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The behavior of a uniformly magnetized domain of ellipsoidal shape subject to a static external field and
oscillatory external driving field is analyzed near bifurcation events. The analysis includes the effects of both
linear and circularly polarized driving fields and is performed using numerical simulations of the Landau-
Lifshitz-Gilbert (LLG) equation. Under a linearly polarized driving field, the LLG equation is a nonautonomous
differential equation which can lead to complex magnetization motions, such as bistability, multiperiodic orbits,
quasiperiodicity, and chaos. Under a circularly polarized driving field, the LLG equation can be written in
autonomous form by transforming to the frame rotating with the driving field. The autonomous nature allows one
to perform a fixed-point analysis of the system for select demagnetization factors. Similarities and differences
between the driven systems are highlighted through bifurcation diagrams, phase portraits, basins of attraction, and
Lyapunov exponents. Magnetization switching, prolonged transients, quasiperiodicity, and chaos are observed
with both linearly and circularly polarized driving fields in the magnetic systems investigated.
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I. INTRODUCTION

The Landau-Lifshitz-Gilbert (LLG) equation is a phe-
nomenological [1,2] model that describes the behavior of
magnetic domains under the influence of an effective magnetic
field. In micromagnetics, the effective field is commonly
composed of five different domain energy terms: exchange,
anisotropy, magnetostatic, external field, and magnetoelas-
tic [1,3–5]. With nonuniform magnetization configurations
(spatially varying domains) the LLG equation is coupled to
Maxwell’s equations and boundary conditions through the
effective field due to the long-range dipolar interactions. This
micromagnetic construct leads to a large number of coupled
nonlinear differential equations where phenomena such as
spin waves, eddy currents, and domain-wall formation can
be studied [6–8].

In this paper we limit our focus to a single uniformly
magnetized domain (macrospin approximation) of ellipsoidal
shape with negligible anisotropy, exposed to an external static
and oscillatory driving field. Uniform magnetization of a single
domain allows one to ignore the exchange interaction with
other domains and to express the magnetostatic (demagneti-
zation) field in terms of a demagnetization tensor [3,9,10].
The spatially uniform solutions discussed throughout this
paper and other recent works [11–18] provide a foundation
for investigating nonlinear and chaotic effects with additional
complexities (anisotropy, exchange, spin transfer, etc.). In
addition, magnetic recording processes are continuing to
scale down to dimensions where spatially uniform solutions
might play a prominent role in their operation [3,19–22],
and magnetic hyperthermia research [23] on nanoparticles has
applications to possible cancer treatments.

This work is motivated by a combination of recent ex-
perimental [24–28] and theoretical [29–33] results. It has
experimentally been shown that in ultrasmall waveguides
one can have large oscillating magnetic fields at microwave
frequencies, with amplitudes in the 200 Oe range rather than
the 0.1 Oe range usually found in ferromagnetic resonance
cavity experiments. By reducing the size of the waveguides

even smaller it is reasonable to expect that oscillating waves
with amplitudes of several kOe are possible. Some recent
theoretical calculations have explored magnetization dynamics
using these large driving fields in spherical nanoparticles [29].
These calculations showed a set of interesting behaviors: (1)
One could obtain reversal of the magnetization direction,
against the direction of the static magnetic field, by increasing
the amplitude of the driving field; (2) there existed a very
long-lived transient, at a frequency near the uniform resonance
frequency, for driving amplitudes slightly above and below the
critical amplitude which causes reversal of the magnetization.
These results, however, were preliminary in the sense that they
only dealt with spheres and no detailed calculation was given
for the critical amplitude.

We note that magnetization reversals are an ongoing topic
of interest, in part because of their relevance to magnetic
recording. A number of different mechanisms have been
investigated both theoretically and experimentally. This in-
cludes, for example, magnetization reversals in nanopillars
caused by polarized spin currents [34–37] or microwave
assisted switching and the related microwave assisted magnetic
recording (MAMR) [38,39]. The mechanism discussed here
also is particularly suited to nanogeometries because this
ensures the single domain behavior. However, the present study
is quite different from previous work, particularly MAMR, in
that the switching is not accomplished in the presence of an
aiding static field, but creates a switching to a new state which
has the magnetization opposite to the applied field.

In this paper we significantly extend the earlier [29] calcu-
lations. First, we consider a variety of nanostructures: spheres,
cylinders, and planes. We present bifurcation diagrams for
each type of particle and show how the different particles
lead to different results. We then explore the general kinds
of dynamics for each nanostructure as a function of the
driving field amplitude. The topology of each nanostructure is
discussed in terms of attractors and basins of attraction along
with their visual aids. We also present a stability analysis
to better understand the reversal of the magnetization and
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prolonged transient behavior that has been observed in the
spherical system.

In Sec. II we present the LLG equation, magnetic con-
figurations, and our methods of finding numerical solutions.
Sections III–V explore the parameter space associated with the
spherical, long cylindrical, and infinite plane magnetic domain
geometries. In Sec. VI we summarize our significant results
and conclusions.

II. NUMERICAL ANALYSIS

Numerical simulations of the LLG equation start by putting
the equation in dimensionless form. One accomplishes this by
measuring the magnetization and effective field in units of
Ms (m = M/Ms and heff = Heff/Ms) and measuring time
in units of (γMs)−1, where γ = 1.84 × 1011radT−1 s−1 is
the gyromagnetic ratio and Ms = 2.199 T is the saturation
magnetization (appropriate for iron [40]). The dimensionless
LLG equation is given by

dm
dt

− α

(
m × dm

dt

)
= −m × heff, (1)

where α, m, and heff are the dimensionless damping constant,
magnetization, and effective magnetic field, respectively. Here,
we are treating the LLG equation in the context of monodomain
processes or the macrospin approximation. The value of the
damping constant is material dependent and typically lies
between 0.001 and 0.1 for most ferromagnetic materials. The
inclusion of damping in the LLG equation accounts for the
many different microscopic energy-loss mechanisms, such
as spin waves, eddy currents, phonon’s, etc. Applying the
dot product of m with Eq. (1) reveals that m is always
perpendicular with the change in m (i.e., m · dm/dt = 0), and
m is normalized such that its modulus is unity. Topologically,
these properties of the normalized LLG equation result in
the dynamic motion of the magnetization vector m being
constrained to the surface of a unit sphere. The effective fields
we investigate in this paper are given by

heff = hd (t) − N11m1 x̂ − N22m2 ŷ + (hs − N33m3) ẑ, (2)

where hd (t) = hd cos(ωdt)x̂ or hd (t) = hd cos(ωdt)x̂ +
hd sin(ωdt) ŷ, corresponding to linearly and circularly po-
larized driving fields perpendicular to the static field hs ẑ.
The Cartesian components of the demagnetization tensor we
consider are N11 = N22 = N33 = 1/3, N11 = N22 = 1/2, and
N22 = 1, which correspond to spherical, long cylinder, and
infinite plane magnetic domain geometries. The numerical
subscripts 1, 2, and 3 correspond to the Cartesian x, y, and
z coordinates, respectively. In the absence of damping and
an external driving field, one can derive the normal mode
frequency

ω0 =
√

[hs + (N11 − N33)][hs + (N22 − N33)] (3)

from Eqs. (1) and (2). For small damping (α � 0.1) and
initial magnetizations not very far (θ0 � π/3) from the
equilibrium direction, ω0 provides an adequate description of
the precessional frequency. In this limit, if the magnetization
is initially away from the equilibrium it will decay at ω0

until it is oriented along the equilibrium direction. Similar
to the driven pendulum and harmonic oscillator systems,

interesting nonlinear phenomena do not occur unless the
driving frequency ωd is within a few factors of the normal
mode frequency ω0. Therefore, much of our LLG analyses
focused on driving frequencies in this regime.

Spherical coordinates are the most natural coordinate
representation for the LLG equation due to the fundamental
constraint m · m = 1. The constraint reduces the state vari-
ables to just (θ , φ); however, singularities at the poles of the
sphere demand one to use a different coordinate represen-
tation for numerical analysis. In our numerical analysis we
use Cartesian coordinates (probably the most common) and
have implemented and compared four different integration
schemes: standard fourth-order Runge-Kutta (RK4), explicit
Runge-Kutta [41] of order (4)5 (RK45), LSODA [42], and
the midpoint method with second-order Adams-Bashforth
extrapolation [43] (MP-AB2). The general behavior of m
over 105 (γMs)−1 (247 ns), using 0.1 (γMs)−1 step sizes
yielded almost identical results between MP-AB2, LSODA,
and RK45, while RK4 gave nonphysical results after just
20 ns (of course, reducing the step size used in the RK4
method stabilizes the solution). The magnitude of m deviated
the least using MP-AB2, where the maximum deviation of
|m(t)| − 1 was on the order of ±10−13, over 105 (γMs)−1 for
a typical simulation. All of the calculations presented in this
paper were performed using the MP-AB2 scheme due to its
stability and geometric structure preserving properties [43].
The other numerical schemes were occasionally used as sanity
checks.

Bifurcations can be identified by structural changes in the
phase portrait of a dynamic system as a parameter of the
system is varied. Of the free parameters (hs , hd , ωd , and
α) that can be varied in the LLG equation we have chosen
to analyze bifurcations as we vary the drive amplitude hd

(this is common practice in most driven dynamic systems).
The driving frequency ωd is only varied as we analyze
the different domain geometries (demagnetization factors),
because the geometry along with the static field determines
the normal mode frequency, and we are interested in drive
frequencies within a factor of a few from the normal mode
frequency. For consistency and comparisons across the various
geometric domains we have chosen to fix the frequency
ratio ωd/ω0 to approximately 3.4. The factor ωd/ω0 ≈ 3.4
corresponds to oscillating microwave waveguide frequencies
of 1.0, 109.2, and 14.9 GHz for the sphere, cylinder, and
thin-film geometries, respectively. At the end of Secs. III–V,
we provide a brief discussion of how the bifurcation landscape
changes with different frequency ratios. Furthermore, in all
calculations presented we have fixed the static field and
damping constant to hs ≈ 0.0045 (≈0.1 kOe) and α = 0.01,
respectively. The values of our parameter choices are motivated
by ferromagnetic resonance experiments, but are mostly
arbitrary and may be changed to provide different behaviors. In
the following sections, we have chosen to represent our results
in the cgs unit system in the hopes that the field strengths and
time scale are more familiar to the reader.

III. SPHERICAL DOMAIN

A bifurcation diagram allows one to analyze the long-term
periodic behavior of dynamic systems over a range of control
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FIG. 1. Bifurcation diagram of the linearly polarized driven
spherical domain (top two panels), average value of θ , and the
average largest Lyapunov exponent 〈λ〉 as a function of hd from
1238 to 1337 ns. N11 = N22 = N33 = 1/3, ωd = 2π rad/ns, ω0 =
1.84 rad/ns, hs = 0.1 kOe, α = 0.01, and (θ0 = 0,φ0 = 0).

parameter values (in our case the drive amplitude). Figure 1
shows a bifurcation diagram of the θ and φ coordinates, the
average value of θ , 〈θ〉, and the average largest Lyapunov
exponent (LLE) 〈λ〉 as a function of hd for the spherical
domain driven by a linearly polarized field at ωd = 2π rad/ns,
where N11 = N22 = N33 = 1/3 and ω0 = 1.84 rad/ns. For
every drive amplitude (x axis) a complete solution of the
LLG equations is found over the time interval of interest.
Then one looks at the position of m at discrete time intervals,
which for driven systems, is most commonly the drive period.
Numerically, this creates a Poincaré or iterated map for
the phase-space trajectories and allows one to study various
bifurcations.

One can obtain additional insight into the components
amplitude of oscillation by choosing to start the Poincaré
sections at the peak or maximum of the component oscillations
sometime after the initial transients have died out. Figure 1
and the remaining bifurcation diagrams were derived from
locating the maximum value of θ and φ over one drive
period sometime after transients are believed to have died
out (we use 1237 ns), then in units of the drive period, find 99
more values of the component. The 〈θ〉 describes the abrupt
switching behavior at the bifurcation events. The LLE is used
to quantify the divergence of two phase-space trajectories that
start initially close to one another. This allows one to determine
the sensitivity of the system to the initial conditions. In this

paper the average LLE 〈λ〉 is calculated by finding a reference
solution for some initial condition (θ0,φ0); then randomly
selecting 16 initial conditions some small distance (ε ≈ 10−8)
about the reference initial condition (θ0 ± ε,φ0 ± ε); then
calculate the LLE from the reference solution and each of the
other 16 solutions, and finally calculate an average. When 〈λ〉
is positive the system is chaotic, when 〈λ〉 is close to zero the
system is periodic or quasiperiodic, and when 〈λ〉 is negative
the system approaches a fixed point.

In Fig. 1, the components of m are plotted over the last 100
drive periods from 1238 to 1337 ns in an effort to understand
the long-term behavior or final state of the system. When there
is only one point for a given drive amplitude (or what appears
to be a small spread) the magnetization is under period-one
motion, and when there are two points the magnetization
is under period-two motion, and so on. If there appears to
be a continuum of points the motion may, in principle, be
quasiperiodic or chaotic. When the bifurcation diagram reveals
a transition from one type of behavior to another (i.e., period-
one to quasiperiodic), the system underwent a bifurcation
event near some critical value of the control parameter. The
nature and classification of possible bifurcation events are well
documented in nonlinear dynamics studies (see Refs. [44,45]
for further investigation). Figure 1 reveals bifurcation events
near 0.41, 1.38, and 2.45 kOe. Near each of these critical drive
amplitudes the period-one motion becomes quasiperiodic,
then transitions back to period-one motion oriented opposite
the original m3 direction (magnetization flip). As the drive
amplitude is increased the oscillation amplitude increases and
explores more of the unitary sphere, but on average m is ori-
ented along the plus or minus z axis near the bifurcation events.
We note that in the earlier studies [29] only the first transition
was uncovered. Now, examining larger drive amplitudes, we
see that an entire series of reversals are possible.

When the bifurcation events are accompanied by the LLE
one can easily determine whether continuum regions in the
bifurcation diagrams are chaotic or quasiperiodic. We see
that 〈λ〉 ≈ 0 for the entire range of drive amplitudes shown
in Fig. 1, and therefore, the continuum regions (bifurcation
events) correspond to quasiperiodicity and not chaos. We
believe that the slight deviations of 〈λ〉 away from zero before
and after the bifurcation events are due to trajectories not being
on the attractor. Prolonged quasiperiodic transient behavior is
observed near each bifurcation event of the spherical system
(as will be shown later), and increasing simulation times
beyond 1337 ns for 〈λ〉 in Fig. 1 has shown further convergence
of 〈λ〉 toward zero near the critical drive amplitudes. Therefore,
the small deviations away from zero are due to trajectories that
have yet to reach the attractor over the 1337 ns simulation time.
In general as we extend the time for the calculation of 〈λ〉 its
magnitude is reduced, indicating that this is numerical and not
an indication of chaos, for example.

For the sphere and other geometric domains that we
will examine in what follows, we have considered nearly
1 million initial conditions uniformly distributed over the
unitary sphere [see Fig. 7(a), for example]. For any value of
hd , both the linearly and circularly driven spherical domains
contain only one attracting limit cycle for each of the initial
conditions investigated, and thus only one basin of attraction.
In the spherical system, changes in the initial conditions only
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FIG. 2. Poincaré sections over different time intervals of the
linearly polarized driven spherical domain at a critical drive am-
plitude of hd = 0.41 kOe. Cubes: t = 2475.2–2495.2 ns; cones: t =
24742.9–24762.9 ns; asterisks: t = 123711.5–123731.5 ns; spheres
(circles) t = 247422.0–247442.0 ns. N11 = N22 = N33 = 1/3, ωd =
2π rad/ns, ω0 = 1.84 rad/ns, hs = 0.1 kOe, α = 0.01, and (θ0 =
0,φ0 = 0).

resulted in differing times to reach the particular attractor.
Therefore, while Fig. 1 only represents one initial condition
(θ0 = 0,φ0 = 0) its overall structure can qualitatively represent
other initial conditions. The initial condition (θ0 = 0,φ0 = 0)
also represents an experimentally reasonable situation as the
magnetization will be in line with the external static field
hs ẑ before the microwave field is turned on. When the drive
amplitude is zero for any of the magnetic geometries and the
initial condition is (θ0 = 0,φ0 = 0) the magnetization remains
in line with the external static field. Once the oscillatory field
is turned on, the system’s dissipative processes compete with
the energy introduced from the oscillatory field.

Once the driving field is turned on in the linearly polarized
driven spherical system, a small amplitude limit cycle appears
near the +z axis and grows in amplitude as the drive amplitude
is increased from 0.0 to 0.41 kOe (the first bifurcation event).
In this system the transient behavior is quite interesting.
Early in time, φ oscillates near the normal mode frequency
(ω0 = 1.84 rad/ns), then transitions to oscillating at the
driving frequency (ωd = 2π rad/ns) as the system comes
into equilibrium with the external driving field. As the drive
amplitude is increased toward the critical value of 0.41 kOe,
the transient lifetime increases and the normal mode frequency
is shifted to lower frequencies and persists for a longer period
of time. Near the critical value the motion appears to be
quasiperiodic, but seems to approach some sort of attractor
as the simulation times are increased by a few orders of
magnitude. Figure 2 illustrates this prolonged quasiperiodic
behavior using Poincaré sections over various time intervals.
The longest simulation time in Fig. 2 is 247 442 ns, 185
times longer than the simulation time used for the bifurcation
diagram of Fig. 1, and the trajectory has yet to converge to a

FIG. 3. Stability diagram for the circularly polarized driven
spherical domain in the (hd,hs) plane. N11 = N22 = N33 = 1/3,
ωd = 2π rad/ns, and α = 0.01.

particular attractor. At drive amplitudes greater than the critical
value, the transient lifetime decreases and m finds an attractive
limit cycle in the southern hemisphere.

The previous results were for a linearly polarized driving
field, where the oscillating field was along the x direction. In
fact, the mathematics becomes somewhat simpler if we look
at a circularly polarized driving field, and we can gain greater
insight into the prolonged transient and switching behavior
in this limit. The LLG equation (1) can be transformed to
autonomous form if one exploits the symmetry of the system
driven by a circularly polarized field perpendicular to the static
field. The vector field dm/dt transforms as(

dm
dt

)
lab

=
(

dm
dt

)
rot

+ ωd ẑ × m (4)

when moving to the frame rotating at ωd about the z axis. The
LLG equation becomes(

dm
dt

)
rot

− α

[
m ×

(
dm
dt

)
rot

]

= −m × [heff − ωd ẑ + αωd (m × ẑ)], (5)

where heff = (hd − N11m1)x̂ − N22m2 ŷ + (hs − N33m3) ẑ.
The transformation allows one to perform a Taylor series
linearization about the fixed points of the system. The
Jacobian (J0) or stability matrix derived from the linearization
is used to classify the types of fixed points [3,44]. In Fig. 3
we have plotted the determinant and trace of J0 equated to
zero for the control parameters hd and hs . For the entire
control plane there are two types of fixed points. For values
of hd and hs that lie inside the semicircle there is a spiral
node (stable focus) on the surface of the unit sphere in the
upper hemisphere and a spiral repeller (unstable focus) in the
lower hemisphere. Values of hd and hs outside the semicircle
result in a spiral repeller on the upper hemisphere and a spiral
node on the lower. The bifurcation diagram associated with a
vertical line hs = 0.1 kOe (Fig. 3) is shown in Fig. 4. Indeed,
we see as the hd crosses the trJ0 = 0 line a bifurcation event
occurs and the m3 component of the magnetization switches
from the upper to lower hemisphere. This magnetization
switch occurs near hd = 0.15 kOe, a value lower than that of
the linearly driven system.
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FIG. 4. Bifurcation diagram of the circularly polarized driven
spherical domain and the average largest Lyapunov exponent 〈λ〉 as
a function of hd from 1238 to 1337 ns. N11 = N22 = N33 = 1/3,
ωd = 2π rad/ns, ω0 = 1.84 rad/ns, hs = 0.1 kOe, α = 0.01, and
(θ0 = 0,φ0 = 0).

Additional insights into the transient lifetime as hd ap-
proaches the trJ0 = 0 line in Fig. 3 can be made by considering
the behavior of a small perturbation δm perpendicular to the
fixed point m0. Qualitatively, the behavior can be described by

δme1(t) ∼ eχt sin(ψt), δme2(t) ∼ eχt cos(ψt),

χ = 1
2 trJ0, ψ = 1

2

√
|(trJ0)2 − 4detJ0|, (6)

where the subscripts e1 and e2 correspond to the plane tangent
to the fixed point m0. Equation (6) tells us that δme1 and
δme2 oscillate in time with frequency ψ , and the amplitude
of the oscillations either increases or decreases exponentially
depending on the sign of χ . For χ < 0, Eq. (6) describes a
spiraling trajectory converging on the fixed point and when
χ > 0, Eq. (6) describes a spiraling trajectory diverging from
the fixed point. As χ → 0− the spiral trajectory takes more
and more time to reach the fixed point. Similarly, as χ → 0+
the spiral trajectory takes longer to diverge from the fixed
point. Therefore, we should expect to find prolonged transients
near the fixed points of this dynamic system as χ → 0 or
equivalently as trJ0 → 0, and this is precisely what we have
observed.

As highlighted above, the circularly polarized driven
spherical system is similar in many ways to the linearly
polarized system. Once the circularly polarized field is turned
on (in the laboratory frame) the magnetization approaches a
perfectly circular limit cycle in the upper hemisphere due to
symmetry. In the frame rotating with the oscillatory field this
limit cycle reduces to a fixed point. As the drive amplitude

FIG. 5. Asymptotic behavior of transient lifetime as a function of
drive amplitude for both the circularly and linearly polarized driven
spherical domains. Circularly polarized: Circles asymptotically
approaching the solid line. Linearly polarized: Squares asymptoti-
cally approaching the dashed line. N11 = N22 = N33 = 1/3, ωd = 2π

rad/ns, ω0 = 1.84 rad/ns, hs = 0.1 kOe, α = 0.01, and (θ0 = 0,

φ0 = 0).

is increased toward the bifurcation (Fig. 4) the attracting
limit cycle becomes larger and the transient lifetime increases
dramatically. Near the critical value hd = 0.15 kOe the motion
is quasiperiodic just as in the linearly driven system. At values
greater than the critical field the magnetization switches to
the lower hemisphere and the transient lifetime decays just
as in the linearly polarized driven system. One interesting
difference between the linearly polarized driving results and
those found here for the circular polarization is that there are
multiple reversals for the linear polarization and only one for
the circular.

In Fig. 5, we highlight the asymptotic behavior of the
transient lifetime τ in both the circularly and linearly polarized
spherical systems. In our analysis we have defined τ as the
amount of time it takes for consecutive Poincaré sections to
differ by less than 0.001. In Fig. 5, the circles asymptotically
approaching the solid line represent the circularly polarized
case, while the squares asymptotically approaching the dashed
line correspond to the linearly polarized case. At the drive
amplitudes given by the vertical lines, the simulations did not
settle into an attractor. Therefore, all we can say is that τ must
be greater than 247 442 ns (our longest simulation time) at
these drive amplitudes.

Modification of the demagnetization factors by a few
percent (2%–3%) from perfect spherical symmetry show
similar behavior for both circularly and linearly driven
systems. Changes in the demagnetization factors larger than
a few percent can lead to complex limit cycles of multiple
periods and chaos. In the linearly driven system, increasing
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the frequency ratio ωd/ω0 pushes the bifurcation events to
larger values hd , while simultaneously spreading how often
they occur along the hd axis. Decreasing ωd/ω0 to values near
1, leads to opposing behavior; the bifurcation events occur
at lower values of hd and occur at a greater frequency along
the hd axis. Of course, if we move to frequency ratios too
large or too small these discussion points may not hold. For
example, decreasing ωd/ω0 to really low values, such as 0.05
in the linearly driven system, produces very minor coupling
to the system and the system will take an extremely long time
to come into equilibrium with the fields. Increasing ωd/ω0

in the circularly driven system moves the one bifurcation
event to larger values of hd , while decreasing ωd/ω0 drives
the bifurcation to lower values of hd , until ωd/ω0 < 1. For
ωd/ω0 < 1, in the circularly driven system, no bifurcation
events were observed, and with increasing hd the system finds
its equilibrium in a circular orbit on the equator.

We comment on the possibility to observe these dynamic
magnetization reversals experimentally. All the methods
would involve placing spherical nanoparticles in ultrasmall
waveguides, for example, in a narrow gap between the signal
line and the ground planes in a coplanar waveguide. This
would generate the large oscillating fields required for these
measurements. The average z component of the magnetiza-
tion of a collection of nanoparticles could then be probed
optically through a magneto-optic Kerr effect measurement,
for example [46]. A second possibility is to use a variation of
a pulsed inductive magnetic magnetometer [47] which uses
a fast oscilloscope (20 GHz) to measure the actual time-
dependent dynamics. Finally, it is likely that the permeability
at a given frequency would show significant changes at the
critical amplitudes that produce magnetic reversals. This could
be measured directly as a change in the reflected (S11) or
transmitted (S21) signal propagating down the waveguide using
a network analyzer [48].

IV. LONG CYLINDRICAL DOMAIN

The strong dynamic demagnetization field associated with
a long cylindrical domain (N11 = N22 = 1/2, N33 = 0) results
in the magnetization coming to equilibrium with the external
driving field in a much shorter time interval than the sphere. In
addition, interesting bifurcation events did not occur until the
drive amplitude was well over 1000 Oe. We note that the use of
finite cylinders gives similar results, but the key amplitudes for
hd are all much lower. For example, with the parameters N11 =
N22 = 0.4, N33 = 0.2 the important driving amplitudes all
drop by about an order of magnitude. (Of course, the important
frequencies for the driving field need to be reduced in this
case because the resonance frequency is lowered significantly.)
The normal mode frequency associated with the long cylinder
is ω0 = 203.9 rad/ns with hs = 0.1 kOe, two orders of
magnitude larger than the sphere, and therefore we apply a
higher frequency oscillatory field at ωd = 686.3 rad/ns. Here,
the frequency ratio (ωd/ω0) does not exactly equal 3.4, but
is quite close at ωd/ω0 = 3.37. These slight differences are
due to how we have implemented our Poincaré sections and
bifurcation algorithms. The code we developed requires the
drive period to be exactly divisible by the step size. This

FIG. 6. Bifurcation diagram of the linearly polarized driven
cylindrical domain and the average largest Lyapunov exponent 〈λ〉
as a function of hd from 1238 to 1337 ns. N11 = N22 = 1/2,
ωd = 686.3 rad/ns, ω0 = 203.9 rad/ns, hs = 0.1 kOe, α = 0.01, and
(θ0 = 0,φ0 = 0).

ensures that the Poincaré sections taken every drive period
fall precisely on a data point and we do not have to interpolate.

The initial state (i.e., initial condition) of the cylindrical
system is more important here than the spherical system, due
to the demagnetization field directing m along the axis of
symmetry (the z axis). In the low field limit (hd � 0.1 kOe) in
both linearly and circularly driven systems, and with the initial
state anywhere on the upper hemisphere, the trajectory always
finds an attractive limit cycle near the +z axis. Similarly, if the
initial state is on the lower hemisphere, the trajectory finds a
limit cycle near the −z axis. As hd is increased the division
outlined above between the upper and lower hemispheres
becomes skewed. The bifurcation diagram and average LLE of
the linearly driven system is shown in Fig. 6 for an initial state
on the upper hemisphere (θ0 = 0, φ0 = 0). In contrast to the
sphere where the largest value of 〈λ〉 was on the order of ±10−5

throughout the range of drive amplitudes simulated, here in
Fig. 6, we see 〈λ〉 on the order of ±10−3 in the range 40 �
hd � 45 kOe. This suggests a stronger sensitivity to the initial
conditions over the range 40 � hd � 45 kOe, but 〈λ〉 is still
small compared to other LLE values where stronger chaotic
behaviors are observed (see 〈λ〉 in Fig. 9, for example), and
when viewing the detailed oscillatory information in this band
the motion appears to be quasiperiodic. Therefore, the band
over the range 40 � hd � 45 kOe corresponds to quasiperiodic
behavior with more sensitivity to initial conditions than seen
for drive amplitudes less than 40 kOe and greater than 45 kOe.
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FIG. 7. Basins of attraction and corresponding attractors for the linearly polarized driven cylindrical domain with different values of the
drive amplitude. (a) and (c) are the basins of attraction for the attractors shown in (b) and (d), respectively. (a) hd = 38.04 kOe; (b) hd =
38.04 kOe; (c) hd = 47.94 kOe; and (d) hd = 47.94 kOe.

The bifurcation diagram for an initial state in the lower
hemisphere looks qualitatively similar to that shown in Fig. 6.
For example, when (θ0 = π,φ0 = 0) θ starts at π and under-
goes similar period-one motion on the lower hemisphere until
the first bifurcation event near 40 kOe; then undergoes similar
quasiperiodic behavior (but now in the lower hemisphere) over
the range 40 � hd � 45 kOe; and finally, for hd � 45 kOe, has
similar period-one behavior.

In Fig. 7, we present the basins of attraction in (a) and (c) and
corresponding attractors in (b) and (d) of the linearly polarized
driven cylindrical system for drive amplitudes before and after
the quasiperiodic region. (A basin of attraction is the set of
initial conditions that leads to a particular attractor.) Unlike the
sphere (where different initial states lead to the same attractor),
this system is a two-state system throughout the range of
drive amplitudes investigated (0–66 kOe). This is primarily
due to the constraint of the demagnetization field along the
axis of symmetry. Figure 7(a) reveals two interlocking spiral
basins of attraction near the equator. As highlighted earlier,
in the low field limit the basins are divided along the equator,
and with increasing hd , the basins start to explore a larger
region about the equator of the unitary sphere. In Fig. 7(a),
at hd = 38.04 kOe, the division between the upper and lower
hemispheres is still apparent, but near the equator the system
may evolve toward either attractor. In Fig. 8 we have plotted a
subsection of Fig. 7(a) using nearly 1 million initial conditions.
Within the quasiperiodic region (40 � hd � 45 kOe) the
system finds different quasiperiodic attractors oriented about

the +z or −z poles, depending on the initial state. After the
quasiperiodic region (hd � 45 kOe), Fig. 7(c) reveals similar
interlocking spiral basins of attraction, but now the attractors
are oriented along the ±y (m2) directions.

FIG. 8. Subsection of Fig. 7(a). Basins of attraction using nearly
1 million initial conditions for the linearly polarized driven cylindrical
domain when hd = 38.04 kOe.
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Note that the spacing between points on the three dimen-
sional (3D) attractor plots in Figs. 7(b) and 7(d), are for
illustration purposes only (to show the location of the final
state of the system). In reality, they represent continuous
magnetization curves within those regions of the unit sphere.
Similar 3D attractor plots with various point spacings are
shown later in Figs. 10(b), 10(d), and 10(f), and those
are meant to represent continuous magnetization curves as
well.

When the long cylinder is driven by a circularly polarized
field the dynamics are again simplified greatly due to the
autonomous nature of the LLG equation in this system. In
addition, the rotational symmetry and uniform magnetization
prevents the emergence of a chaotic state [3]. Two-dimensional
state space systems cannot have chaotic trajectories as a result
of the Poincaré-Bendixson theorem [44]. Under a low driving
field, the circularly polarized system approaches one of two
attractors on the upper or lower hemisphere, depending on
whether the initial state starts in the upper or lower hemisphere
(just as in the linearly polarized case). Unlike the elongated
limit cycles of the linearly polarized cylindrical domain [see
Fig. 7(b), for example], the attracting limit cycles are perfect
circles due to the symmetry of the circularly polarized system.
As the drive amplitude is increased the amplitude of the limit
cycles becomes larger and the basin of attraction of the upper
hemisphere begins to erode. Only one bifurcation event was
observed for this system at hd ≈ 15 kOe. This bifurcation
coincided with the complete erosion of the upper hemisphere’s
basin of attraction, thereby creating a one-state system that
only evolves toward a single attractor in the lower hemisphere
(no matter where the initial state began). The determinant and
trace of the stability matrix of this system do not predict where
the bifurcation events occur as was found in the spherical
system. The reason for this is that one needs to study the
stability of limit cycles instead of the stability of fixed points. A
stability analysis of this system can be developed by analyzing
the zeros of the Melnikov function, where one investigates the
stability of limit cycles [2,3,16,18].

Similar to the spherical system, increasing the ratio ωd/ω0

results in the bifurcation events occurring at larger values of hd

in both the linearly and circularly driven systems. Decreasing
ωd/ω0 to values near 1, moves bifurcations to lower values of
hd . In the linearly driven system, decreasing ωd/ω0 shifts the
quasiperiodic region shown in Fig. 6 to lower values of hd ,
and as ωd/ω0 approaches 1, this quasiperiodic region seems
to transform into a chaotic region.

V. INFINITE PLANE (THIN-FILM) DOMAIN

The magnetic thin-film geometry is probably the most
commonly studied. Of course, to have a single domain one
needs to have a small structure, with lateral dimensions on the
order of 50 nm or less so that domain walls are too costly to
form. In this section we use the demagnetizing factors of an
infinite plane (N11 = 0, N22 = 1, N33 = 0). One can get close
to these values for films with a thickness on the order of just a
few nanometers with the lateral dimensions quoted above. For
example, using the analytic expression for the demagnetization
factors developed by Aharoni [49], a square geometry with the

FIG. 9. Bifurcation diagram of the linearly polarized driven thin-
film domain and the average largest Lyapunov exponent 〈λ〉 as a
function of hd from 1238 to 1337 ns. N22 = 1, ωd = 93.4 rad/ns,
ω0 = 27.3 rad/ns, hs = 0.1 kOe, α = 0.01, and (θ0 = 0,φ0 = 0).

50 nm side length and a thickness of 2 nm has N11 = 0.05,
N22 = 0.9, N33 = 0.05.

As with the long cylindrical domain, the thin-film systems
we have investigated came into equilibrium with the external
driving field in a shorter time interval than that of the spherical
domain due to the strong dynamic demagnetization field of
the thin-film geometry. The choice of N22 = 1 breaks the
rotational symmetry of the circularly driven system and allows
the dynamics for both the linearly and circularly polarized
driving fields to eventually become chaotic in certain regions
of the phase space. This is in contrast to the results for the
circularly polarized case in the cylinder and sphere where the
solution is never chaotic.

The bifurcation diagrams of both the linearly and circularly
polarized driving fields show similar behavior as a function
of drive amplitudes, and therefore we only show the linearly
polarized case in Fig. 9. Under low drive amplitudes this is
expected because the strong demagnetizing field overwhelms
the y component of the circularly driven field. The natural
frequency for this system is 27.3 rad/ns and for our example
results, we pick a driving frequency that is about a factor of
3.4 larger than this. Figure 9 was derived using a single initial
condition (θ0 = 0, φ0 = 0), just as was the case for the sphere
and cylinder systems, and just like those systems, the thin-film
bifurcation diagrams using other initial conditions produces
qualitatively similar results. In other words, the period-one,
period-two, etc., and chaotic regions for other initial conditions
appear over similar drive amplitude intervals as that shown in
Fig. 9.
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FIG. 10. Basins of attraction and corresponding attractors for the linearly polarized driven thin-film domain with different values of the
drive amplitude. (a), (c), and (e) are the basins of attraction for the attractors shown in (b), (d), and (f), respectively. (a) hd = 0.40 kOe; (b) hd

= 0.40 kOe; (c) hd = 0.50 kOe; (d) hd = 0.50 kOe; (e) hd = 0.67 kOe; and (f) hd = 0.67 kOe.

In the low field (hd � 0.1 kOe) limit for both of the driven
thin-film systems there is only one low amplitude attracting
limit cycle near the +z pole, which oscillates at the drive
frequency ωd = 93.4 rad/ns. Near hd = 0.1 kOe both systems
developed two additional small basins of attraction. These two
new attractors exhibit large amplitude motion in the (m1,m3)
plane and their basins of attraction grow in area and become
riddled with increasing hd . Figures 10(a) and 10(b) show
the riddled basins of attraction and corresponding attractors
when hd = 0.40 kOe in the linearly driven system (just
before the first bifurcation event). Even though the basins are
complicated, one can readily see that if we choose to divide
the upper and lower hemispheres by the plane y = 0 instead of
z = 0, the probability of an initial state in the upper hemisphere
finding the attractor in the lower hemisphere is lower than
finding the one near its original state. With a sufficiently

dense initial condition grid, one could easily quantify the
probabilities any random selection would yield a particular
attractor. For example, using the 980 000 solutions used to
plot Fig. 10(a), the fractions of each attractor are black: ∼0.45;
magenta: ∼0.28; cyan: ∼0.27.

The first bifurcation event (near hd = 0.49 kOe) in the
linearly driven system corresponds with the simultaneous
creation of an additional small amplitude attracting limit
cycle near the +z pole [see Figs. 10(c) and 10(d)] and a
period-five attractor that can have different phases depending
on its basin. The period-five attractors are represented by the
white basin that reveals itself when we zoom in on a subsection
of Fig. 10(c). Figure 11 is a zoomed-in plot of a small section
of Fig. 10(c) that clearly shows five different basins. The
period-five attractors are not shown in Fig. 10(d) for clarity of
the other attractors. The period-five attractor would lay atop the
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FIG. 11. Zoomed-in view of a small section of Fig. 10(c) that
reveals five different riddled basins of attraction. The white basin
corresponds to period-five attractors of various phases, and the
remaining basins correspond to the attractors shown in Fig. 10(d).

two smaller attractors near the +z pole and appear as a complex
limit cycle with various lobes. Similar behavior is observed
near the first bifurcation of the circularly driven system, but we
did not observe any period-five attractors using the same initial
condition grid. Maybe the period-five basins are much smaller
in the circularly driven system or they may not develop due to
the differing dynamics. One possibility for the differences is
that Fig. 9 shows a small region exhibiting chaotic behavior
near hd = 0.7 kOe; this small chaotic region does not appear
in the circularly driven system. (The circularly driven system
does show chaotic behavior, but only when values of hd are
�1.6 kOe.) Therefore, the creation of the period-five attractors
of differing phases in the linear system may be linked to that
system’s route to chaos near hd = 0.7 kOe, although further
investigation is required.

Increasing hd from ∼0.5 to ∼0.6 kOe in the linearly driven
system results in the two small amplitude limit cycles in
Fig. 10(d) diverging from one another (the large amplitude
attractors remain relatively stationary). Near 0.6 kOe another
bifurcation occurs and gives rise to multiperiodic attractors and
highly irregular basins until the chaotic region near 0.7 kOe.
Figures 10(e) and 10(f) show this behavior at hd = 0.67 kOe.
Figure 10(f) shows four period-two attractors, where the black
spheres are intermingled with the cyan cubes and lie atop
one another, and the magenta cones are intermingled with the
lime line. These attractors have strong harmonics at 0.5ωd

and 1.5ωd , and lie atop one another, but are phase shifted
from each other when one views the detailed oscillatory
information. The white basin in Fig. 10(e) is only visible
when one zooms in to the high-resolution image, and it
corresponds to two small amplitude period-five attractors
not shown, but which lie between (sandwiched) the four
period-two attractors in Fig. 10(f). Therefore, the destruction
of the two small amplitude period-one limit cycles in Fig. 10(d)
leads to large amplitude multiperiodic motion, and finally,
chaos near 0.7 kOe. Surprisingly, just after the first chaotic
region (�0.7 kOe), the linearly driven system turned into a

two-state system for most of the drive amplitudes from ∼0.7 to
∼1.85 kOe, with only two basins of attraction and two period-
one attractors that look very similar to the large amplitude (in
the m1 and m3 plane) attractors in Fig. 10(b). Even though
the attractors are much simpler than that described leading up
to 0.7 kOe, the two basins of attraction are highly irregular
with no discernible pattern. From ∼0.7 to ∼1.85 kOe the
two period-one attractors become warped and near 1.85 kOe
collide with one another and the system reverts back into chaos.
The regions near hd of 1.08, 1.55, and 1.68 kOe (Fig. 9) are
brief excursions into multiperiodic behavior from the two-state
period-one behavior described above. Periodic motion is again
briefly restored over the range 1.95 � hd � 2.18, and then
predominantly chaotic for the rest of the drive amplitudes
simulated. Similar behaviors are observed when driven by the
circularly polarized field, but the transitions from one kind of
behavior to another occur at slightly different values of the
drive amplitude hd than that described above.

Just as in the sphere and cylinder systems, increasing ωd/ω0

leads to bifurcations occurring at greater values of hd , while
decreasing ωd/ω0 to values near 1 results in chaotic behavior
and bifurcations occurring at lower values of hd .

VI. CONCLUSIONS

We have explored the dynamic behavior of the magne-
tization in a variety of nanoparticles when driven by large
amplitude oscillating fields. To characterize this, we studied
bifurcation diagrams, Lyapunov exponents, chaos, and basins
of attraction for three different characteristic geometries:
spheres, cylinders, and planes. For the sphere we examined
systems driven with both linear and circularly polarized
driving fields. We observed only one attracting limit cycle
for a large number of initial conditions and quasiperiodic
prolonged transient behavior near the bifurcation events.
These bifurcations resulted in a magnetization flip of the m3

component. The autonomous form of the circularly driven
spherical system allowed us to predict where the prolonged
transient behavior will occur as a function of the external
field control parameters. The stability analysis also allowed us
to qualitatively describe why the transient lifetime increased
as one approached the trJ0 = 0 in Fig. 3. Variations in the
demagnetization factors greater than a few percent in the
sphere can lead to more than one attractor, multiperiodic orbits,
and chaos.

In the low field limit (hd � 0.1 kOe) of the linearly
polarized driven cylindrical system the two basins of attraction
are divided along the equator. When m starts in the upper
hemisphere it will find the attractor in the upper hemisphere,
and when m starts in the lower hemisphere it will find
the attractor in the lower hemisphere. Increasing the drive
amplitude skews the division between the basins in the upper
and lower hemispheres until the first bifurcation. The first
bifurcation results in period-one attractors in the upper and
lower hemisphere becoming quasiperiodic. Further increasing
hd resulted in the quasiperiodicity disappearing and the system
reorienting itself along the y axis. Chaos was not observed
for this system for the parameters presented, but chaos was
observed when reducing the frequency ratio ωd/ω0 to 1.4.
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The circularly driven cylindrical system showed a similar
division between basins of attraction on both the upper and
lower hemispheres in the low field limit (hd � 0.1 kOe).
Increasing hd in this system led to the erosion of the upper
basin. The only bifurcation event observed for this system
occurred simultaneously with the complete erosion of the
upper basin of attraction.

The linearly and circularly driven thin-film domains showed
similar behaviors throughout the range of drive amplitudes
investigated. These systems go through many transitions over
the range of drive amplitudes investigated. In the low field limit
(hd � 0.1 kOe) there is only one attractor for either system.
Near hd = 0.1 kOe both systems developed two additional
small basins of attraction which corresponded to large am-
plitude motion in the (m1,m3) plane. As the drive amplitude
increased further, the basins grew in area and developed a
riddled structure. The first bifurcation event in either system
coincided with the appearance of an additional small amplitude
limit cycle near the +z pole. Further increasing hd resulted in
the two small amplitude period-one attractors diverging from
one another until the next bifurcation event, which resulted

in the creation of large amplitude multiperiodic attractors.
Further increasing hd led to a brief chaotic region in the
linearly driven system, after which, the system became a
two-state system. The circularly driven system did not have
the brief transition to chaos, but nonetheless transitioned to
a twostate system just as did the linearly driven system. The
linearly driven system is primarily chaotic when hd � 2.18,
and the circularly driven system is primarily chaotic when
hd � 1.6 kOe.

The LLG equation, along with its many adjustable pa-
rameters provides a rich amount of nonlinear and chaotic
phenomena in magnetic systems. We have surveyed the
dynamic behavior of the magnetization near bifurcation events
for different monodomain shapes where an external linearly
or circularly polarized oscillating field is perpendicular to
an external static field. The particular orientation of the
external fields was chosen to be representative of common
experimental setups, such as those used in ferromagnetic
resonance experiments. The extensive survey presented in this
paper provides a foundation for investigations into other LLG
systems with additional complexities.
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