace indicates
that this expression is gauge invariant. Note that the relation
between λ and λAC is highly nonlinear, so that the definition
of SU(2) flux seems problematic. In Fig. 6 cos λAC is plotted
as a function of the SO coupling strength λ (which is identical
on all four links).

FIG. 6. cos λAC vs the SO coupling strength λ for the square
system in Fig. 5 [see Eq. (B3)].
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APPENDIX C: ABSENCE OF POLARIZATION IN
SYSTEMS WITH TWO 1D LEADS

Following Eq. (5), we pointed out that if a sample is
composed of strictly 1D helix with SO coupling, it is not
possible to obtain a nonvanishing polarization because in the
absence of a closed loop, the SU(2) vector potential can be
eliminated by a gauge transformation. This statement is based
on the formulation of the SO coupling within an SU(2) gauge
formalism, namely, it relies on an approximation. Here we
show that due to unitarity and time reversal invariance, this
statement is exact. Moreover, it holds for any system with a
maximum of two strictly 1D leads, including systems with
closed loops such as in a ring interferometer. To show this, let
us denote by t,r (t ′,r ′) the 2 × 2 transmission and reflection
matrices for an electron scattering impinging on the sample
from lead 1 (2). Then, the 4 × 4 S matrix and its unitarity
relation read

S =
(

r t ′
t r ′

)
, SS† =

(
r t ′
t r ′

)(
r† t†

t ′† r ′†

)
= 14×4. (C1)

Let us focus our attention on a nondiagonal element of the
unitarity relation (a 2 × 2 matrix),

[SS†]12 = rt† + t ′r ′† = 02⊗2. (C2)

The constraints (A8) imposed on the transmission and reflec-
tion matrices show that

r = ρ eiθ12⊗2, r ′ = ρ eiθ ′
12⊗2, t =

(
τeiα ηeiβ

ηeiγ τeiδ

)
,

ρ,τ,η > 0, ρ2 + τ 2 + η2 = 1,

(β − α) − (γ − δ) = (2n + 1)π, n = integer. (C3)

First, it is easy to see that the reflected polarization vanishes
because r is proportional to the unit matrix I2×2 and hence
Tr[r σ r†] = 0. As for the transmitted polarization, we use
Eq. (A8) and express the elements of t ′ in terms of the element
of t , and then use Eq. (C2) to obtain the third equation of (C3).
For an unpolarized incoming beam of electrons, this implies
the vanishing of the transmitted polarization, i.e.,

gPT ,x = Tr[tσxt
†] = 2τη[cos(α − β) + cos(γ − δ)] = 0,

gPT ,y = Tr[tσyt
†] = 2τη[sin(α − β) + sin(γ − δ)] = 0,

gPT ,z = Tr[tσzt
†] = 0, independent of angles. (C4)

Numerical example. As a numerical example, consider a
ring interferometer of radius R = 1 with two 1D leads (source
lead at angle θ = 0 and drain lead at θ = α = 1.73), subject to
a perpendicular electric field leading to Rashba SO coupling,
as shown in Fig. 7. The SO strength is taken to be λ = 2.3 and
the wave number is k = 1.25. The solution of the scattering
problem yields the transmission and reflection matrices:

t =
(

0.308365 + 0.0888927i −0.253756 + 0.791537i

0.267907 + 0.786861i 0.306722 − 0.0944069i

)
,

r = (0.00406962 + 0.453948i)

(
1 0

0 1

)
,

FIG. 7. 1D ring interferometer (schematic). Electrons approach-
ing the sample from left at polar angle θ = 0 are partially reflected
and partially transmitted at the second lead at polar angle θ = α

(reflection matrix r and transmission matrix t). The ring is subject to
a homogeneous perpendicular electric field, so that the Rashba SO
mechanism generates an effective magnetic field along the radial
direction n̂(θ ) = (cos θ, sin θ,0). The local phase factor for polar
angle θ is eiλ n̂(θ)·σ .

The dimensionless conductance is g = Tr[t†t] = 1.587 83.
Using Eq. (C4) the reader can easily verify that all the
transmitted (and reflected) polarizations vanish.

APPENDIX D: SPIN DENSITY, CURRENT, AND TORQUE

Spin density, spin current and spin-torque are three central
quantities in contemporary spintronics. In this section we
show that our ladder model is an appropriate theoretical
framework for studying these quantities. As a by-product, we
derive a useful relation between the transmitted and reflected
polarization vectors and the volume integrated spin-torque.

The spin density at site (α,n) resulting from an incoming
wave in state |βμ〉 is a local vector field in spin space defined
as [25], Sα;βμ(n) = ψ

†
α;βμ(n)sψα;βμ(n). Here s is the electron

spin operator in the Heisenberg representation and the spinor
ψα;βμ(n) is defined in Eq. (A2). In the leads (n < 0 for the
left lead and n � N for the right lead), where SO coupling
is absent, Sα;βμ(n) = Sα;βμ is independent of n, and the spin
densities on the left and right are respectively expressible in
terms of the reflection and transmission amplitudes:

Sα;βμ(n) =
{

μδαβ + ∑
σσ ′ r

∗
ασβμ[s]σσ ′rασ ′βμ (n < 0),∑

σσ ′ t
∗
ασβμ[s]σσ ′ tασ ′βμ (n � N ).

(D1)

The spin current on chain α and site n resulting from
an incoming wave in state |βμ〉 is a local quantity (a
tensor field with Cartesian and spin components) defined as
[24–26] Jα;βμ(n) = 1

2 Re[ψ†
α;βμ(n){s,v}ψα;βμ(n)] (where v is

the velocity operator). For n < 0 and n � N we have

Jα;βμ(n)=
{

sin k {μδαβ− ∑
σσ ′ r

∗
ασβμ[s]σσ ′rασ ′βμ} (n<0),

sin k
∑

σσ ′ t
∗
ασβμ[s]σσ ′ tασ ′βμ (n � N ),

(D2)

hence Jα;βμ(n) is independent of n. The total spin current in
the leads (where SO is absent) is obtained after summing on
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initial conditions (βμ) and adding the contributions from both
chains:

J =
{

sin k Re{Tr[t†�t]} ≡ JT (n) (n � N ),

− sin k Re{Tr[r†�r]} ≡ JR(n) (n < 0).
(D3)

Here � = 1
2I2×2 ⊗ σ [defined after Eq. (3)], and JT and JR

are the transmitted and reflected spin currents. In the present
case the spin current tensor field has only a single Cartesian
component, namely, it is directed along x (see Fig. 1), and has
spin components according to �. We shall sometimes denote
Ji = Ji in order to remind us that the ith component of the
spin current in Euclidean space is still a vector in spin space.
Following Eq. (D3), for n > N − 1 we have Jx = JT

x (the
transmitted spin current) while for n < 0 we have Jx = JR

x

(the reflected spin current). The sign of the components of
the spin current depends on its directions in Euclidean and in
spin spaces. Explicitly, let us denote the z component (in spin
space) of JT

x and JR
x by JzT

x and JzT
x . Then we have

JzT
x = JzT ↑

x + JzT ↓
x , JzR

x = JzR↑
x + JzR↓

x , (D4)

and note that

JzT ↑
x > 0, JzT ↓

x < 0, JzR↑
x < 0, JzT ↓

x > 0. (D5)

The spin-torque is a vector in spin space:

τ α;βμ(n) = Re

{
ψ

†
α;βμ(n)

ds
dt

ψα;βμ(n)

}

= Re

{
1

ih̄
ψ

†
α;βμ(n)[s,H ]ψα;βμ(n)

}
. (D6)

The experimentally relevant observable spin-torque is obtained
after summation over all initial conditions, i.e., τα(n) =∑

βμ τ α;βμ(n). Outside the SO interaction region {n < 0} ∩
{n � N}, [s,H ] = 0, and τ α(n) vanishes. Generically, in
the region 0 � n � N − 1}, where SO is active, τα(n) �=
0 because [s,H ] �= 0 even in the static case. Of special
interest is the volume integrated spin-torque (see Ref. [24])
which, for the discrete tight-binding geometry, takes the
form T = ∑

αn τ α(n).

Relation between spin flux and spin-torque. Upon using
the continuity equation for the spin current in the stationary
case [where ∂Sα;βμ(n)/∂t = 0] [24], and summing over initial
conditions (βμ), we obtain

∇ · Jα(n) = −τ α(n),

[in the continuum limit, ∇ · J(r) = −τ (r)], (D7)

which is valid anywhere (i.e., for any n, including inside the
sample 0 � n � N − 1 where SO is active). Summing over
(α,n) in Eq. (D7) we obtain∑

α,n

∇ · Jα(n) = −T. (D8)

Using the divergence theorem, the left-hand side (LHS) of
Eq. (D8) equals the total spin flux � out of the sample into the
left and right leads. Note that � is a vector in spin space. In
Ref. [24] it is noted that under certain symmetry constraints,
T = 0. In our tight-binding model, the spin currents for n � N

and for n < 0 are perpendicular to the links and there is no spin
current along z (through the chains). Therefore, the transmitted
and reflected spin fluxes through the sample borders are
�T = aJT

x and �R = aJR
x , where a = 1 is the length of the

links. Then, if T = 0, the vector field Jx(r) (directed along
x, and having spin component x,y,z) are fluxless; the same
spin current that enters the sample on one side leaves it on
the other side and the total spin flux vanishes. In the generic
case, however, where T �= 0, the total spin flux is related the
transmitted and reflected currents and to the volume-integrated
spin-torque as

� = a
(
JT

x − JR
x

) = −T. (D9)

Equation (D9) gives us a direct and useful relation between
the measurable current outside the interaction region (the
sample), and the wave functions inside the sample which
appears in the calculations of the spin-torque, Eq. (D6). In
addition, our calculations on similar systems indicate that T is
correlated also with the charge conductance g, i.e., the charge
conductance reflects the underlying spin physics. Although
Eq. (D9) is a direct consequence of the continuity conditions,
we have not seen its derivation elsewhere.
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