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The synchronized magnetization dynamics in ferromagnets on a nonmagnetic heavy metal caused by the
spin Hall effect is investigated theoretically. The direct and inverse spin Hall effects near the ferromag-
netic/nonmagnetic interface generate longitudinal and transverse electric currents. The phenomenon is known
as the spin Hall magnetoresistance effect, whose magnitude depends on the magnetization direction in the
ferromagnet due to the spin transfer effect. When another ferromagnet is placed onto the same nonmagnet, these
currents are again converted to the spin current by the spin Hall effect and excite the spin torque to this additional
ferromagnet, resulting in the excitation of the coupled motions of the magnetizations. The in-phase or antiphase
synchronization of the magnetization oscillations, depending on the value of the Gilbert damping constant and the
field-like torque strength, is found in the transverse geometry by solving the Landau-Lifshitz-Gilbert equation
numerically. On the other hand, in addition to these synchronizations, the synchronization having a phase
difference of a quarter of a period is also found in the longitudinal geometry. The analytical theory clarifying
the relation among the current, frequency, and phase difference is also developed, where it is shown that the
phase differences observed in the numerical simulations correspond to that giving the fixed points of the energy
supplied by the coupling torque.

DOI: 10.1103/PhysRevB.95.104426

I. INTRODUCTION

Dynamic coupling of ferromagnets has been of interest
in the field of magnetism. The dipole interaction has been
the basic interaction to excite the coupled motion of the
magnetizations, and is applied to magnetic recording [1,2].
Another method to realize the coupling is to use the spin
transfer effect [3,4], where the application of an electric
current to ferromagnetic/nonmagnetic multilayers results in
the magnetization switching and self-oscillation [5–14]. The
coupled dynamics through pure spin current generated in spin
pumping [15,16] and nonlocal [17] geometries have also been
observed. It should be emphasized that these couplings are
strongly restricted by the characteristic length scales. For
example, the dipole coupling decays according to the inverse
cube detection law, whereas the spin transfer effect by a
spin-polarized electric or pure spin current occurs in a system
smaller than the spin diffusion length.

Recently, physical phenomena, such as the spin torque
[18–25] and magnetoresistance effects [26–34], due to the
spin Hall effect [35–37] in bilayers consisting of an insulating
or metallic ferromagnet and a nonmagnetic heavy metal have
attracted much attention. The latter, known as the spin Hall
magnetoresistance, originates from the charge-spin conversion
of an external electric current by the direct and inverse spin Hall
effects, and has been observed by measuring the longitudinal
and transverse electric currents, which are given by

Jcx

J0
= 1 + χ ′′ + χm2

y, (1)

Jcy

J0
= −χmxmy − χ ′mz, (2)

respectively, where J0 is the electric current density gen-
erated by the external electric field. The definitions of the
dimensionless coefficients, χ , χ ′, and χ ′′, are given below. It
should be emphasized that the currents given by Eqs. (1) and
(2) depend on the magnetization direction m = (mx,my,mz).

When another ferromagnet is placed onto the same non-
magnet, these currents will be converted to spin current by
the spin Hall effect again, and excite spin torque on this
additional ferromagnet. Then, the magnetization dynamics
of two ferromagnets will be coupled through the angular
dependences of the electric current given by Eqs. (1) and (2).
This coupling is unavoidable whenever several ferromagnets
are placed onto the same nonmagnet, and is not restricted by
the distance between the ferromagnets because it is carried
by the electric current. Since the structure consisting of
several ferromagnets on the nonmagnetic heavy metal will
be important from the viewpoints of both fundamental physics
and practical applications based on the spin Hall effect, such
as magnetic random access memory, spin torque oscillators,
and bio-inspired computing [38,39], it is of interest to clarify
the role of this coupling.

In this paper, we investigate the coupled dynamics of
magnetizations in ferromagnets in the presence of the spin
Hall effect by solving the Landau-Lifshitz-Gilbert (LLG)
equation numerically for both longitudinal and transverse
geometries. In addition to the external electric current, the
current contributing to the spin Hall magnetoresistance also
excites the spin torque. The strength of this additional torque is
estimated from the theory of the spin Hall magnetoresistance
extended to the system consisting of several ferromagnets.
The conventional spin torque is proportional to the spin
Hall angle ϑ , whereas the new torque is on the order of
ϑ3 and, therefore, its value is two orders of magnitude
smaller than the conventional spin torque. Nevertheless, it
is found that this additional new torque affects the phase
difference of the magnetization in the self-oscillation state.
The numerical simulation reveals that the in-phase or antiphase
synchronization is observed in the transverse geometry. On
the other hand, in addition to them, the phase difference
becomes a quarter of a period in the longitudinal geometry.
It is found that these phase differences depend on the values of
the Gilbert damping constant and the dimensionless field-like
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torque strength. An analytical theory clarifying the relation
among the current, frequency, and phase difference is also
developed.

The paper is organized as follows. In Sec. II, we describe
the system under consideration, and discuss the theoretical
formula of the spin torque excited by the spin Hall effect in
the presence of the several ferromagnets and the spin Hall
magnetoresistance effect. In Sec. III, we study the phase
differences in the synchronized state of the magnetizations for
both the longitudinal and transverse geometries by solving the
LLG equation numerically. In Sec. IV, the theory clarifying the
relation among the current, frequency, and phase difference is
developed based on the LLG equation averaged over constant
energy curves. The summary of the paper is given in Sec. V.

II. SYSTEM DESCRIPTION AND LLG EQUATION

In this section, we describe the system adopted in this study,
and show the spin torque formulas including the coupling
torques between the ferromagnets.

A. System description

The system we consider is schematically shown in Fig. 1(a),
where three ferromagnets F� (� = 1,2,3) are placed onto the
same nonmagnet N. We assume that the material parameters
in the ferromagnets are identical, for simplicity. The external
electric field, Ex , is applied to the x direction, inducing
the electric current density J0 = σNEx , where σN is the
conductivity of the nonmagnet. The direct and inverse spin Hall
effects produce electric currents in the longitudinal (x) and
transverse (y) directions. These electric currents are converted
to the spin current and injected into the F2 and F3 layers
due to the spin Hall effect, resulting in the excitation of
the spin torque. Then, the magnetization dynamics in the F�
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transverse coupling
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F2

F1 F3

Ex

(b)
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F1 F2
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N

FIG. 1. (a) Schematic view of the system in this study. Three
ferromagnets F� (� = 1,2,3) are placed onto the same nonmag-
net N. The external electric field is applied to the x direction.
(b) Schematic view of the generations of electric currents by the
direct and inverse spin Hall effect (SHE and ISHE) in the longitudinal
geometry. The total electric current is the sum of the conventional
electric current J0 = σNEx and the current generated near the F1/N
and F2/N interfaces, j1 and j2.

(� = 2,3) layer is affected by that in the F1 layer, and vice
versa. We call the coupling between the F1 and F2 layers
the longitudinal coupling, whereas that between the F1 and
F3 layers the transverse coupling. We assume that both the
ferromagnet and nonmagnet are metallic because metallic
bilayers are generally used to measure the magnetization
switching and oscillation by the spin Hall effect [18–21,24].
Although the spin Hall magnetoresistance was originally
studied for insulating ferromagnets [26–29], a large spin Hall
magnetoresistance in metallic system has also been reported
recently [32–34].

The dimensionless coefficients, χ , χ ′, and χ ′′, in Eqs. (1)
and (2) for single ferromagnets have been derived for an
insulating [30] or metallic [34,40] ferromagnet, which are
given by

χ = ϑ2λN

dN

[
Re

g↑↓

gN + g↑↓ coth (dN/λN)
− g∗

gN

]
tanh2

(
dN

2λN

)
,

(3)

χ ′ = −ϑ2λN

dN
Im

g↑↓

gN + g↑↓ coth (dN/λN)
tanh2

(
dN

2λN

)
, (4)

χ ′′ = 2ϑ2λN

dN
tanh

(
dN

2λN

)

− ϑ2λN

dN
Re

g↑↓

gN + g↑↓ coth (dN/λN)
tanh2

(
dN

2λN

)
, (5)

where dN and λN are thickness and spin diffusion length of
the nonmagnet, respectively, whereas gN/S = hσN/(2e2λN)
with the cross section area of the ferromagnetic/nonmagnetic
interface S. The dimensionless mixing conductance g↑↓ =
g

↑↓
r + ig

↑↓
i consists of its real and imaginary parts [41–43],

and g∗ is defined as

1

g∗ = 2(
1 − p2

g

)
g

+ 1

gF tanh (dF/λF)
+ 1

gN tanh (dN/λN)
.

(6)

Here, g = g↑↑ + g↓↓ is the sum of the conductances
of the spin-up and spin-down electrons, whereas pg =
(g↑↑ − g↓↓)/g is its spin polarization. The ferromag-
netic/nonmagnetic interface resistance r is related to g via
g/S = (h/e2)/r . We also introduce gF/S = h(1 − p2

σ )σF/

(2e2λF), where σF is the conductivity of the ferromagnet
and pσ is its spin polarization. The thickness and spin
diffusion length of the ferromagnet are denoted as dF and
λF, respectively. The term related to g∗ is neglected when the
ferromagnet is an insulator [30], i.e., r → ∞. The following
quantities correspond to the effective spin polarizations of the
dampling-like (or Slonczewski [3]) torque and the field-like
torque, respectively,

ϑR(I) = ϑ tanh

(
dN

2λN

)
Re(Im)

g↑↓

gN + g↑↓ coth (dN/λN)
. (7)

For the later discussion, we introduce

β = − ϑI

ϑR
, (8)
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which corresponds to the ratio of the field-like torque to the
damping-like torque.

The values of the parameters used in the following calcu-
lations are derived from recent experiments on the W/CoFeB
heterostructure [34], where ρF = 1/σF = 1.6 k	 nm, pσ =
0.72, λF = 1.0 nm, ρN = 1/σN = 1.25 k	 nm, λN = 1.2 nm,
and ϑ = 0.27, whereas the thicknesses are assumed to be
dF = 2 nm and dN = 3 nm. The interface conductances
were not evaluated in Ref. [34] by assuming a transparent
interface. Instead, we use typical values of the interface
conductances obtained from the first-principles calculations
[43], r = 0.25 k	 nm2, pg = 0.5, and g

↑↓
r /S = 25 nm−2. We

note that the imaginary part of the mixing conductance, g
↑↓
i ,

is either positive or negative, depending on the material and
thickness [43]. The sign of g

↑↓
i determines those of χ ′ and

ϑI, or equivalently, β. For example, when g
↑↓
i /S = 1 nm−2,

χ � 0.010, χ ′ � −0.0002, χ ′′ � 0.035, θR � 0.167, and θI �
0.002 (β � −0.010); see Appendix A. In the following
calculations, we study the magnetization dynamics for several
values of β.

B. Spin torques in longitudinal and transverse geometries

Equation (1) was derived for a system having single ferro-
magnet. In this case, J0 is the external electric current density,
whereas (χ ′′ + χmy)J0 is the current density generated as a
result of the charge-spin conversion by the direct and inverse
spin Hall effects. In the longitudinal geometry in the present
study, on the other hand, two ferromagnetic/nonmagnetic
interfaces, i.e., F1/N and F2/N interfaces, contribute to the
generation of the longitudinal current through the direct and
inverse spin Hall effects, as schematically shown in Fig. 1(b).
Let us denote the electric current density generated by these
effects near the F�/N interface as j�x (� = 1,2). This current
density is determined by the conservation law of the electric
current, as follows. Considering in a similar manner to the
case of the single ferromagnet, the electric current J0 + j1x is
converted to the spin current by the spin Hall effect near the
F2/N interface, and this spin current produces an additional
electric current (χ ′′ + χm2

2y)(J0 + j1x) by the inverse spin
Hall effect. Therefore, the total longitudinal electric current
density near the F2/N interface is (1 + χ ′′ + χm2

2y)(J0 +
j1x). Similarly, the electric current density near the F1/N
interface can be expressed as (1 + χ ′′ + χm2

1y)(J0 + j2x).
These currents should be equal to the total electric current
density, J0 + j1x + j2x , according to the conservation law of
the electric current. Then, we find that j�x is given by

j�x =
(
χ ′′ + χm2

�y

)(
1 + χ ′′ + χm2

�′y
)

1 − (
χ ′′ + χ ′m2

�y

)(
χ ′′ + χm2

�′y
)J0

� (
χ ′′ + χm2

�y

)
J0, (9)

where we neglect the higher order terms of ϑ . Then, the spin
torque excited on the F� layer by the spin Hall effect in the
longitudinal geometry is obtained by replacing the external
electric current density J0 = σNEx in the previous work [30]

with J0 + j�′x � (1 + χ ′′ + χm2
�′y)J0, and is given by

TL
� = −γh̄ϑRJ0

2eMdF

(
1 + χ ′′ + χm2

�′y
)
m� × (

ey × m�

)
− γh̄ϑIJ0

2eMdF

(
1 + χ ′′ + χm2

�′y
)
ey × m�, (10)

where (�,�′) = (1,2) or (2,1). The unit vector pointing in the
magnetization direction of the F� layer is m�, and γ , M , and d

are the gyromagnetic ratio, the saturation magnetization, and
the thickness of the ferromagnet, respectively.

Note that the terms

T(0)
� = − γh̄ϑRJ0

2eMdF
m� × (ey × m�) − γh̄ϑIJ0

2eMdF
ey × m� (11)

in Eq. (10) are the conventional spin torques generated by the
external electric current J0 and the spin Hall effect, and are
often referred to as the damping-like torque and the field-like
torque, respectively. On the other hand, the terms

− γh̄ϑRJ0

2eMdF

(
χ ′′ + χm2

�′y
)
m� × (

ey × m�

)
− γh̄ϑIJ0

2eMdF

(
χ ′′ + χm2

�′y
)
ey × m� (12)

in Eq. (10) originate from the current j�′x , and are newly
introduced in this study. It should be emphasized that Eq. (12)
depends on the magnetization direction of the other ferromag-
net F�′ (�′ = 1 or 2), m�′ , resulting in the coupling between the
F1 and F2 layers.

Let us next show the spin torque formulas in the transverse
geometry. We denote the electric current density flowing in
the y direction generated near the F�/N (� = 1,3) interface
by the inverse spin Hall effect as j�y . The conservation law
of the total electric current density, j1y + j3y , gives (see also
Appendix B)

j�y = −
[

(χm�xm�y + χ ′m�z)

1 − (
χ ′′ + χm2

�x

)(
χ ′′ + χm2

�′x
)

+
(
χ ′′ + χm2

�x

)(
χm�′xm�′y + χ ′m�′z

)
1 − (

χ ′′ + χm2
�x

)(
χ ′′ + χm2

�′x
)

]
J0

� −(χm�xm�y + χ ′m�z)J0. (13)

In addition to the conventional spin torque, Eq. (11), this
transverse electric current also excites the spin torque on the
other ferromagnet. In total, the spin torque acting on the F�

layer is given by [(�,�′) = (1,3) or (3,1)]

TT
� = −γh̄ϑRJ0

2eMdF
m� × (ey × m�) − γh̄ϑIJ0

2eMdF
ey × m�

− γh̄ϑR(χm�′xm�′y + χ ′m�′z)J0

2eMdF
m� × (ex × m�)

− γh̄ϑI
(
χm�′xm�′y + χ ′m�′z

)
J0

2eMdF
ex × m�. (14)

The last two terms represent the coupling torque between the
F1 and F3 layers. Note that the direction of this coupling torque
is different from that of the conventional torque because the
currents J0 and j�y flow in different directions.
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In the following, the torques related to χ , χ ′, and χ ′′ in
Eqs. (10) and (14) are referred to as coupling torque. The
ratio of these new torques to the conventional spin torque
is on the order of χ ∝ ϑ2 ∼ 10−2. Since the conventional
spin torque due is proportional to the spin Hall angle ϑR ∝
ϑ , the coupling torque is proportional to ϑ3. Although the
spin Hall angle is usually a small quantity, it will be shown
that the coupling torques play a non-negligible role on the
magnetization dynamics, as shown below.

C. LLG equation

In the following sections, we study the magnetization
dynamics excited by the spin torque given by Eq. (10)
or (14) both numerically and analytically. We neglect the
transverse coupling when the role of the longitudinal coupling
is studied, and vice versa, for simplicity, which corresponds
to considering a system consisting of the F1 and F2 layers,
or F1 and F3 layers. The magnetization dynamics in the F�

(� = 1,2,3) is described by the LLG equation,

dm�

dt
= − γ m� × H� + αm� × dm�

dt
+ TL,T

� , (15)

where the Gilbert damping constant is denoted as α. In the
following calculations, we use the values of the material
parameters, γ = 1.764 × 107 rad/(Oe s) and α = 0.005,
derived from the experiments [44]. For the later discussion,
it is useful to show the explicit forms of the LLG equation in
the longitudinal and transverse geometries. Equation (15) for
the longitudinal geometry is

(1 + α2)
dm�

dt
= −γ m� × H�

− γ (1 + χ ′′)
h̄ϑRJ0

2eMdF
m� × (ey × m�)

−αγ m� × (m� × H�)

− γχm2
�′y

h̄ϑRJ0

2eMdF
m� × (ey × m�)

− γ (1 + χ ′′)(α + β)
h̄ϑRJ0

2eMdF
m� × ey

+ γ (1 + χ ′′)αβ
h̄ϑRJ0

2eMdF
m� × (ey × m�)

− γ (α + β)χm2
�′y

h̄ϑRJ0

2eMdF
m� × ey

+ γαβχm2
�′y

h̄ϑRJ0

2eMdF
m� × (ey × m�), (16)

whereas that for the transverse geometry is

(1 + α2)
dm�

dt
=−γ m� × H� − γ

h̄ϑRJ0

2eMdF
m� × (ey × m�)

−αγ m� × (m� × H�)

− γ (χm�′xm�′y+χ ′m�′z)
h̄ϑRJ0

2eMdF
m�×(ex×m�)

− γ (α + β)
h̄ϑRJ0

2eMdF
m� × ey

+ γαβ
h̄ϑRJ0

2eMdF
m� × (ey × m�)

− γ (α + β)(χm�′xm�′y + χ ′m�′z)
h̄ϑRJ0

2eMdF
m� × ex

+ γαβ(χm�′xm�′y+χ ′m�′z)
h̄ϑRJ0

2eMdF
m�×(ex×m�).

(17)

III. NUMERICAL ANALYSIS OF SYNCHRONIZATION

In this section, we study the magnetization dynamics in
the ferromagnets in the presence of the coupling torques
by solving Eq. (15) numerically. The self-oscillation of the
magnetization provides an interesting example to understand
the role of the coupling torque. Note that the coupling torques
are proportional to the parameters χ , χ ′, and χ ′′, and their
products to other parameters such as αβχ , the values of
which are relatively small, as can be seen in Eqs. (16) and
(17). Nevertheless, the coupling torques lead to the phase
synchronization, as shown below.

The self-oscillation of the magnetization in single fer-
romagnets by the spin Hall effect has been observed for
in-plane magnetized ferromagnets [19], and is induced by the
conventional spin torque given by Eq. (11). Therefore, in the
following, we assume that the magnetic field,

H� = HKm�yey − 4πMm�zez, (18)

consists of an in-plane anisotropy field HK along the y direc-
tion and a demagnetization field 4πM in the z direction, which
we assume as HK = 200 Oe and M = 1500 emu/c.c. [34] in
the following calculations. It is known for the case of the
single ferromagnet [45] that the in-plane self-oscillation can
be excited when the electric current density J0 is in the range
of Jc < J0 < J ∗, where

Jc = 2αeMdF

h̄ϑR
(HK + 2πM), (19)

J ∗ = 4αeMdF

πh̄ϑR

√
4πM(HK + 4πM), (20)

which in this study are Jc � 26 and J ∗ � 33 MA/cm2.

A. Transverse geometry

Let us first investigate the magnetization dynamics in
the transverse geometry because this geometry provides a
simple example of the coupled motion. We start with solving
the LLG equation given by Eq. (17) for the F1 and F3

layers. Figure 2(a) shows an example of the trajectory of
the magnetization dynamics obtained by solving Eq. (17)
numerically, where J0 = 30 MA/cm2. As shown, the in-plane
oscillation is observed in the steady state. The initial conditions
set for m1 and m3 are different as m1(0) = (cos 80◦, sin 80◦,0)
and m3(0) = (cos 95◦, sin 95◦,0). Therefore, the dynamics of
m1 and m3 near the initial time are different, as shown in
Fig. 2(b), where the time evolutions of m1x(t) and m3x(t) in
0 � t � 1 ns are shown. Nevertheless, the dynamics of m1

and m3 synchronize gradually, and finally, synchronization
of m1x(t) = m3x(t) and m1y(t) = m3y(t) is realized, as shown
in Figs. 2(c) and 2(d). We emphasize here that the dynamics
shown in these figures are obtained for β = −0.01.

The mutual, as well as self, synchronization of the spin
torque induced magnetization oscillation by using spin waves,
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FIG. 2. (a) A typical in-plane self-oscillation trajectory of the
magnetization obtained by solving Eq. (15) numerically for the trans-
verse geometry. The dotted lines indicate the oscillation direction.
(b) The time evolutions of m1x(t) and m1y(t) near the initial state.
The time variations of the x and y components of the magnetizations
in the steady state are shown in (c) and (d) for β = −0.01 and (e) and
(f) for β = +0.01. The solid red lines correspond to time evolution
in F1, and dotted blue lines to those in F3 for (b) through (f).

electric current, microwave field, or dipole coupling has been
an exciting topic from the viewpoints of both nonlinear
science and practical applications [46–62]. The key quantity
of the synchronization is the phase difference �ϕ between
each magnetization to enhance the emission power from
the spin torque oscillators and to investigate new practical
applications such as neuromorphic architectures [38,39]. The
synchronization found here, i.e., m�x(t) = m�′x(t), is called
the in-phase synchronization. We should emphasize here that,
although the results shown in Figs. 2(b) and 2(c) are shown
for one certain initial condition, the in-phase synchronizations
are confirmed for the present set of the parameters even when
the initial conditions are changed.

On the other hand, it was shown for the case of the
current-injection locking of the spin torque oscillator that the
phase difference between the magnetization oscillation and
the alternative current depends on the strength of the field-like
torque [53]. The field-like torque in the present system can be
either positive or negative, as mentioned above. These facts
motivate us to study the magnetization dynamics for different
values of β. When β = +0.01, synchronized dynamics is
observed in a similar manner, but in this case, the phase

field-like torque, β

ph
as

e 
di

ff
er

en
ce

, Δ
φ

-0.030 -0.020 -0.010 0.010 0.020 0.0300
0

0.25

0.50

α=0.005, 0.010, 0.015,
0.020, 0.025, 0.030

FIG. 3. Dependences of the phase differences, �ϕ, for several
values of α on the field-like torque strength β in the transverse
geometry. �ϕ = 0 and 0.5 correspond to the in-phase and antiphase,
respectively. The value of the current density, J0, is increased linearly,
where J0 = 30 MA/cm2 for α = 0.005.

difference is antiphase, i.e., m1x(t) = −m3x(t), as shown in
Figs. 2(e) and 2(f).

Figure 3 summarizes the dependences of the phase differ-
ence, �ϕ, between the magnetizations on the field-like torque
strength β for the several values of the damping constant α.
The vertical axis in this figure represents the phase difference
in the unit of the oscillation period; i.e., �ϕ = 0 corresponds
to the in-phase synchronization. On the other hand, �ϕ = 0.50
means that the phase difference is half of a period, and thus,
is antiphase. The algorithm evaluating �ϕ in the numerical
simulation is summarized in Appendix A. The results indicate
that the phase difference is antiphase for positive β, whereas
it becomes in-phase when β becomes smaller than a certain
value, except for the narrow intermediate region near β ∼
−α/2, where the phase difference is in between in-phase and
antiphase.

B. Longitudinal geometry

Next, we study the magnetization dynamics in the longitu-
dinal geometry between F1 and F2 layers by solving Eq. (16)
numerically. Figures 4(a) and 4(b) show m�x(t) and m�y(t)
in a steady state, where β = −0.01. The initial conditions
in these figures are m1(0) = (cos 80◦, sin 80◦,0) and m2(0) =
(cos 95◦, sin 95◦,0). An antiphase synchronization is observed
in this case. We notice, however, that the in-phase synchro-
nization can also be realized when the initial conditions are
changed. Figures 4(c) and 4(d) show such an example, where
m1(0) = (cos 80◦, sin 80◦,0) and m2(0) = (cos 85◦, sin 85◦,0)
are assumed. These numerical results indicate that both the
in-phase and antiphase synchronizations are stable in this
case, and whether the phase difference finally becomes in-
phase or antiphase depends on the initial conditions, material
parameters, and current magnitude. We also notice that the
phase difference is changed when the value of β is changed.
Figures 4(e) and 4(f) show m�x and m�y for β = +0.01. In this
case, the phase difference of the magnetizations is a quarter of
a precession period.
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FIG. 4. The variations of the x and y components of the
magnetizations in the F1 (solid, red) and F2 (dotted, blue) in the
longitudinal geometry are shown in (a), (c) and (b), (d), respectively,
where β = −0.01. The initial conditions of m2 are different between
(a), (b) and (c), (d). The magnetization dynamics for β = +0.01 are
shown in (e) and (f).

The dependences of the phase difference on the field-like
torque strength β for several values of the Gilbert damping
constant α are summarized in Fig. 5, where �ϕ = 0.25 in
this figure means that the phase difference is a quarter of a
period. The phase difference is found to become a quarter
of the period for positive β, whereas it becomes in-phase or
antiphase for negative β, depending on the initial states of the
magnetizations.

C. Summary of numerical simulations

Let us summarize the results of the numerical simulations
here. In the transverse geometry, the coupling torque induces
the synchronized oscillation of the magnetizations and finally
stabilizes the configuration in the in-phase or antiphase state,
depending on the values of the field-like torque strength β and
the damping constant α. The phase difference in the stable
synchronized state in the longitudinal geometry also depends
on the values of β and α, as well as the initial conditions. In this
case, however, in addition to the in-phase or antiphase state, a
phase difference with a quarter of a period is generated.

The phase difference can be measured from the spin Hall
magnetoresistance effect. According to Eq. (13), the total
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FIG. 5. Dependences of the phase differences, �ϕ, for several
values of α on the field-like torque strength β in the longitudinal
geometry, where �ϕ = 0 and 0.5 correspond to the in-phase and
antiphase, respectively. �ϕ = 0.25 means that the phase difference is
a quarter of a period. The value of the current density, J0, is increased
linearly, where J0 = 30 MA/cm2 for α = 0.005.

electric current density in the transverse direction is

J T
c = j1y + j3y

= −(
χm1xm1y+χ ′m1z

)
J0 − (

χm3xm3y+χ ′m3z

)
J0. (21)

Then, an oscillating current appears in the transverse direction
for in-phase synchronization, whereas the transverse current
becomes zero for antiphase synchronization, as shown in
Fig. 6(a). The Fourier transformation of Eq. (21) for in-phase
synchronization has peaks at the frequencies of fn = (2n − 1)
f0 (n = 1,2,3, . . . ), where f0 is the lowest frequency; see
Appendix C. Similarly, the total electric current density in the
longitudinal direction is

J L
c = J0 + j1x + j2x

= J0 + (
χ ′′ + χm2

1y

)
J0 + (

χ ′′ + χm2
2y

)
J0. (22)

The oscillation frequency of this current is different for the
synchronizations having the phase difference of in-phase or
antiphase and that of a quarter of a period, as shown in Fig. 6(b).
The Fourier transformation of Eq. (22) has the peaks at fn =
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FIG. 6. (a) The transverse electric current densities given by
Eq. (21) for in-phase synchronization (solid line) and antiphase
synchronization (dotted line). (b) The longitudinal electric current
densities given by Eq. (22) for in-phase or antiphase synchronization
(solid line) and phase difference of a quarter of a period (dotted line).
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2nf0 for in-phase or antiphase and fn = 4nf0 when the phase
difference is a quarter of a period.

An interesting question regarding these numerical results
is to clarify the reason why the phase difference finally
becomes a certain value for a given set of the parameters,
i.e., which phase difference is an attractor of the limit cycle.
It is, however, difficult to answer this question directly due to
the following reason. We note that the present model includes
several small-valued parameters, α, β, χ , χ ′, and χ ′′, as shown
in Eqs. (16) and (17), and is complicated. The torque related
to the lowest order of β in these equations is the conventional
field-like torque given by [γβh̄ϑRJ0/(2eMdF)]m� × ey . It
should be noted that the phase difference is not determined
solely by this term because this lowest order term of the
field-like torque does not include the coupling between the
magnetizations. Similarly, the attractor is not determined
solely by the lowest order term of the coupling torque,
which is [γh̄ϑRJ0/(2eMdF)]χm2

�′ym� × (ey × m�) in Eq. (16)
and [γh̄ϑRJ0/(2eMdF)]χm�′xm�′ym� × (ex × m�) in Eq. (17),
because this torque does not include the field-like torque.
Their combinations or the higher order terms including both
β and the coupling torques related to χ , χ ′, and χ ′′ should
be taken into account to answer the question, which is
difficult due to the nonlinearity and complexity of the LLG
equation.

Nevertheless, it is possible to reveal the relation between
the current and frequency in the synchronized oscillation state
by assuming a certain value of the phase difference between
the magnetizations. The current-frequency relation has been
often measured in the experiments, and therefore, it will be
useful to develop a theory clarifying the role of the coupling
on the current-frequency relation. In the next section, we will
investigate this subject.

IV. THEORETICAL ANALYSIS OF
CURRENT-FREQUENCY RELATION

The purpose of this section is to develop an analytical
theory of the synchronization revealing the relation among
the current, frequency, and the phase difference of the
magnetizations in the synchronized oscillation state.

A. Basis of analysis

Here, let us mention the basis of our theoretical analysis.
It is difficult to solve the LLG equation exactly because of its
nonlinearity. Instead, we employ the averaging technique of the
LLG equation on constant energy curves [63]. This approach
has been used to study the spin torque switching in thermally
activated regions [64–68] and spin torque oscillators [69–77],
as well as the microwave assisted magnetization reversal
[78,79], but has not been applied to the coupled system. This
approach is valid when the magnetic energy is changed slowly
compared with the oscillation period. We note that only the
lowest order term in the LLG equation is necessary to derive
the current-frequency relation, as far as several parameters
such as β are small. Thus, we use the simplified LLG equation
maintaining only the dominant terms. The LLG equation used

in this section for the longitudinal geometry is

dm�

dt
� −γ m� × H� − αγ m� × (m� × H�)

− γh̄ϑRJ0

2eMdF

(
1 + χ ′′ + χm2

�′y
)
m� × (ey × m�),

(23)

whereas that for the transverse geometry is

dm�

dt
� − γ m� × H� − αγ m� × (m� × H�)

− γ h̄ϑRJ0

2eMdF
m� × (ey × m�)

− γ h̄ϑRJ0

2eMdF
χm�′xm�′ym� × (ex × m�).

(24)

In the self-oscillation state, the damping torque during the
precession is balanced with the spin torque, and the torque
due to the magnetic field, corresponding to the first term
on the right-hand side of Eq. (15), becomes the dominant
term determining the magnetization dynamics. The dynamic
trajectory given by this field torque corresponds to constant
energy curves of the energy density, E = −M

∫
dm� · H�,

where its explicit form is

E = −MHK

2
m2

�y + 2πM2m2
�z. (25)

The minimum and saddle points of Eq. (25) are mmin =
±ey and msaddle = ±ex , where the corresponding energy
densities are Emin = −MHK/2 and Esaddle = 0. The solution
of m� precessing on a constant energy curve is described
by the Jacobi elliptic function [80] as (see also Appendix C
summarizing the derivations)

mx =
√

1 + 2E

MHK
sn

[
4K(k)

τ (E)
t + ϕ0,k

]
, (26)

my =
√

4πM − 2E/M

HK + 4πM
dn

[
4K(k)

τ (E)
t + ϕ0,k

]
, (27)

mz =
√

HK + 2E/M

HK + 4πM
cn

[
4K(k)

τ (E)
t + ϕ0,k

]
, (28)

where ϕ0 is the initial phase. The period of mx and mz is τ (E),
whereas that of my is τ (E)/2, where the precession frequency
f (E) = 1/τ (E) is given by

f (E) = γ
√

HK(4πM − 2E/M)

4K(k)
, (29)

where K(k) is the first kind of complete elliptic integral with
the modulus

k =
√

4πM(HK + 2E/M)

HK(4πM − 2E/M)
. (30)

Note that Eq. (29) reproduces the ferromagnetic resonance
(FMR) frequency, γ

√
HK(HK + 4πM)/(2π ), in the limit

of E → Emin. Identifying E and ϕ0 corresponds to the
determination of the initial condition.
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The averaged technique investigates the energy change
during a precession on a constant energy curve, which is
obtained from the LLG equation as∮

dt
dE

dt
= Ws + W L,T

s + Wα, (31)

where Ws is the energy change by the conventional spin torque
due to the spin Hall effect, whereas Wα is the dissipation due to
the damping torque. The integral range is over the precession
period. The explicit forms of Ws and Wα are given by [67]

Ws =
∮

dt
γh̄ϑRJ0

2edF
[ey · H� − (m� · ey)(m� · H�)]

= πh̄θRJ0(HK + 2E/M)

edF
√

HK(HK + 4πM)
, (32)

Wα = −
∮

dtαγM
[
H2

� − (m� · H�)2
]

= −4αM

√
4πM − 2E/M

HK

[
2E

M
K(k) + HKE(k)

]
,

(33)

where E(k) is the second kind of complete elliptic integral.
On the other hand, W L,T

s represents the work done by the
coupling torque in the longitudinal or transverse geometry,
corresponding to the last term in Eq. (23) or (24). The explicit
forms of W L

s and W T
s are shown in the following sections. For

both cases, the relation between the current and frequency is
clarified as follows. In the self-oscillation state, since the spin
torque balances the damping torque, the following condition
should be satisfied, ∮

dt
dE

dt
= 0. (34)

The current density J0 satisfying Eq. (34) is the current
necessary to excite the self-oscillation on the constant energy
curve of E, and is denoted as J0(E). The relation between the
current and frequency in the self-oscillation state is given by
this J0(E) and f (E) given by Eq. (29). It should be emphasized
that the current density J0(E) depends on the phase difference
between the magnetizations through W L,T

s . We will therefore
study the relation between the phase difference and the
current-frequency relation in line with this deduction.

B. Transverse geometry

In this section, we investigate the current-frequency relation
in the transverse geometry. The work done by the coupling
torque is defined as

W T
s =

∮
dt

γh̄ϑRχJ0

2edF
m�′xm�′y[ex · H� − (m� · ex)(m� · H�)].

(35)

Before advancing the calculation, let us briefly mention
the definition of the phase difference in the present approach.
If the oscillation trajectory is a circle, the phase difference
is easily defined; i.e., the antiphase corresponds to �ϕ = π ,
whereas �ϕ = 0 is the in-phase. In the present case, on
the other hand, the oscillation trajectory is described by the
elliptic function, as shown in Eqs. (26), (27), and (28). In this

case, the phase difference is defined using the elliptic integral
K(k), where �ϕ = 0 for the in-phase synchronization, and
the antiphase synchronization corresponds to �ϕ = 2K(k). It
is useful to note that �ϕ = 2K(k) becomes π in the limit of
k → 0, corresponding to the case that the oscillation trajectory
becomes a circle. Similarly, �ϕ = K(k) means that the phase
difference is a quarter of a period.

Equation (35) for an arbitrary phase difference is evaluated
by numerically calculating the integral with the solutions of
m� and m�′ shown in Appendix D. It is, however, useful to
derive the analytical solutions of Eq. (35) for specific values
of the phase difference. Equation (35) for both the in-phase
(�ϕ = 0) and antiphase [�ϕ = 2K(k)] becomes

W T
s = ∓ πh̄ϑRχJ0

2edF
√

HK(HK + 4πM)

(
−2E

M

)(
1 + 2E

MHK

)
,

(36)

where the double sign means the upper for the in-phase (�ϕ =
0) synchronization and the lower for the antiphase [�ϕ =
2K(k)] synchronization. Equation (36) is zero at E = Emin and
Esaddle, and is negative (positive) for the energy density E in the
rage of Emin < E < Esaddle when �ϕ = 0 [2K(k)]. This means
that the coupling torque acts as a damping (an antidamping)
torque when the phase difference is in-phase (antiphase).
We also note that W T

s = 0 when �ϕ = K(k); i.e., the phase
difference is a quarter of a period. The calculations necessary
to obtain these specific values of W T

s are also summarized
in Appendix D. We note that the sign change of W T

s with
respect to the phase difference is related to the fact that the
coupling torque in the transverse geometry, Eq. (14), has
the angular dependence of m�′xm�′ym� × (ex × m�). Because
of this angular dependence, the coupling torque acts as an
antidamping (a damping) torque when m�x and m�′x have the
opposite (same) signs, resulting in the increase (decrease) of
the energy supplied to the ferromagnets by the coupling torque.

In summary, the work done by the coupling torque, W T
s ,

is negative and minimized at the in-phase (�ϕ = 0), zero
for �ϕ = K(k), and positive and maximized at the antiphase
[�ϕ = 2K(k)].

The current J0 in the transverse geometry is defined as

J0(E) = 2αeMdF

h̄ϑR

N
DT

, (37)

where N and DT are defined as

N = γ

∮
dt

[
H2

� − (m� · H�)2
]
, (38)

DT = γ

∮
dt[ey · H� − (m� · ey)(m� · H�)]

+ γχ

∮
dtm�′xm�′y[ex · H� − (m� · ex)(m� · H�)].

(39)

The explicit form of N is obtained from Eq. (33) as

N = 4

√
4πM − 2E/M

HK

[
2E

M
K(k) + HKE(k)

]
. (40)
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FIG. 7. (a) The current density, J0(E), necessary to excite the self-
oscillation in the transverse geometry as a function of the oscillation
frequency f (E) and the phase difference �ϕ of the magnetizations.
The phase difference is in units of K(k). (b) Dependence of J0(E)
for the transverse geometry, on �ϕ at f (E) = 4.6 GHz. The dotted
line represents J0(E) in the absence of the coupling. (c) The
relation among J0(E), f (E), and �ϕ in the longitudinal geometry.
(d) The current density J0(E) for f (E) = 4.6 GHz in the longitudinal
geometry.

On the other hand, DT for the in-phase or antiphase is obtained
from Eqs. (32) and (36) as

DT = 2π (HK + 2E/M)√
HK(HK + 4πM)

∓ πχ (−2E/M)[1 + 2E/(MHK)]√
HK(HK + 4πM)

, (41)

where the double sign means the upper for the in-phase syn-
chronization and the lower for the antiphase synchronization.

Figure 7(a) shows J0(E) as functions of the oscillation
frequency f (E) and the phase difference �ϕ. The current-
frequency relation in the transverse geometry can be obtained
from this figure. To reveal the role of the phase difference more
clearly, we show J0(E) for a certain value of f (E) (= 4.6 GHz)
in Fig. 7(b). Note that J0(E) is smaller than that in the absence
of the coupling, which is shown by the dotted line, and min-
imized when �ϕ = 2K(k), i.e., the antiphase. This is because
the work done by the coupling torque is positive and maxi-
mized at the antiphase. On the other hand, J0(E) is maximized
at the in-phase, and is larger than that in the absence of the
coupling because the work done by the coupling torque is neg-
ative and minimized at the in-phase. We notice that the phase
differences observed in the numerical simulation in Sec. III,
i.e., the in-phase and antiphase, correspond to �ϕ satisfying

∂J0

∂�ϕ
= 0, (42)

or equivalently,

∂W T
s

∂�ϕ
= 0. (43)

In other words, the phase differences observed in the numerical
simulations correspond to those giving the extrema of J0 (W T

s ).

C. Longitudinal geometry

Let us investigate the theoretical relation between the
current and frequency in the longitudinal geometry. In this
case, the averaged LLG equation is given by∮

dt
dE

dt
= (

1 + χ ′′)Ws + W L
s + Wα, (44)

where Ws and Wα are given by Eqs. (32) and (33). On the
other hand, W L

s representing the energy change due to the
longitudinal coupling is defined as

W L
s =

∮
dt

γh̄ϑRχJ0

2edF
m2

�′y[ey · H� − (m� · ey)(m� · H�)].

(45)

For both the in-phase and antiphase, Eq. (45) becomes (see
Appendix D)

W L
s = πh̄ϑRχJ0

2edF
√

HK(HK + 4πM)

× (HK+2E/M)[4πM(HK−2E/M) − 2HK(2E/M)]

HK(HK + 4πM)
.

(46)

On the other hand, when the phase difference is a quarter of a
period [�ϕ = K(k)], Eq. (45) becomes

W L
s = πh̄ϑRχJ0

edF

HK + 2E/M

HK(HK + 4πM)

√
−2E

M

(
4πM − 2E

M

)
.

(47)

It should be emphasized that W L
s is always positive for an

arbitrary phase difference. This is because the coupling torque
in Eq. (10) always acts as an antidamping torque.

We can determine the current density J0(E) satisfying
Eq. (34) in the longitudinal geometry, as in the case of the
transverse geometry, by replacing DT in Eq. (37) with

DL = γ (1 + χ ′′)
∮

dt[ey · H� − (m� · ey)(m� · H�)]

+ γχ

∮
dtm2

�′y[ey · H� − (m� · ey)(m� · H�)]. (48)

The explicit form of DL for both the in-phase and antiphase is
obtained from Eqs. (32) and (46) as

DL = 2π (1 + χ ′′)(HK + 2E/M)√
HK(HK + 4πM)

+πχ (HK+2E/M)[4πM(HK−2E/M)−2HK(2E/M)]

[HK(HK+4πM)]3/2
,

(49)
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whereas that when the phase difference is a quarter of a period
is obtained from Eqs. (32) and (47) as

DL = 2π (1 + χ ′′)(HK + 2E/M)√
HK(HK + 4πM)

+ 2πχ (HK + 2E/M)

HK(HK + 4πM)

√
−2E

M

(
4πM − 2E

M

)
. (50)

Figure 7(c) shows J0(E) as functions of f (E) and �ϕ. The
current-frequency relation in the longitudinal geometry can
be obtained from this figure. It is noted that J0(E) is always
smaller than that in the absence of the coupling because the
coupling torque in the longitudinal geometry always points
to the antidamping direction, and therefore, the work done
by the coupling torque is always positive. Figure 7(b) shows
J0(E) as a function of �ϕ at a certain value of f (E). As
shown, J0(E) has minima at both the in-phase (�ϕ = 0) and
the antiphase [�ϕ = 2K(k)], whereas it is maximized when
the phase difference is a quarter of a period [�ϕ = K(k)].
We again notice that these phase differences found in the
numerical simulations in Sec. III correspond to �ϕ satisfying
∂J0(E)/∂�ϕ = 0, or equivalently,

∂W L
s

∂�ϕ
= 0. (51)

D. Phase differences in stable synchronization and fixed points
of effective potential

Equation (31) describes the slow change of the magnetic
energy in the oscillation state. The magnetization dynamics
is regarded as a motion of a point particle in an effective
potential given by its right-hand side. Equations (43) and (51)
correspond to the stability conditions of the point particle
in this effective potential. Therefore, the phase difference
found in the numerical simulation finally converges to one
of these values satisfying Eq. (43) or Eq. (51). Whether the
in-phase, antiphase, or the phase difference with a quarter of
a period becomes the attractor depends on the higher order
terms of the small parameters, as well as the initial states of
the magnetizations, as mentioned at the end of Sec. III. This
discussion is beyond the scope of this paper.

E. Instability threshold

As mentioned at the beginning of Sec. III, the in-plane
self-oscillation for a single ferromagnet is stabilized when the
current density is in the range of Jc < J0 < J ∗, where Jc and
J ∗ are given by Eqs. (19) and (20), respectively. At the end of
this section, let us briefly discuss the effect of the coupling on
these scaling currents.

Let us remind the reader that Jc is the current density
necessary to destabilize the magnetization in equilibrium,
whereas J ∗ is the current necessary to overcome the energy
barrier, Esaddle − Emin. These current densities are theoreti-
cally defined as [67]

Jc = lim
E→Emin

J0(E), (52)

J ∗ = lim
E→Esaddle

J0(E). (53)

It is confirmed that Eqs. (19) and (20) are reproduced by
substituting Eqs. (32) and (33) in the definition of J0(E) in
the absence of the coupling.

On the other hand, in the presence of the transverse
coupling, it is confirmed from Eq. (36) that a factor [1 − (χ/2)]
should be multiplied to the denominator of Eq. (19) when
the phase difference between the magnetizations is in-phase,
whereas this factor is replaced by [1 + (χ/2)] when the phase
difference is antiphase. The other scaling current, J ∗, is
unchanged for these phase differences. In the longitudinal
geometry, we see from Eqs. (46) and (47) that the factor
(1 + χ + χ ′′) should be multiplied to the denominator of
Eq. (19) when the phase difference is in-phase, antiphase, or
a quarter of a period, whereas for J ∗, the factor becomes 1 +
χ ′′ + (χ/2)[4πM/(HK + 4πM)] for in-phase and antiphase,
and 1 + χ ′′ when the phase difference is a quarter of a period.

V. CONCLUSION

In conclusion, the coupled magnetization dynamics in
the ferromagnets through the spin Hall magnetoresistance
effect was investigated. The coupling appears in both the
longitudinal and transverse directions of the alignment of
the ferromagnets. The in-phase or antiphase synchronization
of the magnetization oscillation was found in the transverse
geometry by solving the LLG equation numerically. On the
other hand, in addition to them, the synchronization having
the phase difference of a quarter of a period is also found
in the longitudinal geometry. It was shown that these phase
differences depend on the values of the damping constant and
the field-like torque strength. The analytical theory revealing
the relation among the current, frequency, and phase difference
was also developed. It was shown that the phase differences ob-
served in the numerical simulations correspond to that giving
the fixed points of the energy supplied by the coupling torque.
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APPENDIX A: VALUES OF PARAMETERS IN
NUMERICAL SIMULATIONS

The exact values of the parameters used in the simulations,
evaluated from the parameters found in the experiment [34],
are ϑR = 0.16680863, β = −0.00973617, χ = 0.00952572,
χ ′ = −0.000152995, and χ ′′ = 0.03516089 for g

↑↓
i /S =

1.0 nm−2. In the main text, β = −0.01 and β = +0.01
correspond to β = −0.00973617 and β = +0.00973617, re-
spectively. Strictly speaking, the change of the value of g

↑↓
i

affects not only β but also other quantities such as ϑR, χ ,
and χ ′. We, however, change the value of β only in the
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numerical simulation, for simplicity, because the results do not
change significantly unless |g↑↓

i /g
↑↓
r | � 1. The LLG equation

with these parameters is solved by using the fourth-order
Runge-Kutta method from t = 0 to t = 1 μs with the time
step of �t = 20 fs; i.e., the number of the time mesh is
Nt = 5 × 107.

The present system has two stable states at m� = ±ey .
For convention, we assume that the magnetizations initially
stay near one equilibrium, m� = +ey . For in-phase synchro-
nizations, such as those shown in Figs. 2(c) and 2(d), the z

components are also synchronized with in-phase, i.e., m�z(t) =
m�′z(t). On the other hand, for antiphase synchronization
shown in, for example, Figs. 2(e) and 2(f), the z components
are also synchronized with antiphase, m�z(t) = −m�′z(t).

The algorithm evaluating the phase differences shown
in Figs. 3 and 5 from the discrete numerical data is as
follows. We gathered Ni = 216 = 65536 data of m�(t) (� =
1,2,3) from t = (Nt − Ni + 1)�t to t = Nt�t = 1 μs. Then,
the averaged periods T� of the oscillation of each mag-
netization were evaluated from the peaks of m�(t) in this
time range as T� = [(t�,a − t�,a−1) + · · · + (t�,2 − t�,1)]/(N� −
1) = (t�,a − t�,1)/(N� − 1), where N� is the number of the
peaks in m�(t), whereas t�,a is the time corresponding to the
ath peak. Then, the phase difference is evaluated as �ϕ =∑N ′

a=1 |t�,a − t�′,a|/(N ′T̄ ), where N ′ = min[N�,N�′] and T̄ =
(T� + T�′)/2 with (�,�′) = (1,3) for the transverse geometry,
whereas it is (1,2) for the longitudinal geometry. For the
in-phase synchronization, this �ϕ is zero because t�,a = t�′,a .
When the phase difference is antiphase, �ϕ = 0.50 because
|t�,a − t�′,a| = T̄ /2 in this case. Similarly, �ϕ is 0.25 when the
phase difference is a quarter of a period.

Note that the critical current density to excite the self-
oscillation, given by Eq. (19), is proportional to the damping
constant α. Therefore, the value of the current density should
be increased to observe the self-oscillation when α is varied,
as in the case of Figs. 3 and 5. In these figures, J0 is assumed
as n × 30 MA/cm2 for α = n × 0.005 (n = 1–6).

The numerical simulation in Fig. 2(e) indicates that the
antiphase synchronization is an attractor for β = +0.01. An
exception is that if the initial conditions are set to be identical,
the final state becomes in-phase synchronization due to the
symmetry of the LLG equation with respect to the change of
(�,�′) → (�′,�). Since Eq. (43) is satisfied, the phase difference
is fixed to in-phase even if it is unstable. Similar situations
occur in other cases for such specific initial conditions.

APPENDIX B: DERIVATION OF COUPLING TORQUE
IN TRANSVERSE GEOMETRY

In a ferromagnetic/nonmagnetic bilayer, the spin current
density flowing in the i direction (i = x,y,z) with the spin
polarization in the ν direction is related to the electrochemical
potential μ̄N and the spin accumulation δμN via

Jsiν,N = −h̄σN

2e2
∂iδμN,ν − h̄ϑσN

2e2
εiνj ∂j μ̄N, (B1)

where ∂j μ̄N/e is the electric field in the j direction, and
therefore, σN∂j μ̄N/e is the electric current density. We assume

that this equation is extended to

J
(�)
szν,N = −h̄σN

2e2
∂zδμ

(�)
N,ν + h̄ϑ

2e
(J0δνy − j�′yδνx), (B2)

in the transverse geometry, where J
(�)
szν,N is the spin current

density flowing near the F�/N interface in the z direction with
the spin polarization in the ν direction. The spin accumulation
obeys the diffusion equation, and the boundary conditions of
the diffusion equation are given by the spin current density
at the boundaries. Using Eq. (B2), the solution of the spin
accumulation is given by [40]

δμ
(�)
N,ν = 2π

(gN/S) sinh (dN/λN)

{
− J F�/N

szν cosh

(
z + dN

λN

)

− h̄ϑ

2e
(J0δνy − j�′yδνx)

×
[

cosh

(
z

λN

)
− cosh

(
z + dN

λN

)]}
, (B3)

where we assume that the nonmagnet is in the region of −dN �
z � 0. The spin current density, J F�/N

szν , at the F�/N interface is
given by [30,40]

JF�/N
s = h̄ϑg∗

2egN
tanh

(
dN

2λN

)
(J0m�y − j�′ym�x)m�

+ h̄

2e
J0[ϑRm� × (ey × m�) + ϑIey × m�]

− h̄

2e
j�′y[ϑRm� × (ex × m�) + ϑIex × m�], (B4)

where the vector notation in boldface represents the direction
of the spin polarization, whereas the spatial direction of
Eq. (B4) is defined as the positive direction, i.e., from the
nonmagnet to the ferromagnet.

On the other hand, the electric current density in the
nonmagnet flowing in the i direction is given by

Jci,N = σN

e
∂iμ̄N − ϑσN

e
εijν∂j δμN,ν . (B5)

In the present case, the electric current density near the F�/N
interface flowing in the y direction becomes

J
(�)
cy,N = j�′y − ϑσN

e
∂zδμ

(�)
N,x . (B6)

Substituting Eqs. (B3) and (B4) into Eq. (B6), and averaging

along the z direction as J
(�)
cy,N = (1/dN)

∫ 0
−dN

J
(�)
cy,Ndz, we find

that

J
(�)
cy,N = (

1 + χ ′′ + χm2
�x

)
j�′y

− (χm�xm�y + χ ′m�z)J0. (B7)

The conservation law of the electric current along the y

direction requires that J (�)
cy,N = j�y + j�′y . Solving this equation

for � = 1 and 3, we obtain Eq. (13). The spin torque is defined
from Eq. (B4) as

T� = − γ

MdF
m� × (

JF�/N
s × m�

)
. (B8)
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APPENDIX C: ANALYTICAL SOLUTION OF
MAGNETIZATION ON A CONSTANT ENERGY CURVE

In this appendix, we show the derivation of the analytical
solution of the magnetization on a constant energy curve. For
simplicity, we remove the subscript � (= 1,2,3) distinguishing
the ferromagnets. The magnetization dynamics on a constant
energy curve is described by the Landau-Lifshitz (LL) equa-
tion

dm
dt

= −γ m × H. (C1)

The magnetic field, Eq. (18), is related to the magnetic
energy density E via E = −M

∫
dm · H, as mentioned in

the main text. Using the relation m2
x + m2

y + m2
z = 1, Eq. (25)

is rewritten as

m2
z + HK

HK + 4πM
m2

x = 2E/M + HK

HK + 4πM
. (C2)

This equation indicates that mz and mx can be expressed
as mz = v′ cos u and mx = (v′/v) sin u, respectively,
where v and v′ are defined as v2 = HK/(HK + 4πM)
and v′ = (2E/M + HK)/(HK + 4πM). Then, du/dt =
(du/d sin u)(d sin u/dt) = (1/ cos u)[d(v/v′)mx/dt] =
(v/mz)(dmx/dt), which becomes, from Eq. (C1),

du

dt
= γ (HK + 4πM)vmy. (C3)

Introducing new variable w = sin u, this equation gives

dw√
(1 − w2)(1 − k2w2)

= γ (HK + 4πM)v
√

1 − v′2dt,

(C4)

where the modulus k is given by Eq. (30). The modulus
monotonically varies from 0 to 1 by changing the energy
density E from its minimum Emin to saddle Esaddle. We also
notice that (HK + 4πM)v

√
1 − v′2 = √

HK(4πM − 2E/M).
Equation (C4) indicates that w is given by

w = sn[γ
√

HK(4πM − 2E/M)t + ϕ0,k], (C5)

where sn(u,k) is the Jacobi elliptic function, and ϕ0 is
the initial phase determined by the initial condition. Us-
ing the relations sn2(u,k) + cn2(u,k) = 1 and dn2(u,k) =√

1 − k2sn2(u,k), we find that the solution of m on the constant
energy curve is given by Eqs. (26), (27), and (28).

The peak frequencies of the Fourier transformation of
Eq. (21) in the transverse geometry are discussed as follows.
We note that Eq. (21) for in-phase synchronization is propor-
tional to m�x(t)m�y(t) and m�z(t). Substituting the following
formulas [80],

sn(u,k) = 2π

kK(k)

∞∑
m=0

qm+1/2

1 − q2m+1
sin

[
(2m + 1)πu

2K(k)

]
, (C6)

cn(u,k) = 2π

kK(k)

∞∑
m=0

qm+1/2

1 + q2m+1
cos

[
(2m + 1)πu

2K(k)

]
, (C7)

dn(u,k) = π

2K(k)

+ 2π

K(k)

∞∑
m=0

qm+1

1 + q2(m+1)
cos

[
(m + 1)πu

K(k)

]
,

(C8)

in Eqs. (26), (27), (28), where q = exp[−πK(
√

1 − k2)/K(k)],
it is found that the peak frequencies of Eq. (21) appear at
fn = (2n − 1)f0 (n = 1,2,3, . . . ), where the lowest frequency
f0 is given by Eq. (29).

In the longitudinal geometry, Eq. (22) is proportional to
m2

1y + m2
2y . When the phase difference of the magnetizations

is in-phase or antiphase, it becomes 2m2
1y . In this case, using

the formula [81]

dn2(u,k) = E(k)

K(k)
+ 2π2

K2(k)

∞∑
m=1

mqm

1 − q2m
cos

[
mπu

K(k)

]
, (C9)

it is found that the Fourier transformation of Eq. (22)
has the peaks at fn = 2nf0. On the other hand, when the
phase difference is a quarter of a period, Eq. (22) is pro-
portional to g(u) ≡ dn2(u,k) + dn[u + K(k),k] = dn2(u,k) +
[(1 − k2)/dn2(u,k)]. We notice that g[u + K(k)] = g(u), indi-
cating that the Fourier transformation of Eq. (22) in this case
has the peaks at fn = 4nf0.

APPENDIX D: DETAILS OF CALCULATIONS OF
EQUATIONS (35) AND (45)

Equations (35) and (45) can be calculated by substituting
the solution of m� on a constant energy curve to the integrals.
As emphasized in the main text, the phase difference �ϕ be-
tween the magnetizations is an important quantity. According
to Eqs. (26), (27), and (28), we set m� and m�′ as

m�x =
√

1 + 2E

MHK
sn

[
4K(k)

τ (E)
t,k

]
, (D1)

m�y =
√

4πM − 2E/M

HK + 4πM
dn

[
4K(k)

τ (E)
t,k

]
, (D2)

m�z =
√

HK + 2E/M

HK + 4πM
cn

[
4K(k)

τ (E)
t,k

]
, (D3)

and

m�′x =
√

1 + 2E

MHK
sn

[
4K(k)

τ (E)
t + �ϕ,k

]
, (D4)

m�′y =
√

4πM − 2E/M

HK + 4πM
dn

[
4K(k)

τ (E)
t + �ϕ,k

]
, (D5)

m�′z =
√

HK + 2E/M

HK + 4πM
cn

[
4K(k)

τ (E)
t + �ϕ,k

]
. (D6)

The value of �ϕ varies in the rage of 0 � �ϕ < 4K(k).
�ϕ = 0 corresponds to the in-phase synchronization, whereas
�ϕ is 2K(k) for the antiphase synchronization.

The analytical formulas of Eqs. (35) and (45) for
the in-phase and antiphase synchronizations can be ob-
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tained as follows. First, since the elliptic functions satisfy
sn[u + 2K(k),k] = −sn(u,k), cn[u + 2K(k),k] = −cn(u,k),
and dn[u + 2K(k),k] = dn(u,k), W T

s has the same magnitude
but different sign for �ϕ = 0 and �ϕ = 2K(k), whereas W L

s
is the same for the in-phase and antiphase. Therefore, it is
sufficient to calculate W T

s and W L
s for the in-phase case. In

this case, it is unnecessary to distinguish m� and m�′ . Next,
it should be noted that Eq. (35) includes the following two

integrals,

∮
dtm2

�xm
3
�y ∝

∫
du sn2(u,k)dn3(u,k), (D7)∮

dt m2
�xm�ym

2
�z ∝

∫
du sn2(u,k)cn2(u,k)dn(u,k). (D8)

By replacing the integral variable from u with x = sn(u,k), and noting that du = dx/
√

(1 − x2)(1 − k2x2), these integrals are
calculated as

∫
du sn2(u,k)dn3(u,k) =

∫
dx

x2(1 − k2x2)√
1 − x2

= x
√

1 − x2[−4 + k2(3 + 2x2)] + (4 − 3k2) sin−1 x

8
, (D9)

∫
du sn2(u,k)cn2(u,k)dn(u,k) =

∫
dxx2

√
1 − x2 = x

√
1 − x2(−1 + 2x2) + sin−1 x

8
. (D10)

Using these integrals, Eq. (36) is obtained. On the other hand, Eq. (45) includes the following three integrals,

∮
dt m3

�y ∝
∫

du dn3(u,k) =
∫

dx
1 − k2x2

√
1 − x2

= k2x
√

1 − x2 + (
2 − k2

)
sin−1 x

2
, (D11)

∮
dt m5

�y ∝
∫

du dn5(u,k) =
∫

dx
(1 − k2x2)2

√
1 − x2

= k2x
√

1 − x2[8 − k2(3 + 2x2)] + (8 − 8k2 + 3k4) sin−1 x

8
, (D12)

∮
dt m3

�ym
2
�z ∝

∫
du dn3(u,k)cn2(u,k) =

∫
dx

√
1 − x2(1 − k2x2) = x

√
1 − x2[4 + k2(1 − 2x2)] + (4 − k2) sin−1 x

8
.

(D13)

Using these integrals, Eq. (46) is obtained.
When the phase difference is a quarter of a period [�ϕ = K(k)], the relations sn[u + K(k),k] = cn(u,k)/dn(u,k),

cn[u + K(k),k] = −√
1 − k2cn(u,k)/dn(u,k), dn[u + K(k),k] = √

1 − k2/dn(u,k) are used to evaluate Eqs. (35) and (45). In
this case, we notice that all the integrands in Eq. (35) become odd functions of t , and the integrals over 0 � t � τ are zero.
Therefore, W T

s = 0 for �ϕ = K(k). On the other hand, the following integrals are necessary to obtain Eq. (47),

∮
dt m2

�′ym�y ∝
∫

du

dn(u,k)
=

∫ 1

0

dx√
1 − x2(1 − k2x2)

= tan−1[
√

(1 − k2)/(1 − x2)x]√
1 − k2

, (D14)∮
dt m2

�′ym
3
�y ∝

∫
dudn(u,k) =

∫
dx√

1 − x2
= sin−1 x, (D15)

∮
dt m2

�′ym�ym
2
�z ∝

∫
du

cn2(u,k)

dn(u,k)
=

∫
dx

√
1 − x2

1 − k2x2
= sin−1 x − √

1 − k2 tan−1[
√

(1 − k2)/(1 − x2)x]

k2
. (D16)
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