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Theory of Kondo suppression of spin polarization in nonlocal spin valves
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We theoretically analyze contributions from the Kondo effect to the spin polarization and spin diffusion length
in all-metal nonlocal spin valves. Interdiffusion of ferromagnetic atoms into the normal metal layer creates a
region in which Kondo physics plays a significant role, giving discrepancies between experiment and existing
theory. We start from a simple model and construct a modified spin drift-diffusion equation which clearly
demonstrates how the Kondo physics not only suppresses the electrical conductivity but even more strongly
reduces the spin diffusion length. We also present an explicit expression for the suppression of spin polarization
due to Kondo physics in an illustrative regime. We compare this theory to previous experimental data to extract
an estimate of the Elliot-Yafet probability for Kondo spin flip scattering of 0.7 ± 0.4, in good agreement with the
value of 2/3 derived in the original theory of Kondo.
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I. INTRODUCTION

Pure spin currents, devoid of charge current flow, are now
routinely generated in metals-based systems [1] via a number
of techniques, including the use of thermal gradients [2],
the spin Hall effect [3], spin pumping [4], and nonlocal
spin injection [5], each method providing a unique insight
into spin relaxation. In particular, the ability to separate
charge and spin currents using the nonlocal spin valve [5,6],
thereby circumventing difficulties interpreting ‘local’ spin
valve measurements, makes it one of the most unambiguous
techniques for probing spin transport. This geometry is
especially useful at the nanoscale, where isolating the factors
affecting spin accumulation, diffusion, and relaxation, both
within the bulk and across interfaces, represents a pressing
problem [7–15]. Indeed, examining the role of specific defects
in relaxing spins in metals at this length scale—including
interfaces, grain boundaries, and magnetic and highly spin-
orbit coupled impurities—will be critical for realizing future
low resistance-area-product spintronic devices, e.g., current
perpendicular-to-plane giant magnetoresistance sensors [16].

A nonlocal spin valve consisting of a normal metal channel
connected by two ferromagnetic contacts is illustrated in
Fig. 1(a): The injected current I21 generates a spin accumula-
tion at the interface between the nonmagnet and ferromagnet
(lead 2). This accumulation diffuses in both directions down
the channel causing a pure spin current to flow towards lead 1,
which decays on a characteristic spin diffusion length, lsf

N . The
remaining spin population reaching lead 3 generates a nonlocal
voltage difference V34 between the ferromagnetic contact and
channel and therefore a nonlocal resistance, RNL = �V34/I21.

*leighton@umn.edu
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The sign of this resistance depends on the relative orientation
of the two ferromagnets, and so by applying a magnetic
field to alternate the ferromagnetic contact magnetization
from parallel to antiparallel, a nonlocal spin signal, �RNL,
is measured, directly related to the magnitude of the spin
accumulation under the contact.

In relatively simple all-metal nonlocal spin valves (e.g.,
Ni80Fe20/Cu) that are fabricated from nominally high-purity
materials, the standard theory of spin drift diffusion developed
by Valet and Fert [17], combined with the Elliott-Yafet
spin relaxation mechanism [18–20], which predominates in
light metals, dictates that lsf

N , the spin accumulation, and
therefore �RNL should monotonically increase as temperature
T decreases. Surprisingly, however, �RNL is widely found to
anomalously decrease at low T in Ni80Fe20/Cu, Fe/Cu and
Co/Cu nonlocal spin valves [21–30], even when the resistivity
of the normal metal and the ferromagnet, ρN (T ) and ρF (T ),
are found to continuously decrease on cooling.

Consensus is emerging that this unexpected reduction of
�RNL at low T is due to spin relaxation at dilute magnetic
impurities [26–28], with recent results demonstrating that
a manifestation of the Kondo effect is at the heart of the
suppression [29,30]. The Kondo effect [31] arises in metals
with dilute magnetic impurities, as a result of s-d exchange
between the conduction electrons and virtual bound impurity
states. This exchange results in an additional higher order
contribution to the scattering cross section, proportional to
log T , which can dominate in otherwise highly pure metals at
low T . In charge transport, the classic signature of the Kondo
effect is an increase in the conduction electron scattering rate
at low T , resulting in a minimum in resistance (maximum
in conductance) and a logarithmic increase in ρ(T ) about a
characteristic temperature TK [32]. Similarly, for spin transport
the additional (spin-flip) scattering was recently found to
efficiently relax the spin accumulation, suppressing �RNL
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FIG. 1. (a) Geometry of a nonlocal spin valve, consisting of a
normal metal (NM) channel and two ferromagnetic (FM) contacts.
When an electrical current I21 is applied (blue line), a nonequilibrium
spin accumulation develops, giving rise to a finite voltage difference
�V34 and nonlocal resistance RNL = �V34/I21. (b) Schematic of
the model used to determine the suppression of spin polarization
at a ferromagnet/nonmagnet interface (z = 0) due to interdiffused
ferromagnetic atoms over a characteristic length scale d , which we
term the Kondo region.

with what is also observed to be a log T dependence [29].
This occurs even for nonmagnetic channels that are largely
impurity-free throughout the bulk, due to inevitable interdif-
fusion at the ferromagnet/nonmagnet interface. The situation
is schematically depicted in Fig. 1(b), where interdiffusion
creates a region with ‘high’ levels of ferromagnetic impurities
(on average ≈100’s μmol/mol1) which rapidly relax the in-
jected spins at the interface, reducing the effective polarization
of the bias current [29]. To this point, a direct quantitative
link has already been established between the degree of
interdiffusion and magnitude of Kondo suppression in nonlocal
spin valves [30]. Reciprocally, the disruption of the Kondo
singlet through the injection of sufficiently large spin currents
has also been investigated [33,34]. Since there are no magnetic
impurities far away from the interface, spin diffusion in the
bulk is described by the spin drift-diffusion equation in the
Valet-Fert theory, and a measure of ρN (T ) yields no indication
of the Kondo effect. Naturally, in devices where impurity
levels are sufficiently high throughout the nonmagnet, either
due to intentional doping [28], source contamination [27], or
contamination during deposition [26], the effects of Kondo
scattering can equally be found to enhance spin relaxation
in the bulk of the channel, thereby reducing lsf

N . Despite this
growing body of experimental work, a complete theoretical
treatment of the effect remains outstanding; a description of
the suppression of the spin polarization near the interface due
to the Kondo effect is therefore the aim of this work.

In this paper, we start from the Boltzmann equation and
follow the Valet-Fert theory [17] to construct a modified spin
drift-diffusion equation which is valid in the presence of dilute
magnetic impurities. The Valet-Fert theory is an approximation
to the Boltzmann equation, neglecting variations of the
distribution function on the length scale of the mean free path.
Thus, it is a valid approximation for structures with interfaces
separated by more than a mean free path, which is the case here.
While the Valet-Fert theory is developed for T = 0, we allow
for nonzero temperature to extract Kondo contributions. Then,
we project our theory to a low-temperature regime, keeping the

1μmol/mol is equivalent to ‘parts per million.’

additional Kondo contributions. Using the modified spin drift-
diffusion equation, we compare our theory to experimental
data to extract an estimate of the Elliot-Yafet parameter for
Kondo spin relaxation. This is found to be in very good
agreement with the value originally proposed by Kondo [31]
as well as resolving the discrepancy between the standard
Valet-Fert theory and experiment [30].

The paper is organized as follows. In Sec. II, we develop
a theory describing suppression of the spin polarization at
the interface. We first present the theory without derivation in
Sec. II A and then we demonstrate that the spin polarization
at the interface has a maximum at a finite temperature. In
Sec. III, we compare the theory to our experimental data [30].
In Sec. IV, we present mathematical details which are referred
to in Sec. II. Finally, in Sec. V we summarize the paper.

II. INTERFACIAL KONDO EFFECT

A. Modification of the electrical conductivity and the spin
diffusion length due to the Kondo effect

Starting from antiferromagnetic exchange coupling be-
tween conduction electrons and dilute magnetic impurities,
Kondo [31] showed that electrical conductivity in metals
is suppressed at low temperature. This is equivalent to
suppression of the momentum relaxation time:

1

τ̃N

= 1

τN

+ 1

τ eff
K

, (1)

where τN is the momentum relaxation time without dilute
magnetic impurities in the normal metal at the Fermi level and
τ̃N is the modified momentum relaxation time in the presence
of the Kondo effect. τ eff

K is the effective Kondo relaxation time,
for which the explicit expression is given below in Eq. (29).
τ eff
K has a logarithmic temperature dependence, and thus it can

be comparable to or even dominate τN at low temperature for
very low impurity concentrations.

In addition to suppressing the scattering time (increasing the
scattering rate), as in Eq. (1), the dilute magnetic impurities
also suppress the spin relaxation time τ sf

N ,

1

τ̃ sf
N

= 1

τ sf
N

+ η

τ eff
K

, (2)

where τ̃ sf
N is the modified spin relaxation time due to the

Kondo effect. Here, η is the spin-flip probability during
each Kondo scattering event. The proportionality between
the change in the momentum relaxation rate (1/τ eff

K ) and the
spin relaxation rate (η/τ eff

K ) is similar to that found for the
Elliot-Yafet scattering mechanism. For Elliot-Yafet scattering,
the contribution to the spin-flip scattering rate is given by 1/βτ

where 1/τ is the contribution to the momentum scattering rate
and β is the Elliot-Yafet parameter. Thus, η is the inverse
of the Elliot-Yafet parameter for spin relaxation from Kondo
impurities. The value of η is determined by the geometry of
the Fermi surface. For the spherical Fermi surfaces that we
consider here, η = 2/3, as shown in Sec. IV. We note that
in Ref. [28], the spin-flip probability is claimed to be around
0.3 based on a semiclassical argument [35]. Strictly, however,
the semiclassical argument does not apply for the higher order
interactions giving rise to the Kondo physics.
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One remark on our notation is in order. Generally speaking
τN and τ sf

N are k-dependent functions. But here, we drop the
k dependence and take the values only at the Fermi level for
simplicity. In Sec. IV, we restore the k dependence for the
derivation. In particular, τN (kF

N ) and τ sf
N (kF

N ) in Sec. IV are,
respectively, τN and τ sf

N here, where kF
N is the Fermi wave

vector in the normal metal.
The changes in the relaxation times above imply changes

in the electrical conductivity and the spin diffusion length.
In Sec. IV, we show that the Valet-Fert theory for the spin
drift-diffusion equation still holds even in the presence of
dilute magnetic impurities, once we impose Eqs. (1) and (2).
The Valet-Fert theory provides links between quantities in the
Boltzmann equation (such as relaxation times) and quantities
in the drift-diffusion equation (such as the electrical conduc-
tivity and spin diffusion length) as given below in Eqs. (19)
and (20). Up to first order in the Kondo rate, the modified
conductivity and spin diffusion length are

σ̃N = σN

(
1 − τN

τ eff
K

)
, (3)

l̃2
N = lN

2

(
1 − τN + ητ sf

N

τ eff
K

)
. (4)

Equation (3) corresponds to Kondo’s original work, i.e., the
conductivity reduction due to the Kondo effect. Equation (4)
is the spin counterpart of the original Kondo effect, a central
aspect of this paper.

At this point it is worth noting that the Kondo effect can
affect the spin diffusion length much more dramatically than
it does the conductivity, since (τ sf

N )−1 is usually much smaller
than τ−1

N . For example, τ sf
N /τN ≈ 103 in Ref. [1]. Thus it is

possible that 1 − l̃2
N/lN

2 is noticeable even though 1 − σ̃N/σN

is negligible.

B. Suppression of the spin polarization at the interface

We now solve the spin drift-diffusion equation with the
modified quantities in Eqs. (3) and (4) at the interface. Our
model is illustrated in Fig. 1(b). We consider a ferromagnet
(z < 0)/nonmagnet (z > 0) interface at z = 0. Near the
interface, interdiffused ferromagnetic atoms create a region in
which dilute magnetic impurities are present. For illustration,
we assume that the impurity concentration is constant over
0 < z < d and suddenly drops to zero at z = d. We term the
region 0 < z < d the Kondo region.

The spin drift-diffusion equation is given by the set of
equations below [17].

e

σs(z)
∂zjs(z) = μs(z) − μ−s(z)

ls
2(z)

, (5)

∂zμs(z) = e

σs(z)
js(z), (6)

where s = ± denotes the spin majority and minority bands,
e is the electron charge, and js(z), μs(z), σs(z), and ls(z)
are, respectively, the current expectation value, the chemical
potential, the electrical conductivity, and the spin diffusion
length of the spin s band at position z. σs and ls are parameters
treated as position independent in most cases. We explicitly
retain the position dependence to emphasize the dependence
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FIG. 2. Profiles of the spin accumulation μ+(z) − μ−(z) divided
by its value at z = 0 (red), and the current polarization α(z) =
[j+(z) − j−(z)]/japp multiplied by a factor of 2.5 (blue) to allow
it to be plotted on the same scale as the spin accumulation. The
dashed lines denote the solutions without dilute magnetic impurities
with the same normalization factors. κ is defined as the ratio of α(d)
for the case of finite magnetic impurity concentration to that when
no magnetic impurities are present [Eq. (8)]. κ defined by the spin
accumulation and that defined by the spin current have the same value.
The inset shows the profiles over a wider range z/lsf

N = −3 to 5. The
parameters used here are σ±,F = (0.1 ± 0.05)σN, lsf

N = 5lsf
F = 10d ,

l̃sf
N/lsf

N = 0.7, and σ̃N/σN = 0.9.

of the parameters on the regions; z < 0, 0 < z < d, and z > d.
More explicitly, the parameters in each region are given by

(σs(z),ls(z)) =
⎧⎨
⎩

(σs,F ,ls,F ) for z < 0,

(σ̃N ,l̃N ) for 0 < z < d,

(σN,lN ) for z > d.

(7)

Here the subscripts N and F refer to the normal metal and the
ferromagnetic metal and the tildes refer to the Kondo region.2

Since the physical parameters in the normal metal do not have
spin dependence, we drop the subscript s for z > 0.

The general solutions of Eqs. (5) and (6) are obtained
in Ref. [17]. The spin accumulation μ+ − μ− decays ex-
ponentially over the effective spin diffusion length defined
by (lsf

F )−2 = l+,F
−2 + l−,F

−2 for z < 0, (l̃sf
N )−2 = 2l̃−2

N for 0 <

z < d, and (lsf
N )−2 = 2lN

−2 for z > d. To match the experi-
mental situation of Refs. [29] and [30], we assume transparent
interfaces at z = 0 and z = d where the spin chemical potential
and the currents are continuous. The solutions of Eqs. (5)
and (6) in the given situation are obtained in Appendix A. Here,
we simply present spatial profiles of the spin accumulation
μ+(z) − μ−(z) and the spin current j+(z) − j−(z) for a set
of parameters in Fig. 2. For clear presentation, we scale
the quantities. In this case, μ+(z) − μ−(z) is normalized
to its z = 0 value, and j+(z) − j−(z) to japp/2.5. Here
japp = j+(z) + j−(z) is the applied charge current, which is
independent of position due to the conservation of electrical

2We emphasize that each region is specified by subscripts. Note that
the superscript F that appears in kF

s for instance refers to at the Fermi
surface.
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charge. The factor of 2.5 is simply to allow both quantities to
be plotted on the same scale.

Figure 2 clearly shows that there is suppression of the
spin polarization due to the Kondo region. Since there are
no magnetic impurities for z > d, relaxation rates for z > d

are the same with and without the Kondo region. Thus, the spin
accumulation calculated at z = d indicates the suppression of
�RNL due to the Kondo effect. To quantify this suppression,
we analytically evaluate the ratio of the accumulation at d in
the presence and absence of a finite impurity concentration
in the Kondo region (i.e., in the limit τ eff

K → ∞). Here we
compute the following expression up to O((τ eff

K )−1):

κ ≡ μ+(d) − μ−(d)

limτ eff
K →∞[μ+(d) − μ−(d)]

≡ α(d)

limτ eff
K →∞[α(d)]

, (8)

where α(z) is defined as the current polarization, α(z) =
[j+(z) − j−(z)]/japp.3 At this point it is worth emphasizing
that, since it is a quantitative indication of the strength of
Kondo suppression, the suppression ratio κ represents a key
parameter of this work. Furthermore, as α is directly mea-
surable, κ uniquely represents an experimentally accessible
spin transport parameter with which to compare theory and
measurement. In evaluating Eq. (8) we retain only terms up to
O(d), assuming that d is much shorter than the effective spin
diffusion length. After straightforward but tedious algebra, we
obtain

κ = 1 − d

[
1 + 2η

(
τ sf
N /τN

)
lsf
N

− 2η
(
τ sf
N /τN

)
lsf
N + ρF

(1−αFM
2)ρN

lsf
F

]
ρK

ρN

, (9)

where ρK is the Kondo contribution to the resistivity, ρN =
(2σN )−1 is the electrical resistivity of the normal metal,
and ρF = (σ+,F + σ−,F )−1 is the electrical resistivity of
the ferromagnet. From the Drude model, ρK/ρN = τN/τ eff

K .
αFM = α(z = −∞), the current polarization far away from
the interface, is a material parameter determined by the
conductivity polarization (σ+,F − σ−,F )/(σ+,F + σ−,F ). The
advantage of writing Eq. (9) in terms of ρK instead of τ eff

K

is that we can avoid the original Kondo expression ∼log T ,
which diverges at low temperature, and instead use the
phenomenological expression for ρK suggested by Goldhaber-
Gordon [36] [Eq. (11)], which is known to work well for a wide
range of temperatures [37,38]. If τ sf

N � τN, 1 + 2η(τ sf
N /τN ) ≈

2η(τ sf
N /τN ), thus one can verify that 1 − κ is proportional to

(τ sf
N /τN ), which is on the order of 103 for Cu. Such a large

factor shows that the spin diffusion length is indeed a good
tool to observe the Kondo effect, as discussed in Sec. II A.

For an order-of-magnitude estimate of the suppression
ratio 1 − κ we take: lsf

N ≈ 500 nm and lsf
F ≈ 10 nm [1], with

ρF /(1 − αFM
2)ρN ≈ 10 and 2ητ sf

N /τN ≈ 103. With ρK/ρN ≈
0.01, 1 − κ is around a percent for d = 1 nm and is pro-
portional to d. This crude order-of-magnitude estimation is
comparable to our previous experiments [29,30].

3One can verify explicitly that κ has the same value for both
definitions.

III. DETAILED COMPARISON WITH
EXPERIMENTAL DATA

The suppression of the spin polarization α [quantified
by 1 − κ in Eq. (9)] has been experimentally observed in
nonlocal spin valves fabricated from a variety of misci-
ble, moment-forming ferromagnet/nonmagnet pairings, e.g.,
Fe/Cu and Ni80Fe20/Cu [29]. Recently, through the use of
thermal annealing to promote interdiffusion, we have also
shown fine control over κ in Fe/Cu nonlocal spin valves, and
directly correlated its magnitude to the Fe/Cu interdiffusion
length, λFe [30]. Equation (9) quantitatively connects κ(T )
to measurable quantities, and so provides an ideal expression
with which to compare to these experiments. In the current
section, we examine the experimental magnitude and T

dependence of κ , while varying the annealing temperature
TA in order to tune the extent of the interfacial Kondo region.
Through this analysis, and the use of Eq. (9), we extract an
experimental value for the Elliot-Yafet probability for Kondo
spin-flip scattering η, demonstrating good agreement between
the presented theory and experimental results.

In nonlocal spin valve measurements, where ferromagnetic
contacts are separated by a distance L, α(T ) is typically
extracted by fitting �RNL(L,T ) to a one-dimensional model
of nonlocal spin transport [39]. In this model αeff enters
as a boundary condition which principally determines the
magnitude of �RNL at fixed L. Provided that the Kondo region
is small compared with the mesoscopic device length (d < L),
Kondo depolarization then appears as an interfacial effect, and
is manifest as a suppression of the measured α at low T , as
quantified by κ [Eq. (9)]. To account for this, we define an
effective polarization, αeff = α(d), i.e., the observed current
polarization in nonlocal spin valves with Kondo suppression
present. This can be contrasted with the intrinsic polarization
of the ferromagnet, αFM. In this context, κ ≈ αeff/αFM, and so
determining αeff(T ), through �RNL(L), and αFM(T ) yields an
experimental measure of κ(T ). In the following, we examine
αeff(T ) obtained from annealed Fe/Cu nonlocal spin valves.
(Details of experimental fabrication and measurement of these
all-metallic nonlocal spin valves can be found in the original
reports). We note that Fe/Cu represents an ideal choice of
materials as Fe is miscible and moment forming in Cu [40],
with a readily accessible TK = 30 K [41].

To determine αFM(T ) we also measured �RNL(L,T ) in
devices devoid of dilute impurity moments, and thus the Kondo
effect. Two types of devices were tested along these lines:
nonlocal spin valves fabricated from nonmagnets that do not
support local moments, e.g., Al; and nonlocal spin valves that
incorporate a thin interlayer (e.g., Al) between the ferromagnet
and nonmagnet that suppresses interdiffusion and moment
formation. In both types of device the normalized αFM(T )
is found to be monotonic and quantitatively similar, as shown
in black squares in Fig. 3(a).

To avoid complications from potential interface resistance
changes during annealing, as well as other inherent systematic
errors between devices, we scale αeff to αFM(T ) using the
method discussed in Appendix B. The resulting normalized
αeff for various TA are shown in Fig. 3(a), with the corre-
sponding 1 − κ(T ), i.e., the degree of suppression, shown in
Fig. 3(b). Each dataset here comes from fitting �RNL(L,T )
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FIG. 3. (a) Temperature dependence of the normalized αFM,
obtained from Fe/Al nonlocal spin valves (open symbols), and αeff for
Fe/Cu nonlocal spin valves annealed at various temperatures (closed
symbols), TA. αeff is normalized to αFM using the procedure described
in Appendix B. (b) Extracted 1 − κ(T ) from αeff . Symbols represent
experimental data for various TA. Solid lines in (b) are fits to the
data using Eq. (9), with unconstrained TK and a phenomenological
Goldhaber-Gordon expression for ρK .

from devices with at least four different contact separations,
ranging from L = 250 nm to 5 μm. The data of Fig. 3(a)
are taken from a larger set of nonlocal spin valves (eight in
total), however, for clarity we show only one curve at each
TA. For devices that do not support local moments α(T ) is
found to monotonically decrease with increasing T . In the
presence of interdiffusion, however, a suppression of α(T ) is
observed at low T , the magnitude of which broadly increases
with increasing TA. Consequently, 1 − κ(T ) is largest at high
TA and decreases with increasing measurement T , as would
be anticipated. Figure 4(a) shows 1 − κ at T = 5 K for all
samples, demonstrating this increase in magnitude with TA.
Note Fig. 4 displays data for all eight measured device batches,
including multiple sets at TA = 200 ◦C and 300 ◦C.

We now consider fitting the data of Fig. 3(b) using Eq. (9).
In this equation lsf

N (T ), ρN (T ), and ρF (T ) are measured
experimentally. τ sf

N /τN is constrained to the literature value
of 950 [42]—a value we have explicitly verified in high-
conductivity nonlocal spin valve channels, where Kondo
effects are negligible and phonon scattering dominates spin
relaxation. We consider two expressions for ρK (T ), the Kondo

FIG. 4. (a) Magnitude of 1 − κ for low T (=5 K) as a function
of annealing temperature, TA. (b) Extracted values of ηĈFed using
either the Kondo (open symbols) or Goldhaber-Gordon (G-G)
expressions (closed symbols) for ρK , with TK constrained (colored)
or unconstrained (gray). (c) Estimated values of η using the results
of panel b, with ηĈFed = 560 μmol/mol · λFe and λFe determined
from prior STEM/EDX measurements. The error bars indicate single
standard deviation uncertainties as discussed in Appendix D.

model [31] [Eq. (10)] and the phenomenological formalism of
Goldhaber-Gordon (G-G) [36] [Eq. (11)]:

ρK
K = ρm

(
1 + 2N0J ln

T

T ∗

)
, (10)

ρG-G
K = ρm

[
1 + 2N0J

(
T ′

K
2

T 2 + T ′
K

2

)s

ln
U

kBT ∗

]
, (11)

where T ′
K=TK/

√
21/s − 1, ρm = ĈFe2πμ0

NS(S + 1)N0
2J 2m

/3h̄n0
Ne2 is the classical resistivity without taking account of

higher order interactions giving the Kondo physics, U is the
on-site Coulomb energy, N0 is the density of states of each
spin band, J is the (negative) exchange parameter between
the conduction electron and the magnetic impurities, and s

is the so-called G-G exponent which is typically taken to be
0.22 [36]. In the expression for ρm,μ0

N is the Fermi level of the
normal metal, ĈFe is the average impurity concentration in Fe,
S is the spin angular momentum of the magnetic impurities,
n0

N is the density of electrons, and m is the effective electron
mass. Here we have adapted the generalized G-G model to
give agreement with Kondo’s original theory. T ∗ depends on
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the limits of the energy integration of Eq. (24) and is typically
taken to be either TK,U , or J , depending on the theoretical
treatment. In our case, the requirement that both models be
equivalent at T = TK gives T ∗ = kBTK

2/U . The Fermi energy
of Cu, μ0

N = 7 eV [43], is well known, as is TK = 30 K from
ρK (T ) and susceptibility measurements [41]. Furthermore,
J = 0.91 eV for Fe/Cu has been experimentally measured
via field-dependent magnetoresistance and magnetometry
measurements [44]. From our own measurements of ρK (T )
in heavily doped Fe/Cu nanowires, we can establish U ≈ 0.86
meV (10 K). Noting τ sf

N /τN � 1, this leaves only the product
ηĈFed, i.e., the weighted total number of impurities in the
Kondo region (per cross sectional area), as an unknown.
Equation (10) is known to be valid only over a limited T

range about TK , evolving to the value dictated by the classical
scattering rate at T � TK and the unitary limit at T � TK .
Consequently, when using this model we restrict the fit T range
to only consider the transition region within the data, between
approximately 10 K and 100 K. In addition to considering
both of these models, we also compare to the cases where
TK is allowed to be an unconstrained fitting parameter. The
extracted ηĈFed from each model (through a least mean square
minimization of residuals) is shown in Fig. 4(b). We note
that the individual parameters η, ĈFe, and d remain otherwise
inseparable. The solid lines in Figure 3(b) show fits of 1 − κ(T )
using the G-G model with unconstrained TK . In general, the
overall magnitude and T dependence is well captured for all
TA. When TK is unconstrained we find TK = (44 ± 36) K for
the G-G model and TK = (22 ± 9) K for the Kondo model,
in good agreement with the literature value of TK = 30 K.
(All uncertainties in this paper are single standard deviations,
the determination of which is discussed in Appendix D.) The
deviation in these values reflects the logarithmic dependence
of ρK on T , and so the difficulty in determining TK , which is
often a challenge in dilute-moment metallic systems. Despite
the limited range of applicability, both expressions (i.e., for ρK

K

and ρG-G
K ) give consistent results for ηĈFed, reflecting the fact

that these parameters only act to influence the magnitude of κ ,
and are thus relatively insensitive to the precise T dependence
of the data. Examining Fig. 4(b) we see that the total number
of impurities increases on annealing, with dramatic changes
occurring above TA ≈ 300 ◦C, in good agreement with our
previous observations of the TA dependence of λFe in this
system [30].

To place these values of ηĈFed in context, and to extract a
value of η, we consider our previous work on interdiffusion in
Fe/Cu nonlocal spin valves. Fe has finite solubility in Cu,
with a limit of 2600 μmol/mol at room temperature [40]
(based on the bulk equilibrium phase diagram), beyond which
precipitation occurs, leading to phase-segregated clusters. In
the following analysis we therefore assume that regions with
ĈFe > 2600 μmol/mol do not contain isolated dilute moments,
and so do not contribute to the Kondo effect. Through energy-
dispersive x-ray spectroscopy (EDX) measurements in cross-
sectional scanning transmission electron microscopy (STEM)
we have previously shown that the interdiffusion profile in
annealed Fe/Cu nonlocal spin valves follows CFe(x) ∝ [1 −
erf(x/λFe)]/2, and have quantitatively determined λFe(TA) for
our devices [30]. Using this expression for CFe, considering

only the dilute Kondo region below CFe < 2600 μmol/mol
in nonlocal spin valves, and assuming L � λFe, yields a total
number of impurity atoms4 (per unit cross sectional area) in the
Kondo region of ĈFed = 560 μmol/mol · λFe. Using this result
and our previous measurements of λFe, we are therefore able
to estimate η. Duly extracted values of η are shown in Fig. 4(c)
as a function of TA, with the average η̂ = 0.7 ± 0.4 indicated
by the solid horizontal line. We anticipate that the simplicity
of the model in accounting for the precise dispersion of Fe
at the Fe/Cu interface, in addition to variability in the precise
degree of interdiffusion at intermediate TA, likely accounts
for the dispersion in the extracted values of η, particularly
at TA = 200 ◦C. This is also likely to be the cause of the
unphysical value of η > 1 found at TA = 450 ◦C (note also the
large random error). Despite the variation, we find good overall
consistency between the experimentally determined values and
η = 2/3 (dashed horizontal line), as calculated in the original
work of Kondo [31]. Given the rather simplistic assumptions
made, as well as the use of four independent experimental
measurements in order to determine η̂, this result indicates
good consistency between the model and experiment.

As a final point of discussion, we note that one of the most
striking observations of Ref. [30] was the failure of the standard
one-dimensional Valet-Fert model to describe the temperature
and separation dependence of �RNL at high CFe. It is important
to highlight that, due to heavy interdiffusion, this situation
involves not only a large CFe, but also a large gradient over
relatively long distances. The conclusion from this should not
be that the Valet-Fert theory itself is fundamentally incapable
of describing the impact of Kondo relaxation on spin transport.
Rather, it is the application of models, based on Valet-Fert
theory but which, crucially, ignore Kondo physics, which
fails to describe even qualitative observations. The results
in this work suggest, in fact, that it is indeed possible for
an (albeit modified) Valet-Fert approach to describe previous
experimental results, when the precise distribution of local
moments throughout the device is known.

IV. DERIVATIONS

In this section we present mathematical derivations of the
core results in Sec. II A. First we start from the Boltzmann
equation to derive the spin drift-diffusion equation at finite
temperature. We take the approach developed by Valet and
Fert [17]. Readers not familiar with details of the Valet-Fert
theory may refer to Appendix C 1.

We start from the Boltzmann equation for a translation-
invariant system in the two directions perpendicular to z. The
distribution functions f± are a function of z and k. At the
equilibrium, they are [f 0

s (z,k)]−1 = eβ[ε(k)−μ0
s (z)] + 1 where

ε(k) = h̄2k2/2m is the energy eigenvalue, k is the crystal
momentum, k = |k|, μ0

s (z) is the chemical potential at the
equilibrium, m is the effective mass, β = 1/kBT is the inverse
temperature, and kB is the Boltzmann constant. When an
electric field is applied along the ẑ direction, the distribution
function has a small correction to its equilibrium function

4
∫ ∞

x(CFe=2600 μmol/mol)[1 − erf(x/λFe)]dx = 560 μmol/mol · λFe
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fs(z,k) = f 0
s (k) + gs(z,k) where gs(k) is the small correction

proportional to the electric field and s = ±. The linearized
Boltzmann equation at steady state under the relaxation time
approximation is

h̄kz

m
∂zgs(z,k) − eE

h̄
∂kz

f 0
s (k)

= −gs(z,k) − g(0)
s (z,k)

τ sc
s (z,k)

− gs(z,k) − g
(0)
−s(z,k)

τ sf
s (z,k)

, (12)

where τ sc
s and τ sf

s are the relaxation times. τ sc
s corresponds

to spin-conserving processes s → s, and τ sf
s corresponds to

spin-flipping processes that give the spin diffusion length.
A two-channel model works well in materials with weak
spin-orbit coupling, like Cu, where the different cartesian
components of the spin are largely decoupled from one another.
This allows us to neglect spin components perpendicular to
the magnetization in the ferromagnet in our derivation. The
sum of the spin-conserving and the spin-flipping rates gives
the electrical conductivity described below. These relaxation
times are assumed to be isotropic, that is, they only depend
on the magnitude of k. In general τ sf

s is independent of s

at the Fermi surface. However, since the Fermi wave vector
depends on s, τ sf

s written as a function of k is s dependent. This
is also true for the Kondo contribution [31]. The relaxation
times τN and τ sf

N that appear in Sec. II will be connected to
these functions. g(0)

s (z,k) is the angle-averaged gs(z,k) over
the Fermi surface with the constant magnitude |k| = k, that
is, g(0)

s (z,k) = (1/4π )
∫

k=k
d�kgs(z,k) where �k is the solid

angle of k.
We make the approximation that the system is rotationally

symmetric around the z axis. In this regime, g(z,k) can
be expanded by the Legendre polynomials as gs(z,k) =∑∞

n=0 g(n)
s (z,k)Pn(k̂ · ẑ), where Pn is the Legendre polynomial.

Since the Legendre polynomials form an orthonormal set of
polynomials, each coefficient satisfies the equation. Taking
n = 0,1 coefficients and neglecting the higher order contribu-
tions [17], Eq. (12) is equivalent to

h̄k

3m
∂zg

(1)
s (z,k) = − g̃(0)

s (z,k) − g̃
(0)
−s(z,k)

τ sf
s (z,k)

, (13)

h̄k

m
∂zg̃

(0)
s (z,k) = −g(1)

s (z,k)

τs(z,k)
, (14)

where g̃(0)
s = g(0)

s − eEz∂εf
0
s , 1/τs = 1/τ sc

s + 1/τ sf
s is the

total scattering-out rate of a spin s state.
Equations (13) and (14) are the spin drift-diffusion equa-

tions that hold at T = 0. At T = 0, g̃(0)
s and g(1)

s evaluated at
the Fermi surface are, respectively, assigned to the chemical
potential and the current, with proper prefactors [17]. There-
fore, Eqs. (13) and (14) provide closed solutions for these
physical quantities. However, this association is not exact at
finite temperature. For T > 0, a physical quantity is not given
by a value at the Fermi surface, but is given after integrating
over k, considering T dependence of f 0

s (k).
Although the temperature dependence of f 0

s is very com-
plicated, the Sommerfeld expansion formula in Appendix C 2
allows substantial simplication. The Sommerfeld expansion
formula is an expression for integrals including the Fermi-
Dirac distribution at low temperature. In the Kondo regime,

kBT � μ0
s satisfies the criterion. Neglecting O(T 2), the spin

density ns for each s band (or the spin chemical potential with
an additional factor as shown below) is given by

ns(z) = e

V

∑
k

fs(z,k)

= e

2π2

∫
dkk2g̃(0)

s (z,k) + m
√

mμ0
s (z)e2Ez√

2π2h̄3

+ m
√

2mμ0
s (z)μ0

s (z)e

3π2h̄3 . (15)

We use here the Sommerfeld expansion formula Eq. (C7)
for low temperature kBT � μ0

s . Similarly, the current density
js(z) for s band is

js(z) = − e

V

∑
k

h̄kz

m
fs(z,k) = − eh̄

6π2m

∫
dk k3g(1)

s (z,k).

(16)

Assuming that μ0
s (z) is constant in space in each region

(sudden changes at the boundaries can be taken into account
by matching boundary conditions), integration of Eqs. (13)
and (14) with the weighting factors k2 and k gives, respectively,

∂zjs(z) = e

2π2

∫
dk k2 g̃(0)

s (z,k) − g̃
(0)
−s(z,k)

τ sf
s (z,k)

, (17)

∂zns(z) = − em

2π2h̄

∫
dkk

g(1)
s (z,k)

τs(z,k)
. (18)

Equations (17) and (18) provide a generalized drift-diffusion
equation at low temperature.

We first briefly show that Eqs. (17) and (18) become
the conventional spin drift-diffusion equations without the
Kondo effect. That is, Valet-Fert theory holds up to O(T ),
if there are no magnetic impurities. Without an electric field,
g̃(0)

s and g(1)
s are zero. This observation implies that g̃(0)

s and
g(1)

s are proportional to ∂εf
0
s . By the Sommerfeld expansion

formula, ∂εf
0
s can be replaced by −δ(μ0

s − ε), neglecting
O(T 2). Thus, the integrations Eqs. (17) and (18) are nothing
but evaluations at the Fermi surface. Therefore, Eqs. (17)
and (18) are equivalent to Eqs. (13) and (14) up to O(T ).

Now we connect the quantities that appear in Eqs. (13)
and (14) to physical quantities. First we define the electrical
conductivity σs(z) and the spin diffusion length ls(z) for each
spin band s, which are respectively given by

σs(z) = e2
(
kF
s

)3
τs

(
z,kF

s

)
6π2m

, (19)

ls
2(z) = h̄2

(
kF
s

)2

3m2
τs

(
z,kF

s

)
τ sf
s (z,kF

s ), (20)

where kF
s = √

2mμ0
s /h̄

2 is the Fermi wave vector. Here the
electrical conductivity is equivalent to the Drude conductivity
σs = n0

s e
2τs(kF

s )/m where n0
s = (kF

s )3/6π2 is ns without an
electric field. Similarly, the spin diffusion length is related
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to the diffusion constant by ls
2 = Dsτ

sf
s (kF

s ) where Ds =
h̄2(kF

s )2τs(z,kF
s )/3m2. Next, we define the electrochemical

potential μs = (2π2h̄2/emkF
s )ns . The factor arises from the

ratio between
∫

dε and (e/V )
∑

k in Eq. (15). With these
definitions, Eqs. (13) and (14) become equivalent to Eqs. (5)
and (6).

The situation changes in the presence of dilute magnetic
impurities. We show that Eqs. (5) and (6) are still valid after
replacement of Eqs. (3) and (4) [or equivalently Eqs. (1)
and (2)] and give explicit expressions for τ eff

K in particular
regimes. Since the Kondo effect occurs in the normal metal,
we use the subscript N but drop the spin-dependent subscript
s. That is, τN (z,k) and τ sf

N (z,k) are the relaxation times in the
normal metal, which are spin independent. τN and τ sf

N that
appear in Sec. II are those evaluated at the Fermi level k = kF

N .
In the presence of dilute magnetic impurities, additional
relaxation rates arise due to the impurities. We denote these
by the subscript K . In the Boltzmann equation Eq. (12), the
relaxation times change by

1

τ̃ sc
N (z,k)

= 1

τ sc
N (z,k)

+ 1

τ sc
K (z,k)

, (21)

1

τ̃ sf
N (z,k)

= 1

τ sf
N (z,k)

+ 1

τ sf
K (z,k)

, (22)

where τ̃ sc
N and τ̃ sf

N are the modified relaxation times due to
the Kondo effect. Kondo [31] computed explicitly the total
scattering rate change τK

−1 = (τ sc
K )−1 + (τ sf

K )−1 given by

1

τK (z,k)
= 2πμ0

NS(S + 1)ĈN2
0 J 2

3h̄
[1 + 2Jγ (ε)], (23)

γ (ε) = 1

V

∑
k

f 0
N (k)

ε(k) − ε
, (24)

where S is the spin angular momentum of the magnetic
impurities, N0 = mkF

N/2π2h̄2 is the density of states of
each spin band, J is the (negative) exchange parameter
between the conduction electron and the magnetic impurities,
and Ĉ is the average impurity concentration, which is the
density of impurities divided by the density of electrons
2n0

N = (kF
N )3/3π2. The units of J are J · m3 to make N0J

dimensionless. To be explicit, we set the Kondo Hamiltonian
to be HK = −(4J/V )

∑
k′k(�†

k′σ�k) · (�†
dσ�d ), where �

†
k

and �
†
d are, respectively, the electron creation operator of

conduction electrons with momentum k and electrons in the
impurity state d, and σ is the Pauli matrix.

Since the Kondo theory is a perturbation theory, its contri-
bution to the spin-flip rate (τ sf

K )−1 is likely to be proportional to
Eq. (23) as Kondo showed [31]. We introduce η, the spin-flip
probability during each Kondo scattering event by

1

τ sf
K (z,k)

= η

τK (z,k)
. (25)

The value of η is determined by the Fermi surface geometry.
For a spherical Fermi surface that we use here, Kondo [31]

showed that (τ sf
K )−1 is twice (τ sc

K )−1.5 This indicates that η =
2/3 for this case.

The low temperature behavior of τK (z,k) requires careful
treatment. Since γ (ε) diverges at the Fermi level, naı̈ve
application of the Sommerfeld expansion gives divergences.
Although the integrals in Eqs. (17) and (18) seem surprisingly
difficult to perform without the Sommerfeld expansion, a low
temperature approximation allows it. In Appendix C 3, we
slightly generalize Kondo’s approach to extract the logarithmic
dependence of the Kondo resistivity to show that the following
replacement is valid under the integration over the energy.

γ (ε)∂εf
0
N → N0 ln

kBT

μ0
N

[−δ
(
ε − μ0

N

)]
, (26)

giving rise to a ln T contribution. With this rule, Eqs. (5) and (6)
still hold under the following replacement.

1

τN

(
z,kF

s

) → 1

τ̃N

(
z,kF

s

) ≡ 1

τN

(
z,kF

s

) + 1

τ eff
K

, (27)

1

τ sf
N

(
z,kF

s

) → 1

τ̃ sf
N

(
z,kF

s

) ≡ 1

τ sf
N

(
z,kF

s

) + η

τ eff
K

, (28)

which are nothing but Eqs. (1) and (2). Here

1

τ eff
K

= 2πμ0
NS(S + 1)ĈN0

2J 2

3h̄

(
1 + 2N0J ln

kBT

μ0
N

)
. (29)

V. SUMMARY

In order to take account for the Kondo effect in spin trans-
port, we derive a modified drift-diffusion equation from the
Boltzmann equation explicitly allowing for finite temperature.
The complicated finite temperature theory is projected to a
low temperature regime (compared to the Fermi temperature).
We show that the Valet-Fert drift-diffusion equation holds
both at finite T and in the presence of spin scattering from
dilute magnetic impurities, once the electrical conductivity
and spin diffusion length are renormalized as functions of
temperature. This represents a useful result; as a consequence,
dilute magnetic impurity scattering beyond the semiclassical
limit can indeed be described in a simple Elliot-Yafet-like form
with a direct proportionality between τ sf

K and τK , as originally
indicated by Kondo. The modified drift-diffusion equation has
a remarkably compact form given the complexity of the higher
order many-body interactions involved.

By solving the drift-diffusion equation for an illustrative
regime, we show additional spin relaxation in the presence of
the Kondo effect at a ferromagnet/nonmagnet interface. Kondo
scattering is found to be highly efficient at spin relaxation, due
to the high probability of spin flip (η = 2/3) compared with
other scattering mechanisms (c.f. ηphonon ≈ 1/1000). Since the
spin-flip rate is much lower than the momentum scattering rate
in the absence of the Kondo effect, such a high probability
caused by the Kondo effect can significantly reduce the spin
diffusion length, even when there is negligible change to
the conductivity. This is confirmed experimentally by the
large value of η ≈ 0.7 observed, in good agreement with

5See Eq. (12) of Ref. [31].
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Kondo’s original work. We hope this, in addition to the explicit
derivation of Eq. (4), further validates the semiclassical model
of Ref. [28] in also determining the Kondo contributions to
lN . Note again that the fitting procedure used here relies on
four independent quantities that are experimentally extracted,
as well as approximations regarding the precise distribution
of magnetic moments within the Kondo region. Examining
Fig. 4, one can see a weak dependence of η on TA. This is
very likely due to such simplifications. Indeed, the possibilities
of Fe segregation and cluster formation on annealing, dilute
impurity migration to grain boundaries, and intermoment
correlations at high concentrations, as well as examining the
precise phase equilibrium beyond the thermodynamic limit,
are entirely overlooked and could greatly complicate the
situation. Nevertheless, agreement between the simple model
and experiment is highly satisfactory.

One observation worth mentioning is the form of Eq. (9),
particularly the fact that the signal suppression is linear
in both ĈFe and d. This clarifies one of the fundamental
difficulties previously experienced within the field. That is,
determining the precise location of the anomalous relaxation
mechanism. Previous reports have stated relaxation occurring
at the ferromagnet/nonmagnet interface (as we discuss here),
throughout the channel [27,28], or at surfaces [21,26,45], with
similar magnitudes of Kondo suppression in each case. To
first order it is the product ĈFed (total number of impurities
per cross-sectional area) that determines suppression, and
so similar magnitudes may be observed either due to a
high-impurity-concentration narrow region (e.g., an interfacial
effect), or an extended low concentration region (i.e., low
doping levels throughout the channel itself). For the case
where magnetic impurities extend throughout the channel,
i.e., in the limit where d � l̃N , the approximations made
in obtaining Eq. (9) will no longer be appropriate. Instead
separation-dependent measurements of �RNL on mesoscopic
lengthscales (i.e., comparable to l̃N ) will follow the standard
nonlocal spin transport equations, now with the modified
value of lN given by Eq. (4). For low impurity levels
this results in comparable magnitudes of suppression to
those seen here. Rather than serendipitous, it is entirely
expected that both the interfacial effects discussed here
and ‘contaminated’ channel devices observe similar signal
contributions from Kondo effects. This highlights the care
that must be taken when fitting �RNL(L,T ) to resolve the
contributions from interfacial (manifest in the extracted α) and
bulk (manifest in lN ) Kondo relaxation, in the likely scenario
where both cause �RNL to be suppressed by comparable
amounts.

Having now determined the theoretical and experimental T

dependence of Kondo spin scattering in nonlocal spin valves,
this opens the path to using the Kondo effect to better under-
stand magnetic and nonmagnetic impurity spin relaxation. In
particular, the clearly identifiable T dependence may now be
used as a signature to quantitatively determine the contribution
of dilute moments to relaxation in all-metal systems.
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APPENDIX A: SOLUTION OF THE SPIN
DRIFT-DIFFUSION EQUATION

In Ref. [17], the general solutions for Eqs. (5) and (6) are
given by

μ+(z) − μ−(z) =
⎧⎨
⎩

AF ez/lsf
F for z < 0,

ÃNez/l̃sf
N + B̃Ne−z/l̃sf

N for 0 < z < d,

BNe−z/lsf
N for z > d,

(A1)

σ+(z)μ+(z) + σ−(z)μ−(z) =
⎧⎨
⎩

CF z + DF for z < 0,

C̃Nz + D̃N for 0 < z < d,

CNz + DN for z > d.

(A2)

In this section we determine the coefficients satisfying the
transparent boundary conditions

μs(z = −0) = μs(z = +0),

μs(z = d − 0) = μs(z = d + 0),
(A3)

js(z = −0) = js(z = +0),

js(z = d − 0) = js(z = d + 0).

There are eight boundary conditions (note that s = ±) al-
though there are ten unknown coefficients. Therefore, two
more conditions are required. The first one originates from
a constant shift of the chemical potential. Since the drift-
diffusion equation is invariant under a constant shift of the
chemical potential, we can put D̃N = 0 without any loss of
generality. The second one originates from the homogeneity
of the drift-diffusion equation. The drift-diffusion equation is
invariant under multiplication by a constant factor to μs . The
applied electrical current defined by

ejapp = ej+(z = −∞) + ej−(z = −∞) = CF (A4)

is an experimentally controllable quantity that fixes the
multiplication factor.
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Now we apply the boundary conditions. Instead of applying
the continuity of each function, we can apply it with their
independent linear combinations. Note that μ+(z) − μ−(z)
is already given above and j+(z) + j−(z) is nothing but
the derivative of σ+(z)μ+(z) + σ−(z)μ−(z). Continuity of
these functions at z = 0 and z = d gives the following four

conditions.

AF = ÃN + B̃N , ÃNed/l̃sf
N + B̃Ne−d/l̃sf

N = BNe−d/lsf
N ,

C̃N = CN = ejapp. (A5)

We now put these into the solution and obtain

μ+(z) − μ−(z) =

⎧⎪⎨
⎪⎩

(ÃN + B̃N )ez/lsf
F for z < 0,

ÃNez/l̃sf
N + B̃Ne−z/l̃sf

N for 0 < z < d,

(ÃNed/l̃sf
N + B̃Ne−d/l̃sf

N )e−(z−d)/lsf
N for z > d,

(A6)

σ+(z)μ+(z) + σ−(z)μ−(z) =
⎧⎨
⎩

ejappz + DF for z < 0,

ejappz for 0 < z < d,

ejappz + DN for z > d.

(A7)

Now we apply the continuity of μ+(z) + μ−(z). After some algebra,

μ+(z) + μ−(z) =

⎧⎪⎨
⎪⎩

2ejappz+2DF

σ+,F +σ−,F
− σ+,F −σ−,F

σ+,F +σ−,F
(ÃN + B̃N )ez/lsf

F for z < 0,
ejappz

σ̃N
for 0 < z < d,

ejappz+DN

σN
for z > d.

(A8)

Continuity at z = 0 and z = d gives

DF = σ+,F − σ−,F

2
(ÃN + B̃N ), DN =

(
σN

σ̃N

− 1

)
ejappd. (A9)

Then ÃN and B̃N are the only remaining coefficients. We now apply continuity of j+(z) − j−(z). After some algebra,

σ+(z)μ−(z) − σ−(z)μ−(z) =

⎧⎪⎨
⎪⎩

σ+,F −σ−,F

σ+,F +σ−,F
(ejappz + DF ) + 2σ+,F σ−,F

σ+,F +σ−,F
(ÃN + B̃N )ez/lsf

F for z < 0,

σ̃N (ÃNez/l̃sf
N + B̃Ne−z/l̃sf

N ) for 0 < z < d,

σN (ÃNed/l̃sf
N + B̃Ne−d/l̃sf

N )e−(z−d)/lsf
N for z > d.

(A10)

Continuity of the derivatives at z = 0 and z = d gives

σ+,F − σ−,F

σ+,F + σ−,F

ejapp + 2σ+,F σ−,F

σ+,F + σ−,F

ÃN + B̃N

lsf
F

= σ̃N

l̃sf
N

(ÃN − B̃N ), (A11)

σ̃N

l̃sf
N

(
ÃNed/l̃sf

N − B̃Ne−d/l̃sf
N

) = −σN

lsf
N

(
ÃNed/l̃sf

N + B̃Ne−d/l̃sf
N

)
, (A12)

the solutions of which are

ÃN = e−2d/l̃sf
N
lsf
N σ̃N − l̃sf

NσN

lsf
N σ̃N + l̃sf

NσN

B̃N, (A13)

B̃N = −σ+,F − σ−,F

σ+,F + σ−,F

ejapp

[(
2

lsf
F

σ+,F σ−,F

σ+,F + σ−,F

+ σ̃N

l̃sf
N

)
− e−2d/l̃sf

N
lsf
N σ̃N − l̃sf

NσN

lsf
N σ̃N + l̃sf

NσN

(
2

lsf
F

σ+,F σ−,F

σ+,F + σ−,F

− σ̃N

l̃sf
N

)]−1

. (A14)

DF and DN are determined by Eq. (A9). Thus, we determine
all coefficients of Eqs. (A7) and (A6).

APPENDIX B: SCALING PROCEDURE OF THE
EXPERIMENTAL DATA

Due to inevitable sample-to-sample variations, and poten-
tial changes in interface resistance, limited information can be
extracted from changes in the absolute magnitude of αeff on
annealing. This however does not preclude an analysis of the
changes to Kondo depolarization, provided a method is estab-
lished to appropriately scale αeff(T ). In this section we will out-
line the procedure applied to reach the scaled data of Fig. 3(a).

The Kondo expression of Eq. (10) is valid only over a
narrow range about T ≈ TK , and one of the major successes
of the G-G formalism was to accurately describe the evolution
of ρK (T ) from low (T � TK ) to high T (T � TK ). It is
worth noting at this point the limiting values of ρK in these
two regimes. At low T the Kondo effect saturates towards a
constant scattering rate as the unitary limit is reached, which
Kondo proposed to give ρK → ρm[1 + 2N0J ln(U/T ∗)]. At
high T the effect is negligible and ρK tends to the classical
constant expression for spin-flip scattering via exchange with
the ferromagnetic impurity ρK → ρm (i.e., the Korringa rate).
Although we cannot a priori determine the magnitude in these
two regimes for our experimental data, by considering the data
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of reference [31] and the transition temperatures between the
three regimes we can deduce ρK (T � TK )/ρK (T � TK ) =
1 + 2N0J ln(U/T ∗) ≈ 1.8.

Using Eq. (9) we may obtain an experimental estimate of
ρK (T ) at each TA, which is explicitly dependent upon αeff(T ).
[It is worth noting that ρN, ρF , l

sf

F , l
sf

N , and αFM are measured
directly, while η, d, and τ

sf

N /τN are all T independent, leaving
only the scaled value of αeff undetermined in Eq. (9).] To
appropriately normalize αeff(T ) to αFM(T ) we linearly scale
αeff(T ) [and consequently modify ρK (T )] in order to reach
the correct ratio of ρK at low- and high-T [i.e., ρK (T �
TK )/ρK (T � TK ) = 1.8]. Note, that since scaling αeff in this
way only ensures the correct ratio of Kondo to classical
scattering, we may still fit 1 − κ to obtain the magnitude of the
scattering (both Kondo and classical) and therefore deduce η.

Once we have established correct normalization for a single
dataset (in this case the unannealed data), we may normalize
the remaining data by observing the following relationship
from Eq. (10) and Eq. (11):

ρi
K (T )di

ρ
j

K (T )dj
= diĈi

Fe

dj Ĉ
j

Fe

= const., (B1)

where the superscript i,j denotes values for different TA. Note
this relationship exploits the fact that annealing only serves to

increase the magnitude of d and CFe in ρK , both of which are T

independent, thus the functional form of ρK (T ) is independent
of TA. From Eq. (9):

ρi
K (T )di = (1 − riκi)

×
⎡
⎣2η

(
τ sf
N /τN

)
ρi

N

⎛
⎝ 1

λi
N

− 1

λi
N + λF ρi

F

(1−α2)ρi
N

⎞
⎠

⎤
⎦

−1

.

(B2)

Here ri is the scaling factor for αeff(T ). Since the ratio
of ρKd is constant, we minimize the standard deviation of
expression (B1) by varying ri , to ensure αeff(T ) is correctly
scaled at each TA.

APPENDIX C: MATHEMATICAL DETAILS FOR THE
DERIVATION

1. Legendre decomposition of the Boltzmann equation

We first expand the first term in Eq. (12) by the Legendre
polynomial. The Bonnet recursion formula is useful to do this.

xPn(x) = n + 1

2n + 1
Pn+1(x) + n

2n + 1
Pn−1(x), (C1)

for n � 1.

h̄kz

m
∂zgs(z,k) = h̄k

m

∞∑
n=0

∂zg
(n)
s (z,k) cos θkPn(cos θk)

= h̄k

m
∂zg

(0)
s (z,k)P1(cos θk) + h̄k

m

∞∑
n=1

∂zg
(n)
s (z,k)

[
n+1

2n+1
Pn+1(cos θk)+ n

2n + 1
Pn−1(cos θk)

]

= h̄k

m

∞∑
n=0

[
n

2n − 1
∂zg

(n−1)
s (z,k) + n + 1

2n + 3
∂zg

(n+1)
s (z,k)

]
Pn(cos θk). (C2)

The second term in Eq. (12) is

−eE

h̄
∂kz

f 0
s (k) = −eE

h̄
∂kf

0
s (k) × P1(cos θk). (C3)

The right-hand side of Eq. (12) is

−gs(z,k) − gs(z,k)

τ sc
s (z,k)

− gs(k) − g−s(z,k)

τ sf(z,k)
= −g(0)

s (z,k) − g
(0)
−s(z,k)

τ sf(z,k)
− 1

τs(z,k)

∞∑
n=1

g(n)
s Pn(cos θk), (C4)

where 1/τs = 1/τ sc
s + 1/τ sf .

In summary, Eq. (12) is equivalent to
∞∑

n=0

[
h̄k

m

n

2n − 1
∂zg

(n−1)
s (z,k) + h̄k

m

n + 1

2n + 3
∂zg

(n+1)
s (z,k) − eE

h̄
∂kf

0
s (k)δn,1

]
Pn(cos θk)

= −g(0)
s (z,k) − g

(0)
−s(z,k)

τ sf(z,k)
− 1

τs(z,k)

∞∑
n=1

g(n)
s Pn(cos θk). (C5)

Since {Pn} forms an orthogonal set of polynomials, each
coefficient should satisfy the equation. In Ref. [17], if the

spin diffusion length is much larger than the mean free path
of conduction electrons, g(2)

s (and higher order terms) can
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be neglected. The coefficients of P0 and P1 gives Eqs. (13)
and (14), once g(2)

s is neglected.

2. Sommerfeld expansion formula

In this section, we present the Sommerfeld formula for low
temperature. In the main text, we keep terms up to O(T ),
we here present the formula up to O(T 3) for more motivated
readers.

The Sommerfeld expansion formula for a differentiable
function H is∫

H (ε)

eβ(ε−μ)+1
dε =

∫ μ

H (ε)dε+ π2

6β2
H ′(μ)+O(T 4). (C6)

In a compact form, as far as quantities after integration over ε

is concerned,

1

eβ(ε−μ) + 1
= �(μ − ε) + π2

6β2
δ′(μ − ε) + O(T 4). (C7)

When a transport property is concerned, it is convenient to
take the derivative with respect to ε.

∂

∂ε

1

eβ(ε−μ) + 1
= −δ(μ − ε) − π2

6β2
δ′′(μ − ε) + O(T 4).

(C8)

3. Integrals including the Kondo scattering rate

In this section, we perform the following integration for a
general G(ε) ∫

dεG(ε)γ (ε)∂εf
0, (C9)

where f 0 = [1 + eβ(ε−μ0)]−1 and γ (ε) is defined by Eq. (24).
Here and from now on, we denote k = √

2mε/h̄, k′ =√
2mε′/h̄ and so on, appearing in integrations with respect to

ε and ε′. Also, we define kF =
√

2mμ0/h̄ which is the Fermi
wave vector. We generalize the approach taken by Kondo [31]
here.

First we perform the summation in γ (ε).

γ (ε) = 1

V

∑
k

f 0(k)

ε(k) − ε
= 1

8π3

∫
d3k′ f 0(k′)

ε(k′) − ε
= 1

2π2

∫
dk′k′2 f 0(k′)

ε(k′) − ε

= m

π2h̄2

∫
dk′ ε(k′)

ε(k′) − ε
f 0(k′) = m

π2h̄2

∫
dk′f 0(k′) + mε

π2h̄2

∫
dk′ f 0(k′)

ε(k′) − ε
. (C10)

The first integral can be given by the Sommerfeld expansion Eq. (C7).

m

π2h̄2

∫
dk′f 0(k′) = m

√
m

π2h̄3

∫
dε′ 1√

2ε′ f
0(ε′) = 2N0. (C11)

To perform the second integral,

mε

π2h̄2

∫
dk′ f 0(k′)

ε(k′) − ε
= 2m2ε

π2h̄4

∫
dk′ f 0(k′)

k′2 − k2
= − m2ε

π2h̄4k

∫
dk′ ln

∣∣∣∣k − k′

k + k′

∣∣∣∣∂k′f 0 = − mk

2π2h̄2

∫
dε′ ln

∣∣∣∣k − k′

k + k′

∣∣∣∣∂ε′f 0. (C12)

We are now ready to perform the integral in Eq. (C9).

∫
dεG(ε)γ (ε)∂εf

0 = 2N0

∫
dεG(ε)∂εf

0 − m

2π2h̄2

∫
dεdε′kG(ε) ln

∣∣∣∣k − k′

k + k′

∣∣∣∣∂εf
0∂ε′f 0

= 2N0

∫
dεG(ε)∂εf

0 − m
√

m√
2π2h̄3

∫
dεdε′√εG(ε) ln

∣∣∣∣∣
√

ε − √
ε

′
√

ε + √
ε

′

∣∣∣∣∣∂ε

1

1 + eβ(ε−μ0)
∂ε′

1

1 + eβ(ε′−μ0)
. (C13)

The first integral is given by the Sommerfeld expansion Eq. (C8). For the second term, exact substitution of ε = ε′ yields
divergence, however, we may still calculate the temperature dependence of the term. By substituting X = β(ε − μ0) and
X′ = β(ε′ − μ0), the second term is

− m
√

m√
2π2h̄3

∫
dεdε′√εG(ε) ln

∣∣∣∣∣
√

ε − √
ε

′
√

ε + √
ε

′

∣∣∣∣∣∂ε

1

1 + eβ(ε−μ0)
∂ε′

1

1 + eβ(ε′−μ0)

= − m
√

m√
2π2h̄3

∫
dXdX′√kBT X + μ0G(kBT X + μ0) ln

∣∣∣∣∣
√

kBT X + μ0 −
√

kBT X′ + μ0√
kBT X + μ0 +

√
kBT X′ + μ0

∣∣∣∣∣∂X

1

1 + eX
∂X′

1

1 + eX′

≈ − m
√

m√
2π2h̄3

√
μ0G(μ0)

∫
dXdX′

(
ln

kBT

μ0
+ ln

X − X′

4

)
∂X

1

1 + eX
∂X′

1

1 + eX′ . (C14)
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Here we expanded with respect to kBT , which is small compared to μ0. We drop the second contribution ln(X − X′)/4 since it
gives a much smaller contribution than the ln kBT /μ0 contribution at low temperature. Thus we keep only the logarithmic term.

− m
√

m√
2π2h̄3

∫
dεdε′√εG(ε) ln

∣∣∣∣∣
√

ε − √
ε

′
√

ε + √
ε

′

∣∣∣∣∣∂ε

1

1 + eβ(ε−μ0)
∂ε′

1

1 + eβ(ε′−μ0)
≈ − m

2π2h̄2 kF G(μ0) ln
kBT

μ0
. (C15)

By using N0 = mkF /2π2h̄2, for low temperature, the follow-
ing replacement is valid under an energy integration.

γ (ε)∂εf
0 → −N0 ln

kBT

μ0
δ(ε − μ0), (C16)

which is Eq. (26).

APPENDIX D: ERROR ANALYSIS

Errors in the parameters lsf
N, αeff, ρN, ρF (experimentally

determined) and κ (determined through a normalization
procedure), as well as uncertainty from our fitting method are
our main concern in establishing uncertainty in the extracted
values of η. All other parameters are constrained through the
previous work, and potential errors in such quantities are not
considered.

Although both ρN and ρF are measured directly from RN

and RF , with very small random noise, these quantities suffer
from experimental uncertainty in the wire cross sectional area
(through ρ = RA/L), particularly a nonrectangular shape.
This uncertainty is random between devices, but systematic
across all T within a single device. It is estimated at the
level of ≈5 % from SEM images of the wire edge profile. In
our measurement of �RNL we observe a baseline noise floor
of around 1 nV (at a modulation frequency of 13 Hz). This
corresponds to ≈3 μ� in our measurements and is an absolute
noise source independent of signal size. When fitting �RNL(L)
at each temperature to extract lsf

N and αeff , the uncertainties
in ρ and �RNL are used to weight a least means square
minimization fit, with estimated errors in lsf

N and αeff arising
from combining these errors with the fitting residuals. In
reality, the parameters lsf

N and αeff are limited in precision by the
relative uncertainty in the cross-sectional area measurements
and are therefore largely independent of T . Although we may
obtain αeff and lsf

N by fitting �RNL(L,T ), using a literature
value of lsf

N as a constraint on the signal magnitude, the
magnitude of αeff is poorly constrained, due to the inherent
difficulty in precisely measuring the ferromagnet/normal metal
interface resistance. Consequently, errors that are independent
of T dominate the extracted values of αeff .

With the errors for lsf
N and αeff established, it remains

to estimate the uncertainty in κ , before determining η. As
both αFM and αeff are broadly of a similar magnitude, and
κ = αeff/αFM, the systematic errors in each quantity could, in

principle, give an error larger than the estimated value of 1 − κ

(typically 1 − κ is around 10%, while errors in α are around
5% to 10%). However, this systematic error is irrelevant for
the normalization procedure we use and is one of the key
advantages to our method: As any error in α is largely T

independent (errors from both fitting and estimates of interface
resistance), they make no impact on the overall normalization
factor [r in Eq. (B2)], since any systematic error in αeff or
αFM is intrinsically compensated by r . Thus we can estimate
the error in κ solely from the uncertainty in the normalization
procedure. To obtain this value, we realize that the process
of minimizing the standard deviation of ρ1

Kd1/ρi
Kdi (our

normalization procedure) is identical to a linear regression
of yi = Ai(1 − riκi), where yi = ρ1

K/ρi
N [1/l

sf,i
N − 1/(lsf,i

N +
ρi

N lsf
F [(1 − αFM

2)ρF ]−1)], and Ai = C1
Fed

1τ
sf

N /2Ci
Fed

iητN .
Once again, we use the superscript i to denote a given dataset
(i.e., a given TA), with i = 1 representing the unannealed data
(which can be scaled exactly, see Appendix B). As we can
establish both y and κ for a given TA, we may therefore
estimate the uncertainty in r , and so the relative error in our
scaled κ , from the residuals of a least mean squares fit of
y = A(1 − rκ) with A and r as free variables. These estimates
are the error bars shown in Fig 4.

The final challenge is to incorporate all these errors together
for our final fitting procedure to estimate η. η is found from
fitting ηρK from experimental data using our models for
ρK , i.e., through rearranging Eq. (9). Through the discussed
procedure we now have estimates for all parameters in this
equation, including errors for the experimentally determined
quantities (κ, ρN, ρF , α, lsf

N ). To establish the error on the
experimental ηρK we use Monte Carlo sampling assuming
Gaussian distributed uncertainties for all quantities (via the
NIST uncertainty machine [46]) to account for the combination
of all uncertainties in Eq. (9). The extracted errors are
subsequently used as weightings for fitting ηρK to either the G-
G or Kondo model, again using a least-mean-square approach.
The extracted parameter uncertainties are shown in Fig. 4 for
each method, with the final errors for η in panel (c). All quoted
errors are a single standard deviation, including those shown
for the extracted values of TK . Most errors are relative rather
than absolute, and so data at large TA appear more error prone
than those at low TA, despite the larger κ . In calculating η̂ an
unweighted average is taken, with the uncertainty in this case
quoted as the standard deviation in the eight values.
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