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Spin-flop transition in the easy-plane antiferromagnet nickel oxide
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NiO is a room-temperature antiferromagnetic (AF) insulator with important applications in AF spintronics.
Although it is considered a prototypical AF material with a simple magnetic structure with two sublattice spins
aligned in easy planes and having small in-plane magnetic anisotropy, its critical behavior has not been studied
in detail. Here we present an experimental investigation of the critical magnetic field for the transition from
the AF to the spin-flop (SF) phase obtained with magnetization and susceptibility measurements. The measured
temperature dependence of the AF-SF critical field can be quite well explained by the instability of the low-lying
magnon mode with energy renormalized by four-magnon interactions.
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I. INTRODUCTION

The recent emergence of antiferromagnetic spintronics
has renewed the interest in antiferromagnetic (AF) materials
[1–11]. These materials play an essential role in the most
important spintronic device, namely spin-valve reading heads
employed in hard-disk drives [12]. However, they only have the
passive role of pinning the magnetization of a reference mag-
netic layer by means of the interfacial exchange bias [13,14].
Recent discoveries of the spin-Hall effect in metallic AFs
[15–18], of the spin-Seebeck and spin-Nernst effects [19–23],
and spin transport [24–30] in several AFs have contributed to
draw attention to this class of materials. Furthermore, it has
been realized that the unique properties of AF materials can be
exploited in spintronic devices with new functionalities, such
as in magnetic storage elements that are very robust against
magnetic field perturbations [10,31,32] and with much faster
dynamics than in ferromagnets [33].

NiO is considered a prototypical room temperature anti-
ferromagnetic insulator because of its simple structure and
spin interactions. Its magnetic structure and spin interactions
were revealed several decades ago [34,35]. In the paramagnetic
phase NiO has the face-centered-cubic structure of sodium
chloride. Below the Néel temperature TN ≈ 523 K, the Ni2+
spins are ordered ferromagnetically in {111} planes, lying
along 〈112̄〉 axes, with adjacent planes oppositely magnetized
due to a superexchange AF interaction. This material has
been extensively used in experimental investigations of many
phenomena, such as exchange bias [12–14,36,37], inelastic
light scattering [38–40], and magnetic response with THz
frequencies [41–43]. More recently it has been shown that
a thin layer of NiO in a spintronic device can be used to
transport spin current between two layers while blocking
charge current [25–30] and that NiO can be used to generate
radiation with THz frequency in spin-torque nano-oscillators
[44]. Considering the long tradition of attention to NiO,
one would expect that all of its basic properties have been
studied in some detail. However, this does not apply to one
of the characteristic features of antiferromagnets, the spin-flop
transition.

*Corresponding author: rezende@df.ufpe.br

As is well known, when a magnetic field is applied along
the direction of the spins in a two-sublattice AF, as the field
increases and exceeds a critical value HSF , the spins of both
sublattices suddenly rotate and align almost perpendicular to
the field in a canted, spin-flop (SF) state [45–47]. This is
a first-order transition that has been studied in detail in AF
materials with easy axis anisotropy, such as the insulating
fluorides MnF2 and FeF2 that crystallize in the tetragonal
rutile structure, with the sublattice spins along the [001] axis.
Their magnetic interactions are dominated by nearest-neighbor
exchange, having effective exchange fields on the same order
of magnitude, HE = 515 and 540 kOe, respectively, for
MnF2 and FeF2, and consequently similar Néel temperatures,
TN ≈ 67 and 78 K [47]. However, their magnetic anisotropies
differ by several orders of magnitude. In MnF2 the anisotropy
is due to dipolar interactions and is relatively weak, with
effective anisotropy field HA ≈ 10 kOe [48], while in FeF2

it arises from crystal-field and spin-orbit interactions and is
represented by HA = 190 kOe [49,50]. With a magnetic field
H0 applied along the easy axis, for HA � HE and at low
temperatures, the frequencies of the two k ≈ 0 magnon modes,
or antiferromagnetic resonance (AFMR), are given by ω0 ≈
γ
√

2HEHA ± γH0, where γ is the gyromagnetic ratio. Thus,
as the field increases, the frequency of the low-lying mode
goes to zero and it becomes unstable when the field exceeds
the critical value HSF ≈ √

2HEHA, characterizing the limit of
stability of the AF phase and the onset of the spin-flop transi-
tion. In MnF2 the AFMR frequency measured by far-infrared
absorption at zero field is 261 GHz [51], and the measured
SF field is HSF ≈ 93 kOe [21,52], consistent with the value
γ = 2.8 GHz/kOe. In FeF2 the AFMR frequency is 1.58 THz
[49,53] and its spin-flop transition occurs at HSF ≈ 500 kOe,
corresponding to γ = 3.16 GHz/kOe [54]. NiO is character-
ized by two distinct anisotropies, a negative one (hard) along
〈111〉 axes that forces the spins to lie in {111} planes and a
positive in-plane one (easy) along 〈112̄〉 axes. Thus, one would
expect that when a field is applied in the easy plane along
the easy axis, there would be a spin-flop transition at a field
HSF = √

2HEHAz, where HAz is the in-plane anisotropy field.
The present investigation was motivated by the fact that for

NiO there is considerable discrepancy in the estimated values
for the spin-flop field and also in the scarce experimental
data. Based on the parameters obtained from the data of
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Ref. [35], the spin-flop field at room temperature has been
estimated to be 90 kOe in Ref. [37] and 85 kOe in Ref. [38].
Measurements by optical techniques [55] and magnetic torque
[56] have led to room-temperature critical field values of 15.4
and 16.0 kOe, respectively. On the other hand, with the values
HE = 9684 kOe and HAz = 0.11 kOe obtained from the fit of
calculations to measured magnon frequencies [57] we find
HSF = 46.2 kOe, which is quite different from all previous
numbers. The difficulties in determining the spin-flop field in
NiO arise mainly from the fact that in bulk crystals there are
AF domains with spins in 12 different directions [55,56,58]
and the transition is quite sensitive to the angle between the
applied field and the spins [52]. Thus, since it is unavoidable
to have many domains in a sample, even if the field is applied
along the easy axis of a specific domain, its response to the
probing excitation competes with that of the other domains.
Of course the difficulty persists with thin films, because they
are textured, i.e., with a random orientation of AF easy axes.

In this paper we present an experimental and theoretical
study of the spin-flop transition in a single-crystal sample
of NiO. The temperature dependence of the critical field is
obtained from measurements of the magnetic susceptibility.
Since the limit of stability of the AF phase is characterized by
the field at which the frequency of the low-lying k = 0 magnon
frequency goes to zero, the phase boundary is calculated
with spin-wave theory considering the renormalization of the
magnon energies due to four-magnon processes arising from
the exchange and anisotropy interactions. The calculated tem-
perature dependence of the spin-flop field is in good agreement
with the experimental data in the temperature range 5–325 K,
where the spin-wave theory is expected to be accurate.

II. EXPERIMENTS

The experiments described in this section were performed
with a NiO sample with the shape of a slab with dimensions
4 × 2 × 1 mm3, cut from a commercial single-crystal 1-mm-
thick disk with the face in the (111) crystallographic plane. The
magnetization M and the ac susceptibility χac were measured
using the ac/dc magnetometry system (ACMS) modulus of
a Quantum Design physical property measurement system
(PPMS). The ACMS sensitivities for measuring magnetic
moments with the dc and ac setups are, respectively, 2.5 ×
10−5emu and 1.0 × 10−8 emu. These values are three to
four orders of magnitude smaller than the level of the signal
detected in our measurements. Both ac and dc magnetic fields
were applied in the (111) plane parallel to the sample surface.
The sample temperature T was varied in the range 5–325 K.
In all measurements the temperature was stabilized to within
±0.01 K. The applied magnetic field was swept from −85 to
85 kOe with various steps: 2 kOe for 85 > |H0| > 20 kOe;
1 kOe for 20 > |H0| > 1 kOe; and 0.1 kOe for |H0| < 1 kOe.
In the ac susceptibility mode, at each magnetic field step,
the system was set to average the χac data performing 133
measurements. This mode is important for determining the
standard deviation (SD) of the measurements, which is an
indication of the size of the fluctuations in the χac data.
The SD data, among others, are readily given by the PPMS
measurement data file together with the in-phase and out-of-
phase components of χac.
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FIG. 1. (a) Measured variation of the magnetization of NiO with
applied magnetic field at three temperatures T indicated; (b)–(d)
are the corresponding dc susceptibilities obtained numerically with
dM/dH0.

The magnetization and susceptibility measurements were
done at various field directions in the (111) plane revealing
the expected threefold symmetry. The sharpest transitions,
presented later, were observed with the field parallel to the
[112̄] axis, determined by x-ray diffraction, which is one of
the three easy axes in the plane. Thus, the results presented here
refer only to this field direction. Figure 1(a) shows the variation
of the magnetization M with magnetic field H0 measured at
three temperatures 5, 150, and 300 K, which are well below
the Néel temperature TN = 523 K. At all temperatures one
observes a change in slope of the M(H0) curves around 40 kOe.
This is seen more clearly in the dc susceptibility dM/dH0 data
obtained numerically and shown in Figs. 1(b)–1(d). As will be
shown later, the increase in the magnetization at H0 < 40 kOe
is due to the rotation of the spins in the domains along the other
two 〈112̄〉 directions in the plane, at 120° with the field. The
spin-flop transition that occurs in the range 40 < H0 < 80 kOe
produces little change in the magnetization. This is due to the
fact that in the SF transition the oppositely aligned spins in
the AF phase flip to nearly oppositely aligned perpendicular
to the field in the SF phase. Thus, the magnetization data do
not allow the measurement of the SF field in NiO, as done
for other AF materials [45,59–62]. The noisy central peak in
Figs. 1(b) and 1(c) is attributed to the motion of the so-called
S-domain walls that occurs at low fields [55,56,63].

A very convenient and accurate method to determine the
AF-SF boundary consists of sweeping the applied field and
measuring the ac susceptibility at constant temperature. This
has been done with an ac field parallel to the static field, with
frequency f and magnitude hac of, respectively, 1 kHz and
10.0 Oe. Figures 2(a), 2(c), and 2(e) show the field dependence
of the real part of the ac susceptibility χ ′(H0) of NiO measured
at three temperatures, 5, 150, and 300 K. Again, the χ ′(H0)
data do not exhibit a clear indication of the AF-SF at any
temperature. However, the data for the standard deviation,
shown in Figs. 2(b), 2(d), and 2(f) exhibit an abrupt change
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FIG. 2. (a),(c),(e) Variation with magnetic field of the real part
of the ac susceptibility measured at the temperatures indicated;
(b),(d),(f) standard deviation of the susceptibility measurement.

at a field that depends on the temperature and is indicative
of the onset of the AF-SF transition. This is so because the
AF-SF transition is of first order, in which the thermodynamic
phase boundary lies between the limits of stability of the AF
and of the SF phases [45,46]. As the applied field increases
and exceeds the critical value for stability of the AF phase,
the system enters in a regime of large fluctuations due to
the formation of AF-SF domains walls that produce a series
of discontinuous jumps in the magnetization and irreversible
behavior [64,65]. Since the sum of the static and modulation
fields drives the spin system back and forth across the energy
barriers, the irreversibilities produce fluctuations in the ac
susceptibility which reflects in the standard deviation data.

Figure 3 shows the measured AF-SF boundary obtained
from the data in Fig. 2 by taking, at each temperature,
the average of the absolute values of the two critical fields
measured with decreasing and increasing field. The error bars
were determined by the difference between the two values.
At T = 5 K the critical field is HSF = 54 ± 4 kOe, which is
larger than the values reported in [55,56] but much lower than
the values estimated in [37,38]. As the temperature increases
the critical field decreases, which is the opposite behavior to
that observed in MnF2 [21,52].

III. SEMICLASSICAL THEORY

In this section we present a semiclassical treatment of the
macrospin response to an applied magnetic field in the plane of
an easy-plane antiferromagnet. We consider various aspects of
the questions involved in two subsections. The first is devoted
to calculate the configuration of the sublattice macrospins
based on energy arguments and in the second we calculate
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FIG. 3. Temperature dependence of the critical field for the
AF-SF transition. Symbols represent the values measured from the
change in behavior of the standard deviation of the ac susceptibility.
The red solid curve represents the critical field calculated with
mean-field theory presented in Sec. III and the blue line is the
theoretical fit with the quantum spin-wave theory with four-magnon
energy renormalization presented in Secs. IV and V.

the frequencies of the uniform spin precession corresponding
to the antiferromagnetic resonance (AFMR) modes.

Above the Néel temperature TN = 523 K, NiO has the
sodium chloride structure with the Ni2+ and O2−

ions arranged
in two face-centered-cubic lattices, as illustrated in Fig. 4(a).
Below TN , the spins of the Ni2+ ions are ordered ferromagnet-
ically in {111} planes where they lie along 〈112̄〉 directions,
while the spins in adjacent {111} planes are oppositely aligned
forming an AF arrangement [34,35]. Here we will ignore

H0z
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H0

z’
1θ

2θ 1θ2θ
z
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[112]

(b)(a)
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FIG. 4. (a) Crystal structure and spin arrangements in the anti-
ferromagnetic phase of NiO. The small yellow circles represent O2−

ions and the large circles represent the Ni2+ ions. (b) Schematic
representations of the AF spin domains in the {111} plane with the
magnetic field H0 applied along the direction of one of the domains.
(c) Spin arrangement in a spin domain at an angle of 2π/3 with the
applied magnetic field H0. (d) Spin arrangement in the spin-flop phase
of a spin domain along the applied magnetic field H0.
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the small orthorombic distortion that occurs below TN and
consider the spins arranged in two AF sublattices. The spin
Hamiltonian with Zeeman energy, exchange interaction, and
out-of-plane (x) and in-plane (z) anisotropy energies can be
written as [35]

H = −γ h̄
∑
i,j

H0 Sz
i,j+

∑
i,j

2Jij
�Si · �Sj

+
∑
i,j

Dx

(
Sx

i,j

)2 − Dz

(
Sz′

i,j

)2
, (1)

where �Si and �Sj are, respectively, the spins (in units of h̄) at
sites i and j of sublattices 1 and 2, H0 is the applied static
magnetic field, Jij is the exchange constant of the interaction
between spins �Si and �Sj , γ = gμB/h̄ is the gyromagnetic ratio,
g is the spectroscopic splitting factor, μB is the Bohr magneton,
h̄ is the reduced Planck constant, and Dx > 0 and Dz > 0 are
the anisotropy constants, such that x is a hard direction along
a 〈111〉 axis and z′ is an easy direction along one of the three
〈112̄〉 axes in the (111) plane. The Hamiltonian in Eq. (1) will
be the basis for the calculations in the following subsections.

A. Macrospin configurations

We use a macrospin approximation and associate to �Si

and �Sj uniform sublattice magnetizations �M1,2 = γ h̄ N �Si,j ,
where N is the number of spins per unit volume. For T = 0
the static sublattice magnetizations have the same value,
M1 = M2 = M . In order to calculate the static spin response
to a magnetic field H0 applied along the z′ direction of one of
the spin domains, as sketched in Fig. 4(b), we use the energy
per unit volume obtained from Eq. (1),

E = −H0(M1z + M2z) + HE

M
�M1 · �M2 + HAx

2M

(
M2

1x + M2
2x

)
− HAz

2M

(
M2

1z′ + M2
2z′

)
, (2)

where HE , HAx , and HAz are effective exchange and anisotropy
fields defined by

HE = 2SzJ/γ h̄, HAx = 2S Dx/γ h̄, HAz = 2S Dz/γ h̄,

(3)
where we have considered only intersublattice exchange
interaction between the z nearest neighbors with parameter
J . Initially we use the energy in Eq. (2) to calculate the
configuration of the spins in a domain at an angle 2π/3 with
the field, as in Fig. 4(c), so that the energy in Eq. (2) becomes

E(θ1,θ2)

M
= −H0(cos θ1 + cos θ2) + HE cos(θ1 + θ2)

− HAz

2
cos2

(
π

3
− θ1

)
− HAz

2
cos2

(
2
π

3
− θ2

)
.

(4)

In order to introduce a temperature dependence in the
calculation, we consider that in the temperature range of
interest the interaction parameters in Eq. (1) are constants.
Since the exchange and anisotropy effective fields in Eq. (3)
are proportional to the spin S, in the spirit of the mean-
field approximation we consider that they vary with the
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FIG. 5. (a) Calculated variation with magnetic field of the
sublattice spin angles in the spin domains at an angle of ±2π/3
with the field, as in Fig. 4(c), for the two temperatures indicated. (b)
Variation with field of slope of M(H0) due to a spin domain at an
angle with the field, as in Fig. 4(c).

sublattice magnetization, M(T ) ∝ 〈S〉. A polynomial fit to
the magnetization data of Roth [34] in the temperature
range 0–400 K gives the factor FM (T ) = M(T )/M(0) =
1 − 0.11 (T/TN )2 − 0.23 (T/TN )4. This is used to express
the temperature dependence of the fields as HE,Az(T ) =
FM (T ) HE,Az. Equation (4) was numerically evaluated by
varying the angles θ1,θ2 in the range 0–π to find the values that
minimize the energy for a given magnetic field, which is varied
in steps of 0.5 kOe in the range −100 to +100 kOe. Figure 5
shows the results obtained for NiO using for the effective fields
HE = 9684 kOe, HAz = 0.3 kOe, that will be justified later.
As shown in Fig. 5(a), as the field increases the sublattice
spins rotate gradually so as to maintain an angle between
them of θ1 + θ2 ≈ π , imposed by the very large exchange
field. As a result, the total magnetization in the field direction
Mz = M(T ) cos θ1 + M(T ) cos θ2 increases with field with a
slope that changes in the field range − 50 to +50 kOe as shown
in Fig. 5(b). This result is in good agreement with the experi-
mental data of Fig. 2 and confirms that the change in the slope
of the magnetization, observed experimentally, is produced by
the rotation of the spin domains that are at an angle of ± 2π/3
with the field. Note that the calculated field dependencies of
the angles and the magnetization for T = 0 and 300 K are very
similar, in agreement with the experimental data of Fig. 1.

Next we consider the response of the spins in the domain ly-
ing along the field direction. The equation for minimum energy
has two solutions, one for the antiferromagnetic (AF) phase
and one for the spin-flop (SF) phase. In the AF phase, illus-
trated in Fig. 4(b), the angles are θ1 = 0, θ2 = π . Using these
values in Eq. (2) we obtain the energy EAF /M = −HE − HAz.
In the SF phase, the spins are canted at angles θ1 = θ2 = θ ,
illustrated in Fig. 4(d), and the energy obtained from Eq. (2) is

ESF

M
= −2H0 cos θ + HE cos 2θ − HAzcos2θ. (5)

The angle of equilibrium, determined by ∂E(θ )/∂θ = 0,
is given by cos θ = H0/(2HE − HAz). The configuration that
prevails is the one with lower energy, so it depends on the
relative values of the fields. Since for a certain material HE

and HAz are fixed, the equilibrium configuration depends on
the value of H0. For fields below a critical value, the spins
are in the AF phase. As the field increases and goes above the
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value

HSF = (
2HEHAz − H 2

Az

)1/2
, (6)

the energy ESF < EAF and the spins flip to the canted position.
Using for NiO the values HE = 9684 kOe, HAz = 0.3 kOe, we
obtain with Eq. (6) HSF ≈ √

2HEHAz = 76.2 kOe, a value
quite larger than the experimental data. The reason for this
discrepancy is the fact that at a field lower than the one given
by Eq. (6), the frequency of one of the spin-wave modes goes to
zero and the AF phase becomes unstable, as will be shown later.
The temperature variation of the critical field in the mean-field
model can be obtained considering in Eq. (6) the exchange and
anisotropy fields multiplied by the magnetization factor FM (T )
used earlier. In order to compare the temperature dependence
with the experimental data, we use for HSF (0) the value
55.2 kOe, instead of 76.2 kOe. The result, represented by the
red solid curve in Fig. 3, demonstrates that the experimental
data cannot be explained by classical mean-field theory.

B. Antiferromagnetic resonance of the easy-plane AF

For the sake of completeness, and also to show the impor-
tance of quantum effects in the easy-plane antiferromagnet,

we now derive the frequencies of the uniform precession
modes of the sublattice magnetizations. The equations of
motion for the magnetization components are obtained from
the Landau-Lifshitz equation

d �M1,2

dt
= γ �M1,2 × �Heff1,2, (7)

where �Heff1,2 represent the effective fields that act on the
sublattice magnetizations, given by

�Heff1,2 = −∇ �M1,2 [E ( �M1,2)]. (8)

Writing for the magnetizations �M1,2 = ẑ M1,2z +
(x̂ m1,2x + ŷ m1,2y) eiω t we obtain with Eqs. (7) and (8) the
linearized equations of motion for the transverse components
of the sublattice magnetizations. They can be written as an
eigenvalue equation in matrix form,

[A](m) = i[ω] (m), (9)

where (m) = (m1x,m2x,m1y,m2y)T is a column matrix, [ω] is
a diagonal matrix of the eigenvalues, and

[A] =

⎡
⎢⎢⎢⎣

0 0 [γH0 + (A − C)] B

0 0 −B [γH0 − (A − C)]

−[γH0 + (A + C)] −B 0 0

B −[γH0 − (A + C)] 0 0

⎤
⎥⎥⎥⎦, (10)

where the parameters are defined by

A = γ [HE + HAx/2 + HAz], (11a)

B = γ HE, (11b)

C = γ HAx/2. (11c)

The AFMR frequencies are the eigenvalues of Eq. (9), that
are given by the roots of det[A − iω] = 0. Note that if there
is no hard-axis anisotropy, C = 0, so Eqs. (9) and (10) are the
same as the ones for an easy-axis antiferromagnet [66]. For
the easy-plane AF the frequencies of the two AFMR modes
are

ω2
α,β = (

A2 + γ 2H 2
0

) − (C2 + B2)

± 2
√

γ 2H 2
0 (A2 − B2) + B2C2. (12)

Considering HE 
 HAx 
 HAz, appropriate for NiO,
Eqs. (11) and (12) give

ω2
α,β ≈ γ

[(
2HEHAz + HEHAx + H 2

0

) ± HEHAx ± 2H 2
0

]
,

(13)

so that the two frequencies are

ω2
α0 ≈ γ

(
2HEHAx + 3H 2

0

)
, (14)

ω2
β0 ≈ γ

(
2HEHAz − H 2

0

)
. (15)

These expressions agree with two of the four frequencies
obtained by [38] for zero-wave-vector spin waves in an

easy-plane AF using a Green’s-function approach. The other
two frequencies in [38] probably refer to another wave vector
since in a two-sublattice AF there are only two spin-wave
modes. Equation (15) shows that as the field increases, the
β-mode frequency decreases and it goes to zero at the onset
of the spin-flop phase at a field HSF ≈ (2HEHAz)1/2, in
agreement with the value obtained with energy considerations.

IV. QUANTUM THEORY OF INTERACTING SPIN WAVES

In this section we present a quantum formulation of inter-
acting spin waves, which is essential to explain the temperature
dependence of the spin-flop transition and other aspects of the
experimental data. We consider the spin Hamiltonian in Eq. (1)
and treat the quantized excitations of the magnetic system with
the approach of Holstein-Primakoff [67,68], which consists of
transformations that express the spin operators in terms of
boson operators that create or annihilate the quanta of spin
waves, magnons. In the first transformation the components
of the local spin operators are related to the creation and
annihilation operators of spin deviations for the two sublattice
sites as

S+
1i = (2S)1/2

(
1 − a+

i ai

2S

)1/2

ai,

S−
1i = (2S)1/2 a+

i

(
1 − a+

i ai

2S

)1/2

, (16a)

Sz
1i = S − a+

i ai,
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S+
2j = (2S)1/2 b+

j

(
1 − b+

j bj

2S

)1/2

,

S−
2j = (2S)1/2

(
1 − b+

j bj

2S

)1/2

bj , (16b)

Sz
2j = −S + b+

j bj ,

where a
†
i , ai , and b

†
j , bj , are the creation, destruction operators

for spin deviations at sites i, j of sublattices 1 and 2, which
satisfy the boson commutation rules [ai,a

†
i ′ ] = δii ′ , [ai,ai ′ ] =

0, [bj ,b
†
j ′ ] = δjj ′ and [bj ,bj ′ ] = 0. The next step consists of

introducing a transformation from the localized field operators
to collective boson operators that satisfy the commutation rules
[ak,a

†
k′ ] = δkk′ , [ak,ak′] = 0, [bk,b

†
k′ ] = δkk′ , [bk,bk′ ] = 0,

ai = N−1/2
∑

k

ei�k.�ri ak, bj = N−1/2
∑

k

ei�k.�rj bk, (17)

where N is the number of spins in each sublattice and �k is a
wave vector, with the orthonormality condition

N−1
∑

i

ei(�k−�k′).�ri = δk,k′ . (18)

Introducing in Eq. (1) the transformations in Eqs. (16)
with the binomial expansions of the square roots, and using
Eqs. (17) and (18), we obtain a Hamiltonian with the form
H = E0 + H (2) + H (4) + H (6) . . . , where each term contains
an even number of boson operators. The quadratic part of the
Hamiltonian is

H (2) = γ h̄

[
H0

∑
k

( a+
k ak − b+

k bk)

+
∑

k

γkHE (akb−k + a+
k b+

−k) + HE (b+
k bk + a+

k ak)

+ HAx

4
(aka−k + a+

k a+
−k + aka

+
k + a+

k ak + bkb−k

+ b+
k b+

−k + bkb
+
k + b+

k bk) + HAz (a+
k ak + b+

k bk)

]
,

(19)

where γk is a structure factor defined by γk =
(1/z)

∑
δ exp(i �k. �δ), and �δ are the vectors connecting nearest

neighbors. The quadratic Hamiltonian written in normal order
and without the constants becomes

H = h̄
∑

k

(A + γ H0) a+
k ak + (A − γ H0) b+

k bk

+Bk( akb−k + a+
k b+

−k) + 1

2
C( aka−k + bkb−k + H.c.),

(20)

where the parameters A and C are the same defined in Eqs. (11)
and Bk = γkB. Note that in Ref. [57] the in-plane anisotropy
was taken in the y direction, which is inconsistent with the
direction of equilibrium. For this reason the parameters A and
C here are different from those in Ref. [57]. However, since the
anisotropy energies are much smaller than exchange, at the end

the dispersion relations given in [57] are very approximately
the same as the ones obtained here.

The next step consists of performing canonical transfor-
mations from the collective boson operators a

†
k,ak,b

†
k,bk into

magnon creation and annihilation operators α
†
k,αk,β

†
k ,βk such

that the quadratic Hamiltonian is cast in the diagonal form

H (2) =
∑

k

h̄ (ωαk α+
k αk + ωβk β+

k βk), (21)

where ωαk and ωβk are the frequencies of the two magnon
modes. Following [57] one can show that the unrenormalized
magnon frequencies are

ω2
α,β = (

A2 + γ 2H 2
0

) − (
C2 + B2

k

)
± 2

√
γ 2H 2

0

(
A2 − B2

k

) + B2
k C

2. (22)

This equation has the same form as Eq. (12) obtained with
the semiclassical approach for the uniform mode. Here the
presence of Bk instead of B makes it valid for any wave vector.

Equation (22) represents the magnon energies without
magnon interactions that are described by terms with more than
two operators. The magnon interactions have two important
effects, to renormalize the energies and to introduce damping
[68,69]. The interactions of lowest order arise from terms in
the Hamiltonian containing four boson operators, a†

k,ak,b
†
k,bk ,

originating from both the exchange and anisotropy energies.
In order to write these terms with the magnon operators
α
†
k,αk,β

†
k ,βk we use approximate canonical transformation

[57,70] valid for C � A,Bk , as is the case of NiO that has
HAx � HE ,

ak = uαkαk − vβkβ
†
−k, (23a)

b
†
−k = −vαkαk + uβkβ

†
−k, (23b)

where the parameters uα,βk and vα,βk are

uα,βk =
(

A + ωα,βk

2 ωα,βk(0)

)1/2

, vα,βk =
(

A − ωα,βk

2 ωα,βk(0)

)1/2

, (24)

where ωα,βk(0) are the frequencies of the two modes with H0 =
0. Among the many terms in the Hamiltonian with four magnon
operators, we retain only those that have pairs of creation-
annihilation operators for the same mode, in any order, such
as αk1α

†
k2α

†
k3αk4, αk1α

†
k2β

†
k3βk4, and βk1β

†
k2β

†
k3βk4. Then we

use a random-phase approximation to replace one of the pairs
by its thermal average such that the term has the form as in
Eq. (21). For example, αk1α

†
k2β

†
k3βk4�(�k1 + �k4 − �k2 − �k3) is

replaced by 〈αqα
†
q〉β†

kβk = (n̄αq + 1)β†
kβk + n̄βqα

†
kαk , where

n̄α,βq is the thermal occupation number of the α or β mode
with wave vector �q, given by the Bose-Einstein distribution
n̄α,βq = 1/(eh̄ωα,βq/kBT − 1). The averages of other pairs of
operators such as αk1αk2β

†
k3βk4 or αk1α

†
k3βk2βk4 vanish or do

not contribute to the energy of either mode. Applying this
approximation to each four-magnon term, the Hamiltonian
reduces to a quadratic form

H (4)
ex ⇒ h̄

∑
k

�ωαkα
†
kαk + �ωβkβ

†
kβk, (25)
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where h̄�ωαk and h̄�ωβk represent the renormalization of the
energies of the two modes, so that the total magnon energies be-
come temperature dependent,h̄ωα,βk(T ) + h̄�ωα,βk(T ). Using
the contributions from the exchange and hard-axis anisotropy
interactions, the total four-magnon contribution to the β-mode
energy becomes

h̄�ωβk(T ) = zJ
[(

u2
βk + v2

βk − 2uβkvβkγk

)
Cq

+ (
uβkvβkγk − v2

βk

)
Eq + (

uβkvβkγk − u2
βk

)
Fq

]
−Dx

(
u2

βkGq + v2
βkHq

)
, (26)

where

Cq = 1

N

∑
q

uαqvαqγq (2n̄αq + 1) + uβqvβqγq (2n̄βq + 1),

(27a)

Eq = 2

N

∑
q

u2
βq n̄βq + v2

αq (n̄αq + 1), (27b)

Fq = 2

N

∑
q

u2
αq n̄αq + v2

βq (n̄βq + 1), (27c)

Gq = 1

2N

∑
q

u2
βq(4n̄βq + 1) + v2

αq(4n̄αq + 3), (27d)

Hq = 1

2N

∑
q

u2
αq(4n̄αq + 1) + v2

βq(4n̄βq + 3). (27e)

The correction for the frequency of the α mode is given
by the same expressions as (26) and (27) with the interchange
α ↔ β. In Eq. (26) we have neglected the contribution from
the easy-axis anisotropy, as given in Ref. [71], because it is
very small in NiO. It is important to note that even at T = 0
there is a correction to the magnon energies due to the magnon
interactions. This zero-point correction is a characteristic
feature of antiferromagnets that was noted by Oguchi several
decades ago [72]. The Oguchi correction refers only to the
contribution from the four-magnon interaction arising from
exchange. While it is unimportant in many three-dimensional
AFs, it has been shown to be essential to explain the observed
magnon frequencies in one-dimensional AFs with Haldane
gap [73]. As will be shown later, the (exchange) Oguchi
correction is also negligible in NiO. However, the hard-axis
anisotropy counterpart of the Oguchi zero-point correction to
the β-mode energy is quite large in NiO. Using n̄βq = n̄αq = 0
in Eqs. (26) and (27) and replacing the anisotropy parameter
by the effective field using Eq. (3), we obtain for the anisotropy
zero-point correction

�ωβk(0) ≈ −γHAx

4SN

[
u2

βk

∑
q

(
u2

βq + 3v2
αq

)

+ v2
βk

∑
q

(
u2

αq + 3v2
βq

)]
. (28)

In easy-plane antiferromagnets with HE 
 HAx 
 HAz,
uβ0 ≈ vβ0 
 1 so that the zero-point correction for the k = 0
β-mode energy can be quite large.

V. TEMPERATURE DEPENDENCE OF THE SF-PHASE
BOUNDARY IN NiO

The renormalized energies of the two magnon modes were
calculated numerically for NiO, for arbitrary wave vector k,
temperature T , and field H0. This was done by assuming a
spherical Brillouin zone and converting the sums in Eqs. (27)
into integrals in k space in the usual manner,

1

N

∑
k

⇒ a3

(2π )3

∫
d3k = a3

2π2

∫ kmax

0
k2dk, (29)

where a is the lattice parameter and km is the radius of the
spherical Brillouin zone, an adjustable parameter chosen to
fit the experimental data. We use for the structure factor
γk = cos(π k/2km), and the following parameters for NiO:
2SzJ/γh̄ = HE = 9684 kOe, 2S Dx/γh̄ = HAx = 6.35 kOe,
HAz = 0.3 kOe, g = 2.18, and kmax = 0.445 π/a. The ex-
change and hard-axis anisotropy fields are the same used in
Ref. [57], which are the values that fit the experimental data for
the spin-wave dispersion [35] and the k = 0 frequency for the α

mode [43]. The value of HAz is larger than the one used in [57]
because here we include the effect of the zero-point correction.

The temperature dependence of the spin-wave spectrum
in NiO due to four-magnon interactions was calculated
numerically by solving Eqs. (22) and (26)– (28)
self-consistently for each value of temperature and field.
The procedure consists of initially calculating the parameters
in Eqs. (27) with the unrenormalized frequencies given
by Eq. (22). Then at each point k in the Brillouin zone
the renormalized magnon frequencies for both modes
are calculated. The thermal occupation numbers are then
computed with the renormalized frequencies, new coefficients
and new frequencies are calculated, and the process is repeated
until all changes in frequency throughout the Brillouin zone
are smaller than a desired value, typically 0.3 GHz. Note
that the temperature dependence of the magnon energies is
entirely due to the thermal occupation numbers, since the
energy renormalization in Eq. (26) depends on the exchange
and anisotropy parameters, not on the effective fields, which
are considered constants in the temperature range of interest.

The renormalized magnon frequencies in NiO, calculated
for two temperatures, 5 and 300 K, in zero field, are shown
in Fig. 6(a) over the whole Brillouin zone as a function of the
reduced wave number q = k/km. The dispersion curves over
most of the Brillouin zone at both temperatures are nearly
the same. Figure 6(b) showing a zoom near the zone center
reveals that while the renormalization is very small for the α

mode, it is relatively large for the β mode for k < 0.1 km. This
can be understood by the examination of Eqs. (26) and (27)
and the behavior of the parameters u and v of the canonical
transformations (23). The dependencies of u and v on the
wave vector for the two modes calculated with Eq. (24) are
plotted in Figs. 6(c) and 6(d). With HE 
 HAx 
 HAz, for
k = 0 we have from (24) uα0 ≈ vα0 ≈ (HE/8HAx)1/4 ≈ 3.72
and uβ0 ≈ vβ0 ≈ (HE/8HAz)1/4 ≈ 7.97. Since γ0 = 1, the
terms multiplying HE in Eq. (26) nearly cancel out so that
the contribution of the four-magnon exchange interaction to
the energy renormalization is negligible. Thus, although the
anisotropy interaction is three orders of magnitude smaller than
exchange, its contribution to the renormalization is enhanced
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FIG. 6. (a) Magnon dispersion relations in antiferromanetic NiO
calculated with four-magnon renormalization at T = 5 and 300 K.
(b) Blow up of the Brillouin zone center showing the separation of
the frequencies of the α (upper blue curve) and β (lower red curve)
magnon modes. (c), (d) Variation with wave vector of the parameters
u and v of the canonical transformations to magnon operators for the
two modes.

at k ≈ 0, and becomes significant. The energy renormalization
is negative for both modes, and is larger for the β mode. Since
ωβ0 ≈ 0.1 ωα0, the relative change of the β-mode frequency
due to the renormalization is larger than for the α mode. As
the wave vector increases, the parameters u and v as well
as γk decrease fast, so that the renormalization at T = 300 K
becomes unimportant. Notice that the zero-point correction for
the k = 0 β-mode frequency, given by Eq. (28), is �ωβ0(0) ≈
−0.15 THz. This is a very large relative correction,
65% of the frequency without magnon interactions, ωβ0 =
γ

√
2HEHAz = 0.23 THz. The frequency with the zero-point

correction is ωβ0(0) = 0.08 THz, which is an average of the
two values measured with Brillouin light scattering [40].

Since the β-mode frequency decreases with increasing
magnetic field, the field value for which the frequency goes
to zero determines the limit of stability of the AF phase and
hence the onset of the AF-SF transition. Figure 7 shows the
variation with field intensity of the k = 0 frequency for the
β-mode magnon calculated for three temperature values with
four-magnon renormalization as described. The decrease in
frequency with increasing temperature is due to four-magnon
anisotropy interactions and has negligible influence of the
exchange interaction.

The AF-SF phase boundary for NiO was obtained by
determining the value of H0(T ) for which the renormalized
ωβ0(T ) becomes zero. The blue solid line in Fig. 3 shows the

0 20 40 60
0.00

0.02

0.04

0.06

0.08

0.10

    5
 150
 300

T (K)

ω β 
0(T

H
z)

Magnetic field H0 (kOe)

FIG. 7. Variation of the k = 0 down-going magnon frequency
with applied field for various temperature values in NiO. The field
value for which the frequency goes to zero determines the limit of the
AF phase and onset of the AF-SF transition.

result of the calculation of the renormalized energies based
on exchange and anisotropy four-magnon interactions. The
agreement between theory and experiments is quite good in the
temperature range of Fig. 3. At higher temperatures the theory
can certainly be improved by considering the contributions
from six-magnon interactions to the energy renormalization
[68]. As previously remarked, the AF-SF transition is of first
order and the thermodynamic phase boundary lies between
the limits of stability of the AF and of the SF phases. As
the applied field increases and exceeds the critical value for
stability of the AF phase, given by the solid line in Fig. 3,
the system enters in a regime of large fluctuations, so that the
field range in which the AF-SF takes place can be detected by
measuring the deviations in the ac susceptibility. As the field
increases further, the system should reach the full SF phase
where the fluctuations are expected to decrease. In NiO this
occurs at fields above 85 kOe and could not be detected in our
experiments.
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