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Magnetic order in four-layered Aurivillus phases
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We determine the viability of four-layered Aurivillius phases to exhibit long-range magnetic order above room
temperature. We use Monte Carlo simulations to calculate transition temperatures for an effective Heisenberg
model containing a minimal set of required couplings. The magnitude of the corresponding coupling constants
has been determined previously from electronic structure calculations for Bi5FeTi3O15, for which we obtain a
transition temperature far below room temperature. We analyze the role of further neighbor interactions within
our Heisenberg model, in particular that of the second-nearest-neighbor coupling within the perovskitelike layers
of the Aurivillius structure, as well as that of the weak interlayer coupling, in order to identify the main bottleneck
for achieving higher magnetic transition temperatures. Based on our findings, we show that the most promising
strategy to obtain magnetic order at higher temperatures is to increase the concentration of magnetic cations
within the perovskitelike layers, and we propose candidate compounds where magnetic order could be achieved
above room temperature.
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I. INTRODUCTION

Coexistence of ferroelectricity and magnetic long-range
order in the same material is an uncommon phenomenon [1].
Materials that exhibit such coexistence are called magneto-
electric multiferroics [2]. In recent years, such materials have
attracted huge interest [3,4], motivated in large parts by the
possibility of exploiting the coexistence of the two types of
long-range order to create four-state logic devices [5], and
by the prospect of using cross-couplings to switch magnetic
bits with an applied voltage [6]. Due to the relative scarcity
of magnetoelectric multiferroics, the design of new materials
with robust multiferroic properties above room temperature is
very desirable.

Two main routes that can lead to magnetoelectric multi-
ferroic states are often distinguished [7]. The first requires
the presence of particular types of magnetic order that break
inversion symmetry (e.g., spiral states in orthorhombic rare
earth manganites [8]) and thus can induce a ferroelectric
polarization via coupling to both electronic and lattice degrees
of freedom. The main challenge for designing robust room
temperature multiferroics via this route, is that the required
noncentrosymmetric magnetic order is often due to frustrated
magnetic interactions, which then also decrease the magnetic
ordering temperatures. Furthermore, the induced electric
polarization is typically small.

The second route, which is the one relevant for the present
work, involves compounds in which ferroelectricity is induced
by a structural instability that is unrelated to magnetic order
(or only weakly affected by it). A prominent example for
this second scenario is BiFeO3, which is one of the most
extensively studied multiferroics [9]. Here, the challenge lies
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in the fact that the most common mechanism for creating a
proper ferroelectric instability is generally disfavored by the
partial occupation of d states on a magnetic cation [1].

The Aurivillius phases are a family of naturally layered
oxides. Their structure consists of m perovskite units,
(Am−1BmO3m+1)2−, stacked along the c direction, and alternat-
ing with fluoritelike layers of (Bi2O2)2+ (see Fig. 1 for a case
with m = 4) [10]. Aurivillius phases are well known for their
good ferroelectric properties with Curie temperatures well
above room temperature and low fatigue [11,12]. Furthermore,
Aurivillius phases display a large chemical flexibility, which
allows to incorporate various magnetic (and nonmagnetic)
cations on the octahedrally coordinated B sites, apparently
without much effect on the structural instability responsible
for the ferroelectric properties [13]. Therefore this class of
materials is very promising for engineering high-temperature
multiferroics by starting from a composition with strong fer-
roelectricity and then enhancing its magnetic properties, e.g.,
via substitution or by applying strain/pressure. In particular,
Aurivillius systems incorporating 3d transition metal cations,
which generally can give rise to high Néel temperatures in
oxides, are natural candidates to explore new multiferroic
compounds.

Experimentally, most efforts so far have focused on m = 4
structures with 75% Ti4+ and 25% Fe3+ (or other magnetic
cations with valence +3) distributed over the B sites [14–17].
However, conflicting magnetic properties have been reported
for these compounds. In the most studied case of Bi5FeTi3O15,
Srinivas et al. have reported an antiferromagnetic transition
temperature of 80 K [18], which conflicts with more recent
studies that report paramagnetic behavior with no magnetic
long-range order down to very low temperatures [14,19,20].
Furthermore, it was shown that the observed properties often
depend strongly on the synthesis conditions and can be caused
by trace amounts of impurity phases, which are very hard
to detect using standard laboratory-based characterization
methods [21]. Therefore it is of great interest to have a
theoretical estimation of the expected magnitude of the
temperature TC , at which magnetic order might arise.
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FIG. 1. Structure of Bi5FeTi3O15, an Aurivillius phase corre-
sponding to m = 4, at temperatures below the ferroelectric transition,
viewed from two slightly different perspectives. Purple and red
spheres indicate Bi3+ and O2− ions, respectively. The ions inside
the blue octahedra (B sites) are Ti4+ and Fe3+ with concentrations
x(Ti) = 3/4 and x(Fe) = 1/4.

From the theoretical side, two factors appear crucial for
the possible emergence of long-range magnetic order in
Aurivillius phases. The first is the relatively low concentration
of magnetic cations (only 25% on the perovskite B sites in
the above examples), the second is the short range of the
superexchange interaction, which is the dominant coupling
mechanism between magnetic ions in insulating oxides.

The concentration of magnetic cations is fixed by stoichio-
metric constraints. As already mentioned, most systems that
have been studied so far correspond to four-layered (m = 4)
Aurivillius phases with composition Bi5MTi3O15, where M

is a trivalent 3d transition metal cation. Note that due to
the different valence it is not possible to simply substitute
some of the Ti4+ by M3+ to increase the concentration of
magnetic cations on the B sites. In Sec. III C, we discuss
possible alternative compositions that allow to increase the
concentration of magnetic cations, but first we will focus on
already existing compounds with m = 4 and 25% magnetic
cations on the B-sites, in particular the case with M=Fe3+.

For this relatively low concentration of magnetic ions, the
short range of the superexchange mechanism represents a
serious challenge for obtaining long-range magnetic order at
high temperature. Typically, superexchange can be very strong
between magnetic ions sharing the same ligand (i.e., nearest-
neighbor superexchange), but decreases quickly with distance
(or, more precisely, with the number of bonds along the shortest
superexchange path connecting two magnetic ions).

The low concentration of magnetic ions (25% in the above
examples) results in a low average number of magnetic ions
that share an oxygen ligand and thus are strongly coupled. In
the worst case, the percolation threshold for a fully connected

network of nearest-neighbor superexchange bonds might not
be reached, and the system simply consists of many isolated
clusters that are only weakly coupled by further-neighbor
superexchange interactions. However, even somewhat above
this percolation threshold, the effective dimensionality of the
resulting “magnetic lattice” can be quite low. This implies that
the much weaker further-neighbor superexchange couplings
are playing a crucial role for achieving long-range order in
Bi5FeTi3O15 and similar Aurivillius phases. In particular,
due to the presence of the (Bi2O2)2+ layers (see Fig. 1),
there are no strong nearest-neighbor links between adjacent
perovskite blocks, which are only coupled through rather
weak further neighbor superexchange (the shortest possible
superexchange path between two adjacent perovskite blocks is
along a sequence of M-O-O-O-M bonds). However, coupling
across the (Bi2O2)2+ layers is essential to achieve long-range
order along the c direction, and its small size might critically
affect the transition temperature.

For the case of Bi5FeTi3O15, magnetic coupling constants
have been calculated using first principles electronic structure
calculations [13]. Indeed, a rather strong coupling for Fe3+
cations in nearest-neighbor positions of around 45 meV,
corresponding to a temperature scale of ∼520 K has been
obtained. In contrast, the coupling between Fe3+ cations in
next-nearest-neighbor positions was calculated to be more than
one order of magnitude smaller (1–2 meV, corresponding to
∼15 K), and the interlayer coupling was estimated to be around
0.3 meV (∼3.5 K).

In this paper, we present Monte Carlo simulations for an
effective Heisenberg model applicable to m = 4 Aurivillius
systems. Based on the coupling strengths calculated for
Bi5FeTi3O15, we obtain an upper bound for the magnetic
transition temperature (TC) of this material of 22 K, i.e.,
significantly below room temperature. In order to explore
which of the two weak further-neighbor couplings represents
the more severe bottleneck for obtaining high TC, we individ-
ually vary the strength of the next-nearest-neighbor coupling
within the perovskite blocks as well as that of the interlayer
coupling. These calculations show that, for a magnetic ion
concentration of 25%, the next-nearest-neighbor interaction
is crucial to achieve good percolation (and thus high TC)
within the perovskite blocks, but that the influence of the
weak interlayer coupling is less severe. We then also vary
the concentration of magnetic ions on the B sites of the
model, using realistic magnitudes for the coupling constants
based on the calculated values for Bi5FeTi3O15. We show
that high transition temperatures can in principle be achieved
for concentrations above 50%, in spite of the rather weak
interlayer coupling. Finally, we propose a route to achieve
such higher concentrations of magnetic ions by substituting
Ti4+ with nonmagnetic cations with higher valence, such as
Nb5+, Ta5+, Mo6+, or W6+.

The paper is structured as follows. In Sec. II, we first
describe our model, discuss its limitations, and clarify which
couplings beyond nearest-neighbor we consider. In the same
section, we also specify the technical details of our simulations.
In Sec. III A, we then present and discuss the results obtained
for Bi5FeTi3O15 and investigate the dependence of TC on
the strength of further-neighbor couplings within and in
between the m-perovskite blocks. In Sec. III C, we discuss the
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dependence of the transition temperature on the concentration
of magnetic ions, and we propose possible compositions
with concentrations larger than 25%. Finally, in Sec. IV, we
summarize our main conclusions.

II. MODEL AND METHODS

A. Model and couplings in four-layered Aurivillius phases

In this section, we discuss the effective model that we use
for a generic value of magnetic ion concentration x on the
B sites of an m = 4 Aurivillius phase. As the network of
superexchange bonds is determined by the specific distribution
of magnetic and nonmagnetic cations over the available B

sites, we first discuss the method by which we distribute the
magnetic ions within our simulation cell. Then, we describe
the relevant magnetic couplings that we consider, and finally
we define the specific Heisenberg Hamiltonian that we use in
our simulations.

The conventional (primitive orthorhombic) unit cell of the
ferroelectric structure of Bi5FeTi3O15 and related four-layered
Aurivillius phases with A21am space group symmetry consists
of four formula units (f.u.). However, for our model, we need
to consider only the sites that can potentially be occupied by
magnetic cations, and thus the cell we use in our simulations
is based on the simple tetragonal cell sketched on the left in
Fig. 2. This cell contains two f.u., or 2 × 4 B sites, stacked
along the c direction. The lateral shift between subsequent
groups of four B sites is related to the Bi2O2 layer in between
two four-perovskite blocks.

We then construct an 8n × 8n × n supercell of the basic
cell. This supercell contains 64n3 B sites, over which we
have to distribute a total of N = x 64n3 magnetic cations.
In order to avoid creating configurations with an extremely
inhomogeneous distribution of magnetic cations, we first
divide the full supercell into intermediate cells (see middle
part of Fig. 2), and then randomly distribute the magnetic
cations with the constraint that stoichiometry is satisfied within
each intermediate cell. Thus the resulting concentration of
magnetic sites is exactly equal to x within each intermediate
cell. We note that configurations where stoichiometry would

8n × 8n × n 
final cell

2 × 2 × 1
intermediate cell

(2 f. u.)
unit cell

FIG. 2. Construction of the cell used to simulate a four-layered
Aurivillius phase. Our basic unit cell contains 2 formula units (f.u.).
An intermediate cell is constructed as 2 × 2 × 1 supercell of the basic
cell, and x · 32 magnetic ions are randomly distributed over the 32
B sites of this intermediate cell. The final simulation cell is then
constructed by stacking several of such intermediate cells to form a
supercell composed of 8n × 8n × n unit cells (n = 1 in the figure).

be violated over larger volumes will be strongly disfavored in
the real material due to the Coulomb interaction. We use a size
of 2 × 2 × 1 in units of the basic cell for these intermediate
cells.

Note that we use a supercell with 8 times more basic
unit cells along the two in-plane directions than along the
c direction, in order to obtain an aspect ratio of the final
simulation cell close to one (in terms of number of adjacent
B sites). This is also expected to reduce the temperature range
for which the correlation length becomes comparable with
the system size. Due to the rather weak interlayer coupling
between the m-perovskite layers, the correlation length is
expected to be smaller along the c direction than along the
perpendicular in-plane directions.

We point out that, apart form the stoichiometry constraint
on the intermediate cell level, we use a completely random
(homogeneous) distribution of magnetic cations over the
available sites. Even though Ref. [13] reported a preference
of Fe3+ to occupy the inner site in Bi5FeTi3O15, this tendency
is not very strong. Furthermore, a homogeneous random
distribution of magnetic ions is presumably most favorable
for the development of long-range magnetic order, and since
we primarily want to establish an upper bound for the
magnetic transition temperature, we are focusing here on this
most favorable case. Furthermore, we make no assumptions
on potential correlations between the relative positions of
magnetic ions on neighboring sites.

Once a specific distribution of magnetic ions on the B

sites is constructed, it is possible to establish the network
of exchange couplings connecting the magnetic sites. As
discussed in Ref. [13], one can in principle distinguish four
different, symmetry-inequivalent couplings between magnetic
ions in “nearest-neighbor” positions within the perovskite
blocks. However, ab initio calculations for Bi5FeTi3O15

presented in Ref. [13] also show that at least three of these
nearest-neighbor couplings have very similar strength. For
simplicity, and since our main goal is to establish an upper
bound for the magnetic transition temperature, we consider all
nearest-neighbor couplings to be identical for the purpose of
this work, and we denote the corresponding coupling strength
by JNN.

Now, considering only the network of spins connected
by JNN, each of the four-perovskite blocks is effectively a
simple cubic lattice with only four layers along c. Each site
of this lattice is then randomly occupied with probability x.
The problem of finding the minimal average occupation of
sites, xc, necessary to obtain site percolation through nearest-
neighbor bonds in a simple cubic lattice has been studied
extensively, [22–26] and the critical concentration was found
to be xc ≈ 0.312. This implies that for the case of the four-
layered Aurivillius phases with composition Bi5MTi3O15, i.e.,
x = 0.25, no magnetic long-range order can be obtained by
considering only JNN, and thus further-neighbor couplings
play an essential role for the magnetic ordering. Therefore we
also include magnetic coupling between next-nearest-neighbor
positions within the m-perovskite blocks into our model. The
values of some of these couplings for the case of Bi5FeTi3O15

have also been calculated in Ref. [13] and, similar to the
nearest-neighbor couplings, can be viewed as approximately
constant and independent of the specific next-nearest-neighbor
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FIG. 3. A sketch of the model for the network of B sites in
the four-layered Aurivillius structure considered in our Monte Carlo
simulations. Black (white) spheres represent magnetic (nonmagnetic)
cations. The three types of coupling included in our model are
indicated by double arrows: nearest-neighbor JNN in blue, next-
nearest-neighbor JNNN in orange, and interlayer JINTER in green. Not
visible in the picture but included in the calculations are the JNNN

couplings within the same in-plane perovskite layer. The red circle
highlights a triangle of connected spins that can in principle give rise
to partial frustration in the case of antiferromagnetic coupling.

configuration. Thus, we use the same coupling constant, JNNN,
for all next-nearest-neighbor bonds within the m-perovskite
blocks of our model.

Although the presence of such a next-nearest-neighbor
coupling guarantees to overcome the percolation threshold
within the m-perovskite blocks for a concentration of x = 0.25
(xc ≈ 0.137 for a simple cubic lattice with both nearest
and next-nearest neighbor couplings [26]), so far, our model
does not include any coupling between adjacent m-perovskite
blocks. Therefore, to achieve three-dimensional long-range
magnetic order it is essential to also consider a coupling
between closest neighbors across a Bi2O2 layer, i.e., between
two adjacent m-perovskite blocks. We denote this interlayer
coupling by JINTER.

Thus, the minimal model necessary to describe long-range
magnetic order in four-layered Aurivillius phases with a
concentration of x = 0.25 magnetic cations on the B sites
must involve at least the following three couplings: JNN,
JNNN, and JINTER. Other further-neighbor couplings are either
weaker, or are not relevant for achieving long-range order, and
are therefore neglected within our model. The three types of
coupling that we consider in our model are illustrated in Fig. 3.

The Hamiltonian of the system is then expressed in the
standard Heisenberg form:

H = −1

2

∑
i,j

Ji,j si · sj − �
∑

i

(
sz
i

)2
, (1)

where si is a three-dimensional unit-length vector describing
the direction of the magnetic moment at site i, and the
summation is over all B sites occupied by magnetic ions.
Here, Ji,j can have the values JNN, JNNN, or JINTER, depending
on whether i and j are, respectively, nearest-neighbors, next-
nearest-neighbors within the m-perovskite blocks, or closest
possible neighbors across a Bi2O2 layer. In all the other cases,
Ji,j is zero. We also consider a small easy axis anisotropy,
�, in Eq. (1), in order to have a well-defined order parameter
along the z direction.

Unless stated otherwise, the strengths of all three cou-
pling constants used in our simulations are set to values
corresponding to those obtained from ab initio calcula-
tions for Bi5FeTi3O15 in Ref. [13]: JNN = 45 meV, JNNN =
1.35 meV ≡ 3% JNN, and JINTER = 0.45 meV ≡ 1% JNN.
Furthermore, we set � = 0.45 meV. Note that all quantities
in Eq. (1) are defined considering si as a unit vector, while
the size of the magnetic moments is absorbed in the coupling
constants Ji,j and in �.

We note that the coupling constants obtained in Ref. [13]
for Bi5FeTi3O15 are all antiferromagnetic, i.e., corresponding
to a negative sign of Ji,j in Eq. (1). This is consistent with
what is expected for the superexchange interaction between
Fe3+ cations (with d5 electron configuration) according to
the Goodenough-Kanamori rules [27,28]. However, such
antiferromagnetic interactions can result in closed loops of
bonds that are partially frustrated, e.g., bonds relative to the
couplings JNN and JNNN as shown for the bonds marked by
the red circle in Fig. 3. In order to avoid complications in the
Monte Carlo simulations due to such partial frustration, and
since we mainly want to provide an upper limit for the transi-
tion temperature, we neglect the possible role of frustration in
decreasing TC by assuming all couplings to be ferromagnetic,
i.e., with positive sign. We point out that this simplification
is made for purely technical reasons. In particular, we do
not expect exclusively ferromagnetic interactions to occur in
Aurivillius systems based on Bi5FeTi3O15.

B. Monte Carlo simulations

To obtain temperature dependent properties for the model
described in the previous subsection, we perform Monte
Carlo simulations using the METROPOLIS algorithm and
parallel tempering [29]. Furthermore, we average the so-
obtained macroscopic quantities over several realizations of
the magnetic cation distribution. In practice, we apply the
following procedure. (1) Generate a random distribution of
magnetic cations within our simulation cell (respecting the
constraint discussed in the previous section). (2) Determine
the network of bonds for each type of coupling. (3) Use Monte
Carlo to calculate thermodynamic quantities for this specific
configuration. (4) Repeat this procedure several times, each
time generating a different random distribution of magnetic
cations over the B site positions. (5) Take the average of the
quantities obtained for each specific cation distribution.

Furthermore, we repeat this procedure for different system
sizes to obtain an accurate estimate of TC in the limit of
infinite system size. For this purpose, we note that, due to
the small easy-axis anisotropy included into the model, the
relevant order parameter is Mz = 1

N
〈〈|∑i s

z
i |〉〉C, the com-
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ponent of the magnetization along the easy axis. Here, 〈. . . 〉
indicates an average over Monte Carlo measurements, while
〈. . . 〉C indicates the average over different configurations, i.e.,
different realizations of the magnetic cation distribution. We
average over different cation distributions to account for the
self-averaging present in macroscopically large samples.

Thus, TC can be determined from the crossing point of
Binder cumulants [30,31] of Mz calculated for different system
sizes [32], where the Binder cumulant is given by

BC =
〈

1 −
〈(∑

i s
z
i

)4〉
3
〈( ∑

i s
z
i

)2〉2
〉

C

. (2)

Furthermore, we also calculate the magnetic susceptibility:

χ = 1

NkBT

〈〈(∑
i

si

)2〉
−

〈∣∣∣∣∣
∑

i

si

∣∣∣∣∣
〉2〉

C

, (3)

where T is the temperature and kB is the Boltzmann constant.
Typically, 80 temperatures are run in parallel using the

parallel tempering procedure. Temperatures are distributed ex-
ponentially according to Tl = Tminα

(l−1), where l = 1, . . . ,80
and α > 1. We use the same values for Tmin and α for all
simulations with the same x, independent of the size of the sys-
tem. Measurements of magnetization and energy are collected
every 300 sweeps (average number of update trials per spin). A
certain number of initial measurements (typically 4 × 103) are
not included in the averages for thermalization purposes, and
averages are taken over a number of measurements varying
between 104 and 1.9 × 105, depending on system size.

III. RESULTS AND DISCUSSION

A. Transition temperature for Bi5FeTi3O15

We begin the discussion of our results by considering
the case of Bi5FeTi3O15, i.e., a concentration of x = 0.25
and all coupling constants fixed to the approximate values
calculated in Ref. [13], as specified in Sec. II A. Figure
4 shows the temperature dependence of the magnetization,
magnetic susceptibilities, and Binder cumulants for different
sizes of the simulation cell. In each case, all quantities are
obtained by averaging over an ensemble of five configurations
corresponding to different distributions of the Fe3+ cations.

From the crossing point of the Binder cumulants for the
three different system sizes, we obtain a magnetic transition
temperature TC = 22 K. This value is also consistent with the
temperature dependence of the magnetization and with the
peak positions of the magnetic susceptibility, which appear to
depend only weakly on system size.

The value of 22 K is more than two orders of magni-
tude smaller than JNN. This small value of the transition
temperature arises from the fact that the concentration of
Fe3+ in Bi5FeTi3O15 is too low to allow percolation of
the nearest-neighbor bonds within the m-perovskite blocks
(see the discussion in the previous section). Therefore the
system essentially consists of small isolated clusters of Fe3+,
where the magnetic moments within each cluster are coupled
strongly through JNN, but different clusters within the same
m-perovskite block are only weakly coupled through JNNN.
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FIG. 4. Temperature dependence of (a) magnetization, (b) mag-
netic susceptibility, and (c) the Binder cumulant for the model
described in Sec. II and magnetic ion concentration x = 0.25. Several
system sizes have been considered: 8n × 8n × n unit cells with n = 2
(�) in orange, n = 3 (�) in green, and n = 4 (•) in blue. The vertical
dashed line in (c) indicates TC, obtained from the intersection point
of the Binder cumulants for the three different cell sizes.

Furthermore, different four-perovskite blocks are coupled
through the very weak interaction JINTER.

This low value of TC , which, based on the nature of our ap-
proximations, can be viewed as an upper limit to the magnetic
transition temperature of the real material, indicates that claims
of room-temperature magnetism measured in Bi5FeTi3O15 are
very unlikely related to the intrinsic properties of this material.
Instead, inclusions and other magnetic impurities are most
likely responsible for the apparent high temperature magnetic
properties. We also note that the superexchange interaction
between Fe3+ cations is generally one of the strongest among
all 3d transition metal cations, and thus the same conclusion
holds for similar reports on related four-layered Aurivillius
phases containing other M3+ 3d transition metal cations with
concentration x = 0.25.

In the following, we establish the sensitivity of the calcu-
lated TC on the specific values used for JNNN and JINTER. This
also allows to identify which coupling constitutes the more
severe bottleneck for achieving higher transition temperatures
and thus should possibly be increased, e.g., by applying strain
or pressure, to best engineer four-layered Aurivillius phases
with magnetic order at higher temperatures.

B. Dependence of TC on JNNN and JINTER

Next, we investigate the dependence of the transition
temperature on the weak further-neighbor couplings JNNN

and JINTER. To this end, we perform analogous simulations
as described on the previous section, but with varying strength
for one of these coupling constants, while the other one is set
to be equal to JNN. In this way, there is always only one “weak”
coupling in the system, and one can observe how TC is reduced
on decreasing the strength of this particular coupling constant.
These calculations are performed for a system containing N =
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FIG. 5. Dependence of the transition temperature, TC, on JNNN

(JINTER) for JINTER = JNN = 45 meV (JNNN = JNN = 45 meV). The
red squares (black dots) indicate the calculated values whereas the
black (red) line is just a guide for the eyes. Error bars are estimated
from the standard deviation of the peak positions of the magnetic
susceptibility obtained for several different Fe3+ distributions. The
inset shows the same data on a linear scale.

24 × 24 × 3 basic unit cells, and concentration of magnetic
ions fixed to x = 0.25. Since the purpose of these calculations
is not to obtain an extremely accurate value for TC, but rather
to observe the trend as the coupling constants are tuned, we
do not obtain the transition temperature using the intersection
of Binder cumulants for different system sizes. Instead, we
extract the peak position of the magnetic susceptibility for
eight different random distributions of the magnetic ions. We
then estimate the transition temperature by averaging this
peak position over all eight configurations, and we estimate
the corresponding error using the standard deviation of the
different values.

We first consider the case where all couplings have the same
size as JNN, i.e., JNNN = JINTER = JNN = 45 meV. It can be
seen from Fig. 5 that, although the overall energy scale of
the couplings is quite large (∼520 K), we obtain a transition
temperature TC ≈ 340 K, which is only slightly above room
temperature. This is due to the low concentration of magnetic
ions, resulting in a low average coordination number of the
magnetic lattice.

Keeping JNN = JNNN = 45 meV, we then decrease JINTER

in several steps from 45 to 0.45 meV. The resulting transition
temperatures are shown as black dots in Fig. 5. Interestingly,
the transition temperature exhibits only a moderate decrease
(by approximately a factor 0.5) although JINTER is decreased
by two orders of magnitude.

Next, we keep JINTER = JNN = 45 meV and decrease the
value of JNNN stepwise from 45 to 0.45 meV. The resulting
transition temperatures are indicated as red squares in Fig. 5.
We observe that, in this case, the value of TC decreases more
dramatically compared to the previous case where JINTER is
decreased.

The reason for this profound difference regarding the sen-
sitivity of TC on JNNN compared to JINTER can be qualitatively
explained as follows. For JINTER = 0, the system consists of
uncoupled four-layers, while the network of bonds created by

JNN and JNNN percolate each individual four-layer. Thus the
system essentially represents a quasi-two-dimensional system
(see Refs. [33,34]). In this case, and considering isotropic spins
(i.e., neglecting the small easy axis anisotropy in the model),
the correlation length perpendicular to c would diverge as
T → 0. Thus, when JINTER is switched on, the effective net
interaction between the four-layers, and thus the energy-scale
determining the temperature for long-range magnetic ordering,
is not simply given by JINTER. Instead, it is given by JINTER

multiplied by the number of correlated spins within each layer,
i.e., all spins within a radius of the size of the correlation length
at that temperature. This implies that the transition temperature
has a relatively weak dependence on the interlayer coupling.

A similar scenario does not occur, however, in the limit
of small JNNN. In this case, the bonds created by JNN and
JINTER are not sufficient to overcome the percolation threshold
within the system, both within the four-layers and along c.
Thus, for JNNN = 0, the system consists of a conglomeration of
uncoupled clusters, and the correlation length is limited by the
average size of these clusters. For JNNN �= 0 and temperatures
at which the correlation length is of the size of each cluster, the
system resembles isolated magnetic moments of different sizes
(corresponding to the cluster sizes) coupled by JNNN. This
would imply a linear dependence of TC on JNNN. However,
since the concentration of x = 0.25 is relatively close to xc ∼
0.311, the typical size of the clusters might be relatively large
and thus the temperature at which all spins within the clusters
are fully correlated might be quite small.

This scenario is qualitatively supported by the behavior of
the magnetic susceptibility above TC, calculated for different
values of JNNN and JINTER. Within this paramagnetic regime,
the susceptibility is expected to exhibit Curie-Weiss behavior,
i.e., χ (T ) = C

T −TC
, where the constant C is proportional to the

square of the effective magnetic moments. Thus, if interactions
occur between clusters of correlated spins, one expects C

to be quite large. We can extract C by taking the inverse
of the numerical derivative of χ−1(T ), i.e., [∂χ−1/∂T ]−1.
Figure 6 shows the so-obtained values for temperatures above
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FIG. 6. Values of the numerical derivative [∂χ−1/∂T ]−1 at
different temperatures for the cases where either JINTER (black points)
or JNNN (red points) is varied. The vertical lines indicate the transition
temperatures for the various cases as shown in Fig. 5.
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TC and for the various values of JNNN and JINTER. It can be
seen that one obtains rather large “effective moments” when
JINTER is decreased, even at temperatures around 200 K. In
contrast, the effective moments remain small down to rather
low temperatures on decreasing JNNN. This indicates that, at a
given temperature, the size of the correlated clusters of spins is
much larger when the system resembles weakly coupled two
dimensional layers, than when the system resembles weakly
coupled nonpercolating clusters.

We point out that the realistic values for JNNN and JINTER

(1.35 and 0.45 meV, respectively) are both very low compared
to the strong nearest-neighbor coupling JNN (45 meV) in
Bi5FeTi3O15. Therefore the real system corresponds to weakly
coupled layers formed by weakly coupled clusters, which
explains the low transition temperature found in Sec. III A.
Furthermore, this suggests that a large enhancement of JINTER

and in particular of JNNN would be necessary to increase the
transition temperature towards higher values. While it is in
principle conceivable to enhance JNNN and JINTER via pressure,
strain, doping, or cation substitution, it appears quite unlikely
that the required order-of-magnitude changes can be achieved
in this way. Therefore, the most promising route to obtain
Aurivillius phases with magnetic long-range order at or above
room temperature is to increase the concentration of magnetic
ions.

C. Aurivillius phases with higher concentration of
magnetic cations

Motivated by the results presented in the previous sections,
we now consider also magnetic ion concentrations larger than
25%. Generally, the achievable concentration of magnetic
cations in Aurivillius phases is constrained by stoichiometry
and size restrictions. Only cations within a certain size range
have been found suitable to occupy the B sites within the
Aurivillius structure [10]. Most magnetic cations that are
within this suitable range have a valence of +3, e.g., Fe3+,
Co3+, Cr3+, or Mn3+. However, a total of 6m electronic
charges have to be balanced by the cations occupying the
(m − 1) A sites and the m B sites. Typical A site cations in
the Aurivillius phases have either a valence of +3 or +2, with
Bi3+ perhaps being most common. Thus, with Bi3+ (or any
other possible 3+ cation) on the A site, the required average
B site valence is given by qB = 3(m + 1)/m. This implies
that it is not possible to have all available B sites occupied
with magnetic 3+ cations (except in the limit m → ∞).
Instead, a certain percentage of B sites has to be occupied by
nonmagnetic cations with higher valence, such as, e.g., Ti4+
as in Bi5FeTi3O15. Note that it has been found impossible
to incorporate significant amounts of the higher-valent (and
rather small) Mn4+ cation into the Aurivillius structure [35,36].

Based on these restrictions, there are in principle two ways
to increase the concentration of magnetic cations. The first
possibility is to increase m, the number of layers within
the perovskite blocks, which decreases the required average
B site valence qB . Indeed, magnetic long-range order has
been reported for several m = 5 systems [20,37]. The second
possibility, which we explore in the remainder of this article,
is to keep m fixed and substitute Ti4+ with nonmagnetic
cations of even higher valence, such as Nb5+, Ta5+, Mo6+,
or W6+. For m = 4, this leads to compositions such as, e.g.,
Bi5Fe1+xTi3−2xNbxO15 or Bi5Fe1+2xTi3−3xWxO15 (0≤x ≤1).
In Table I, we propose some examples for Aurivillius phases
that correspond to higher magnetic cation concentration
and higher critical temperatures. While (with Bi5FeTi3O15’s
exception and to the best of our knowledge) none of these
compounds have been synthesized yet, the suggested cations
have all been successfully incorporated on the B sites of other
known Aurivillius phases.

In the following, we assume that increasing the number of
Fe3+ (or other magnetic cations) and replacing part of the Ti4+
with higher-valent nonmagnetic cations will not significantly
alter the magnitude of the three relevant magnetic coupling
constants considered in our model. We thus keep the values
for JNN, JNNN, and JINTER fixed to the ones derived from the
ab initio calculations for Bi5FeTi3O15 [13]. The most relevant
effect resulting from the increased magnetic ion concentration
that is included in our model is therefore the increasing amount
of bonds between magnetic ions coupled through the strong
nearest-neighbor coupling JNN.

We consider the concentrations x = 0.5, x = 0.75, and x =
1, and perform Monte Carlo simulations for supercells of sizes
16 × 16 × 2, 24 × 24 × 3, and 32 × 32 × 4 in units of the
basic cell. Similar to what was discussed in Sec. III A, the
macroscopic averages obtained for x = 0.5 and x = 0.75 are
averaged over five different random distributions of magnetic
cations.

Figure 7 shows the temperature dependence of the magnetic
susceptibilities (upper panels) and Binder cumulants (lower
panels) for the three concentrations of magnetic ions on the
B sites. For all three concentrations, the Binder cumulants
obtained for differently sized simulation cells intersect at a
temperature very close to the peak position of the magnetic
susceptibility calculated for the largest system size. This
indicates that finite size effects are relatively small in this case.
Furthermore, the transition temperature for x = 0.5, i.e., when
half of all B sites are occupied by magnetic ions, is significantly
higher than for x = 0.25, but still below room temperature.
However, for x = 0.75, long-range magnetic order appears
at temperatures well above 100 ◦C. Finally, when all B sites
are occupied by magnetic ions, i.e., for x = 1.0, we obtain
TC = 701 K.

TABLE I. Proposed examples of Aurivillius phases with different magnetic ion concentrations, and their expected transition temperatures,
TC . While (except for the case of Bi5FeTi3O15 and to the best of our knowledge) these compositions have not been synthesized, yet, all of the
corresponding B site cations have been successfully incorporated in other Aurivillius compounds.

estimated TC (K) 22 204 455 701
concentration (%) 25 50 75 100
example Aurivillius Bi5FeTi3O15 Bi5Fe2NbTiO15 Bi5Fe3WO15 N/A
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The transition temperatures obtained for different concen-
trations are summarized in Fig. 8. Since the energy scale (and
thus the specific value of TC) in the Monte Carlo simulations
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FIG. 8. Magnetic transition temperature, TC, as function of
magnetic ion concentration. Different symbols specify temperatures
for different (scaled) values of JNN (with JNNN = 3%JNN and
JINTER = 1%JNN). The dashed horizontal line corresponds to room
temperature.

is defined via JNN, we also include scaled values of TC,
which correspond to different strength of JNN (but fixed ratios
JNNN/JNN and JINTER/JNN), e.g., for magnetic M3+ cations
other than Fe3+. We note that, for concentrations above the
critical value for percolation of the nearest-neighbor bonds
(xc ≈ 0.312), the transition temperature seems to increase
linearly with concentration.

Measurements of magnetic properties on Aurivillius phases
Bim+1Ti3Fem−3O3m+3 performed by Jartych et al. [20] indicate
transition temperatures to a spin glass state of TN = 260 and
280 K for m = 6 and 7 (x = 0.5 and 0.571), respectively.
These values are quite comparable in size to the transition
temperature we obtain for x = 0.5 (see Fig. 8 and Table I).
Furthermore, the value of TC = 701 K obtained for x = 1.0
is rather similar to the Néel temperature of the m → ∞
perovskite BiFeO3 (643 K) [38].

Even though this comparison should be taken with care,
since the values obtained from our simulations should merely
be interpreted as upper bounds for the transition temperatures
of the real materials (with partially frustrated antiferromag-
netic interactions), this seems to indicate the following:
(1) the magnitudes we used for JNN and the assumption
that JNN depends only weakly on concentration are indeed
reasonable, (2) the weak interlayer coupling is not prohibitive
for achieving transition temperatures around or above room
temperature, and (3) the partial frustration of antiferromag-
netic bonds is not very strong, at least for cases with
x ∼ 0.5.
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IV. SUMMARY AND CONCLUSION

In this work, we have, from a theoretical perspective, ex-
plored whether Aurivillius phases can exhibit magnetoelectric
multiferroic states at or above room temperature. To this
end, we have established a Heisenberg model corresponding
to magnetically dilute four-layered ferroelectric Aurivillius
phases. The minimal model for which magnetic long-range
order can occur within these compounds, including the
important case with only 25% of all B sites occupied by
magnetic cations, requires the presence of nearest-neighbor,
next-nearest-neighbor, and interlayer couplings. To obtain
the corresponding magnetic transition temperatures, we have
performed Monte Carlo simulations, thereby averaging over
several distributions of magnetic cations over the available B

sites. We obtain upper limits for the transition temperature by
neglecting the partial frustration that can occur in the case of
antiferromagnetically coupled spins.

For the case of Bi5FeTi3O15(concentration x = 0.25), we
use coupling constants based on earlier ab initio calculations,
and we obtain a transition temperature of TC = 22 K, i.e.,
far below room temperature. In order to identify the most
promising strategy for achieving magnetic long-range order at
higher temperatures, we have then addressed the individual
effects of the weak next-nearest-neighbor coupling within
the four-perovskite blocks, JNNN, and of the weak interlayer
coupling between these blocks, JINTER. Our results indicate
that the most crucial coupling in the dilute (x = 0.25) case
is JNNN. Even though the presence of the interlayer coupling
is crucial to achieve percolation along the c direction, the
strength of JNNN has a much stronger impact on the transition
temperature. A significant increase of JNNN with respect to the
value obtained from ab-initio calculations for Bi5FeTi3O15

seems necessary to achieve magnetic order around room
temperature. However, it is unclear whether and how such
a significant increase of JNNN could be realized.

Therefore we have explored a more promising route toward
higher TC, which is to increase the concentration of magnetic
ions within the m-perovskite blocks. For the m = 4 case
considered here, our results indicate that for x � 0.6, magnetic

transition temperatures around or above room temperature can
be reached. To obtain four-layered Aurivillius phases with
increased magnetic ion concentrations, we suggest to combine
trivalent magnetic 3d transition metal cations such as Fe3+
with high-valent nonmagnetic cations such as, e.g., Nb5+,
Ta5+, Mo6+, or W6+. The calculated transition temperatures as
well as some suggested compositions with varying magnetic
ion concentrations are listed in Table I. It can be seen that for
Aurivillius phases with x = 0.75 (e.g., Bi5Fe3WO15) magnetic
transition temperatures well above room temperature can be
expected.

Finally, our results demonstrate that the weak interlayer
coupling between adjacent m-perovskite blocks is not pro-
hibitive for achieving long-range magnetic order above room
temperature. This is consistent with previous studies of quasi-
two-dimensional Heisenberg systems [33,34]. Here, we extend
these studies to the case of a quasi-two-dimensional dilute
magnetic system, albeit with the simplification of using only
ferromagnetic interactions and thus excluding the case with
partially frustrated interactions. We hope that our work will
stimulate further research in this interesting direction. We
also note that, even though we considered only the specific
example of a four-layered Aurivillius structure, our results
allow for some generalization to other m values and also
to other families of layered perovkite systems, such as the
Ruddlesden-Popper or Dion-Jacobson series [39]. These are
two other examples of naturally-layered oxides consisting of
a certain number of perovskite layers, stacked along [001],
and separated by different inteleaving layers. In particu-
lar, the connectivity between the octahedrally coordinated
cation sites in the Ruddlesden-Popper series is equivalent
to the present case of the Aurivillius structure, and thus
our minimal Heisenberg model is also applicable to these
systems.
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