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Competition between Kondo effect and RKKY physics in graphene magnetism
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The cooperative behavior of quantum impurities on two-dimensional (2D) materials, such as graphene and
bilayer graphene, is characterized by a nontrivial competition between screening (Kondo effect) and Ruderman-
Kittel-Kasuya-Yosida (RKKY) magnetism. In addition, due to the small density of states at the Fermi level,
impurities may not couple to the conduction electrons at all, behaving as free moments. Employing a recently
developed exact numerical method to study multi-impurity lattice systems, we obtain nonperturbative results
that dramatically depart from expectations based on the conventional RKKY theory. At half filling and for weak
coupling, impurities remain in the local moment regime when they are on opposite sublattices, up to a critical
value of the interactions when they start coupling antiferromagnetically with correlations that decay very slowly
with interimpurity distance. At finite doping, away from half filling, ferromagnetism is completely absent and
the physics is dominated by a competition between antiferromagnetism and Kondo effect. In bilayer graphene,
impurities on opposite layers behave as free moments, unless the interaction is of the order of the hopping or
larger.
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I. INTRODUCTION

Over a decade after the successful experimental realization
of a truly two-dimensional material, graphene [1–3], interest
in its properties continues to grow, with potential for future
applications in data storage, spintronics, sensors, magnetic
imaging, and quantum computing, to mention some examples
[4,5].

The physics of diluted magnetic impurities in graphene is
rich and constitutes an entire subject of research in its own
right [6–9]. Isolated magnetic adatoms placed on monolayer
graphene sheets (MLG) have been studied experimentally as
well as theoretically [10,11], and the properties of the Kondo
ground state have been a subject of controversy [7,12–18].
The Kondo effect due to magnetic adatoms such as cobalt
presents different behaviors depending on the position of
the impurities in graphene sublattices. In addition, orbital
and magnetic moments of the impurities strongly depend
on the used substrate [19–21]. For adatoms directly on top
of carbon sites, a Fermi-liquid behavior consistent with an
SU(2) Kondo effect has been predicted and found to be
consistent with experimental results [22–25]. However, for
adatoms at the center of a hexagon in the graphene lattice, the
results are confusing and contradictory. Based on symmetry
arguments for MLG and bilayer graphene (BLG), four-channel
and two-channel [26,27] as well as an SU(4) Kondo effect
[16] were predicted in the presence of spin-orbit coupling.
Moreover, the Kondo state does not depend only on the position
of the adatom, but also on the band filling or doping [23]. By
gating graphene, one can move the Fermi energy EF (i.e.,
doping or band filling) away from the Dirac point to a region
of the band with a linear density of states, in which case the
Kondo effect becomes conventional. The important conceptual
question addressed in this paper is how Kondo effect interplays
with adatom-induced magnetism in MLG and BLG systems in

the presence of multiple magnetic impurities in the graphene
lattice. We emphasize that the actual physics of graphene
magnetism is complex and may depend on many details
(e.g., precise locations of impurities, the strengths of their
couplings to the bulk, their separations, the Fermi level, etc.),
but the conceptually simple (and intuitively appealing) starting
point of a perturbative RKKY-type interimpurity magnetic
interaction should always be treated with caution, and may
not, in general, be applicable.

In this work we address the two-impurity problem, which
is usually treated by introducing an effective Ruderman-
Kittel-Kasuya-Yosida (RKKY) [28–30] interaction between
impurities, mediated by the conduction electrons in the system,
derived from second-order perturbation theory:

JRKKY(R) = J 2
Kχ (R),

where χ (R) is the Fourier transform of the noninteracting
static susceptibility, or Lindhard function, and JK is the
Kondo interaction between the impurity and substrate. The
dependence of this function on the distance varies with
dimensionality. A universal expression is often used in the
literature, which is derived from assuming a uniform electron
gas with a quadratic dispersion [31] E(k) ∼ k2. Its asymptotic
behavior at long distances (kF R � 1) and in d dimensions is
of the form

χ (R) ∼ sin (2kF R + πd/2)

Rd
, (1)

which can be ferromagnetic or antiferromagnetic (depending
on kF and R), and oscillates with impurity separation R

and wave vector 2kF (twice the Fermi momentum). It is
long-ranged with an amplitude that decays algebraically (in
particular, as 1/R2 in two dimensions). This perturbative
approach, however, fails to capture important many-body
effects. It was previously shown [32] that geometry, band
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structure, and Kondo effect can drastically affect the physics
here. For instance, in graphene, the RKKY interaction has
contributions that decay both as 1/R2 and 1/R3, a reflection
of the vanishing density of states (DOS) at the Fermi level in
intrinsic (i.e., undoped) graphene [33–35].

For single magnetic impurities coupled to a metallic host,
all physical properties can be characterized by a single
energy scale, the so-called “Kondo temperature” TK � e−1/JK ,
which can interpreted as a binding energy for forming a
Kondo singlet. When more impurities are present, several
energy scales compete. As suggested in Ref. [36] (see also
Refs. [37,38]), one could define a characteristic temperature
for coupling the impurities into the RKKY state, TRKKY ∼ J 2

K ,
and a competition between these two energy scales (TK and
TRKKY) will dictate which phase dominates. Moreover, in finite
systems (Kondo box [39–44]) or in the presence of a gap,
a third energy scale will enter into the problem: the level
spacing, or gap �. The impurities can potentially be found
in three states: (i) They can couple via an effective indirect
exchange interaction JRKKY, (ii) they can each form their own
independent Kondo singlets, or (iii) they can remain in a free
moment state, completely decoupled from the substrate and
from each other. We discuss these issues theoretically in the
context of adatom-induced graphene magnetism.

The paper is organized as follows: Section II describes
the model and methods utilized, focusing on the Lanczos
transformation to the equivalent one-dimensional model. We
point out that this technique has been described in the literature
in great detail [32,45], so we cover only the essential aspects.
Section III describes the exact results obtained with this
approach both for single and bilayer graphene, illustrating
the departure from conventional perturbative predictions. We
close our paper with a summary and conclusions.

II. METHODS

In this work, we consider two S = 1/2 magnetic impurities
interacting locally with free fermions in the bulk. In general,
the total Hamiltonian of this problem can be written as

H = Hband + Himp + V,

where Hband is the lattice Hamiltonian, Himp is the many-body
impurity Hamiltonian ( e.g., Coulomb interaction in the case of
Anderson impurities), and V contains the hybridization terms
coupling the lattice and the impurities.

We consider two models for the interaction. The first one
involves a Kondo term between two spins at positions r1 and
r2 and the substrate:

V = JK

(�S1 · �sr1 + �S2 · �sr2

)
. (2)

In a second setup we consider adatoms located at the
center of hexagonal plaquettes, and an Anderson-like impurity
Hamiltonian of the form

Himp = εd

∑

i=1,2

ndi + U
∑

i=1,2

ndi↑ndi↓ (3)

with

V = t ′
∑

σ,i,δ

d
†
iσ ciδσ , (4)

where d, d†, nd operators act on the two magnetic impurities
i = 1,2. In Eq. (4), δ labels the six sites surrounding the
impurities, and εd is the local site energy. The assumption
that the impurity couples symmetrically to the six sites is valid
if the atomic orbital has s, dz2 , or fz3 symmetry [46]. In both
cases the models represent adatoms, and not substitutional
impurities.

In order to make the problem numerically tractable, we em-
ploy the so-called block Lanczos method recently introduced
in this context by two of the authors [32,45]. This approach is
inspired by Wilson’s original formulation of the numerical
renormalization group [47], but accounting for the lattice
structure. It enables one to study quantum impurity problems in
real space and in arbitrary dimensions with the density-matrix
renormalization-group method (DMRG) [48,49]. Our scheme
bears a resemblance to Haydock’s recursion method [50–53],
where the information about the lattice structure and the
hybridization to the impurity is completely preserved. By
generalizing the ideas introduced in Ref. [54] for a single
impurity, one can reduce a complex lattice geometry to a single
chain, or a multileg ladder in the case of multiple impurities.
This is done through a unitary transformation to a basis where
the noninteracting band Hamiltonian has block diagonal form.
As described in detail in Refs. [32,45], this is equivalent to a
block Lanczos iteration, where the recursion is started from
seed states corresponding to electrons sitting at the positions
of the impurities. The resulting matrix can be re-interpreted as
a single-particle Hamiltonian on a ladder geometry.

In addition, we use a folding symmetry transformation
[32] that maps the ladder onto two decoupled chains corre-
sponding to bonding and antibonding orbitals. This geometry
is amenable to direct DMRG calculations, and allows one
to simulate large one-dimensional systems. In a real-space
representation of the Lanczos orbitals, this corresponds to
almost circular flakes of graphene of radius L, as shown
schematically in Fig. 1.

FIG. 1. (a) Sketch of graphene flakes obtained through the
Lanczos transformation for two impurities sitting at the origin, and at
a distance R. The single particle orbitals extend to a distance L away
from the impurities. In (b) we show the geometry of the equivalent
problem, with the two magnetic impurities coupled to noninteracting
tight-binding chains of length L via many-body terms proportional
to JK .
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Notice that this canonical transformation is exact, and the
only errors in our calculations can be attributed to finite-size
effects (discussed in the next section), or numerical precision,
which we keep under control. Each impurity configuration
generates a new mapping, and the equivalent one-dimensional
problem is solved using the DMRG method, keeping the
truncation error below 10−9, which translates into up to 3000
DMRG basis states. All calculations are done using a chain
with length L = 4n, which allows each impurity to form their
own Kondo state or a collective RKKY state [55]. Results
shown were performed using a total chain length of L = 124,
so the system size is much larger than the maximum impurity
separation. In all our simulations we use U(1) symmetry to fix
the total value of Sz

Tot = 0.

III. RESULTS

A. Graphene

Graphene can be represented as a (bipartite) honeycomb
lattice of carbon atoms. It is well approximated using a
tight-binding theory with only nearest-neighbor hopping. We
consider just one pz orbital per atom, giving us the simple
two-band symmetric model with a Dirac point at the Fermi
level. In the following, our unit of energy is the hopping
t ≈ 2.5 eV [11].

As a reference, we first calculate the noninteracting Lind-
hard function, Eq. (1). The directions chosen, labeled x and y,
are shown in Figs. 2(a) and 2(b). Due to the bipartite nature of
the lattice, at half filling the sign of the interaction oscillates
and is ferromagnetic when the impurities are on the same
sublattice and antiferromagnetic on the opposite sublattice

FIG. 2. Lindhard function for MLG at half filling along the (a) x

direction and (b) y direction, as depicted in the inset. Distances are
not to scale and label lattice sites, with the green circle representing
the first impurity and the blue (red) circles representing the second
impurity along the y (x) direction. Panels (c) and (d) show the
nonperturbative results for the spin-spin correlations along the x and
y directions, respectively. In (c), impurities on opposite sublattices
are in the free moment regime or antiferromagnetically aligned and
are shown in a separate figure.

[34,56], decaying as 1/R3 as expected [57]. We point out that
distances here refer to the relative positions of the impurities
as illustrated in the inset, and are not to scale (clearly, the
distances x1 and x2 are not the same).

Figures 2(c) and 2(d) show the spin-spin correlations
between impurities at half filling. Only the z component of
the correlation is shown since the system is SU(2) symmetric.
Correlations are clearly ferromagnetic for impurities on the
same sublattice up to a distance of the order of 15 lattice sites
where we see the correlations become very small at some
points, corresponding to the onset of Kondo screening. For
opposite sublattices, instead of a competition between Kondo
and RKKY, we see a competition between RKKY and the free
moment regime. In Fig. 2(c) we show only the results for spins
on the same sublattice. When the impurities are on opposite
sublattices the correlations are identically or very close to
the saturation value 〈Sz

1S
z
2〉 = −1/4, and are not shown. In

this regime, the magnetic moments are completely decoupled
from the conduction electrons and from each other, and the
ground state is fourfold degenerate with spins pointing in
either direction. Since we are enforcing spin conservation and
Sz

Tot = 0, the impurities are always antiparallel and correlations
can only assume the value −1/4. We point out that this may
always occur in a Kondo box or for a pseudogap density of
states for sufficiently small JK , regardless of the position of the
impurities. For sufficiently large JK , the impurities will couple
antiferromagnetically. In Fig. 3 we show the spin correlations
at odd distances. As the interaction increases, eventually the
correlations get suppressed, as seen in panel (b) for R = 5.
More interestingly, correlations do not exhibit any decay with
distance, indicating that the RKKY is very robust and that
Kondo has very little effect in undermining antiferromag-
netism, at least for small values of JK . These results are

FIG. 3. (a) Interimpurity spin-spin correlations for impurities
along the x direction at odd distances. Impurities on opposite
sublattices are in the free moment regime for small JK = 0.2, reflected
in a saturation of the correlations (see text). For larger values of
JK correlations become antiferromagnetic and do not exhibit any
noticeable decay with distance. (b) Results at distance R = 5 as a
function of JK . As the interaction increases, eventually correlations
get suppressed.
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FIG. 4. Spin-spin correlations for JK = 0.5 as a function of
system size and different impurity separation for (a) graphene and
(b) bilayer graphene along the x direction. The MLG correlations
monotonically increase at half filling, indicating a strong trend toward
ferromagnetism. Away from half filling, the Kondo effect is very
robust and dominates the physics. In the case of BLG, the correlations
smoothly converge and saturate to a finite value.

telling us that the two impurities are practically decoupled
from the bulk forming an almost perfect singlet. Actually this
agrees with a perturbative picture in which the conduction
electrons introduce an effective interaction between the spins.
Unless there is another mechanism competing with the RKKY
interaction (such as Kondo), the impurities will form a perfect
singlet. The surprising lack of decay may be attributed to the
extended nature of the electronic wave functions near the Fermi
level. Certainly this is an interesting problem that deserves
further investigation.

On the other hand, when spins are on the same sublattice,
they prefer to couple ferromagnetically into an RKKY triplet
state, closely resembling the Lindhard function. The fact that
correlations decay with distance in the ferromagnetic case is
only due to the competition with the Kondo interaction and the
entanglement with the conduction electrons. We have found
that these simulations are very susceptible to finite-size effects,
which are more dramatic at half filling and for small values
of JK . In Fig. 4(a) we show the correlations as a function of
chain length at half filling for JK = 0.5 for different distances.
The correlations grow monotonically without indication of
convergence for chain lengths up to L = 280. Despite the
apparent lack of convergence, the trend is clear, and indicates
that ferromagnetism is very robust.

We attribute these effects to the presence of zero-energy
edge modes. The chains are finite, corresponding to finite
flakes with a boundary. These zero-energy modes play a
dominant role in small graphene flakes, as seen in the local
density of states (LDOS), Fig. 5. Due to the symmetry of the
orbitals, we find that two impurities on opposite sublattices do
not have edge states, and the finite-size effects are negligible
(not shown). For impurities on the same sublattice, the flake
has zigzag edges. In this case we encounter two zero-energy

FIG. 5. (a) Local density of states at the position of one of
the impurities for different sizes. The spectrum shows zero energy
excitations corresponding to the edge states. (b) Same as (a) but
zooming away in energy and for larger system sizes, showing how
the pseudogap DOS is recovered. Notice that the area of the graphene
flake is proportional to L2, a relatively large number of carbon atoms.

modes: One of these states decays algebraically down the
antisymmetric chain, while the other one decays linearly along
the symmetric channel, as shown in Figs. 6(a) and 6(b). For
comparison we also show typical extended wave functions
away from the Dirac points in panels (c) and (d). These results
may seem counterintuitive, since in principle one assumes that
the zero energy wave functions decay exponentially from the
edge. In fact, this is true for pristine zigzag edges [58], but it
does not apply to a graphene flake of irregular shape as the one
considered in this work. Theoretical and experimental studies
[59] show that a combination of different boundary conditions
can yield slowly decaying edge states that leak into the bulk,
as shown in Fig. 6(e) for a typical case. When these wave
functions are expressed in terms of the Lanczos basis states,
the coefficients decay smoothly and monotonically from the
end of the chains. The edges and the bulk electrons compete in
order to form a correlated state with the impurities. As the chain
length is increased, the weights of the zero energy states near
the impurities and their spectral weight in the LDOS decrease,
and the bulk electrons win, enhancing the RKKY interaction
and causing an increase in the correlations. At a sufficiently
long chain length, the effects should become negligible.

The influence of the edge states is also observable in the
single impurity case. In Fig. 7 we plot the energy gain after
coupling the impurity to graphene, defined as [60]

�E = |E0(JK ) − E0(JK = 0)|.
This quantity is an estimate of the Kondo temperature TK , or
the energy needed to break the Kondo singlet. As expected, it
increases with JK , but it decreases with L. The reason is that
for small systems, when the impurity interacts with the edge
states, there is a relatively large spectral weight at the Fermi
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FIG. 6. Wave function amplitude of the zero-energy edge states
along the symmetric (a) and antisymmetric (b) chains in the Lanczos
basis. The edge modes live only on the same sublattice as the seeds.
Panels (c) and (d) show the first excited state along the symmetric
and antisymmetric chains, respectively. Panel (e) shows the square
of the wave-function amplitude for the antisymmetric edge state in
real space, for L = 30 and R = 4. Crosses show the position of the
impurities.

energy. When L is large, the interlevel spacing no longer plays
a role and �E plateaus at a value that is independent of the
system size, indicating a property of the bulk. This is a dramatic
reflection of the significance of edge modes in finite systems.

If the Fermi level is moved away from the Dirac point
by doping the system, the physics changes in a notable

FIG. 7. Energy gain � (as defined in the text) for a single impurity
as a function of system size L. These values should reflect an estimate
for the Kondo temperature TK . For small graphene fragments we
expect edge states to play a more dominant role. � decreases and
plateaus when the impurity decouples from the edges and the physics
is dominated by the bulk.

FIG. 8. Same as Fig. 2 for 13% hole doped MLG. Vanishing
correlations correspond to two uncorrelated Kondo clouds.

way. From the RKKY expression, Eq. (1), the Fermi wave
vector determines the wavelength of oscillations in the RKKY
interaction as shown in Figs. 8(a) and 8(b) for the 13%
(measured from the Dirac point) hole doped case. The
difference in wavelength of oscillations is due to the fact
that the units of distance differ in the two directions. While
calculations were also done at other fillings and for electron
doping, results for just one value are presented. Electron
doped results are identical due to the particle hole symmetry.
Figures 8(c) and 8(d) show the numerical results for the
spin correlations for different values of JK . As the coupling
is increased, the correlations undergo a crossover from the
free moment regime, to antiferromagnetic RKKY, and then to
Kondo, with ferromagnetism being completely absent.

When the impurities are in a Kondo state, the correlations
are identically zero. This situation was extensively discussed
in Ref. [32]. Each impurity is fully screened by the conduction
electrons and they form two independent Kondo singlets.
We determine this by analyzing the staggered and uniform
magnetic susceptibilities in Fig. 9, and verifying that they are
identical, and equal to the single impurity result. The effect
is even more dramatic as the Fermi level is moved further
away from the Dirac point (not shown), with correlations
vanishing after just a few lattice spacings. Results at other
fillings and system sizes also do not show any indication
of ferromagnetism. Finite-size effects are also notoriously
weaker (practically ignorable) than the half-filled case, as seen
in Fig. 4(a), since we are far from the particle-hole symmetric
point where level spacing and edge modes become irrelevant.

We next consider the case of adatoms sitting at the center
of the hexagon. To study this problem we use the Anderson
model, Eq. (3). Here we consider impurities spaced along the
zigzag/diagonal direction. Using the same method as above,
we are again able to measure the correlations between the
impurities. We assume εd = EF − U/2, and we take t ′ = 0.2.
Figure 10 shows spin correlations as well as the perturbative
result for graphene at 5% hole doping. The results display
similar behavior as the previous cases away from half filling,
with dominant antiferromagnetic correlations, and a crossover
from the free moment to the Kondo regime for decreasing
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FIG. 9. Staggered and uniform susceptibilities as a function of
JK for distance R = 4 and 13% hole doping. Both quantities become
equal when the Kondo regime is reached. Results are obtained by
applying a small magnetic field h = 10−4 on the localized spins.

U (increasing JK ∼ t ′2/U ). At half filling, the impurities are
always in the free-moment regime, as also found for the single
impurity case in Ref. [45]. We emphasize that perturbative
RKKY considerations based on the Lindhard function miss
all of this important interplay with Kondo physics and clearly
depart from the numerical results.

B. Bilayer graphene

Bilayer graphene is composed of two layers of graphene
stacked on top of each other. We study two forms of BLG:
symmetrically stacked such that the sublattices of each layer
coincide, and “Bernal” stacked, with sublattice A directly
above sublattice B. The two forms of BLG have different
band structures [61,62] that can each be approximated by
a four-band model. The Bernal structure has a parabolic

FIG. 10. Lindhard function (top) and spin-spin correlations (bot-
tom) for two impurities at the center of hexagons in 5% hole
doped graphene and parameters: V = 0.2, εd = EF − U

2 . Distances
are measured along the zigzag direction as shown in the inset.

FIG. 11. Spin-spin correlations for BLG at half filling along the
(a) x direction and (b) y direction on the same layer. Dotted line in
panel (a) corresponds to spins on opposite layers. Missing data points
indicate that spins are in the free moment regime. Panels (c) and
(d) show results for 13% doping. The dashed line in (b) represents
impurities on opposite layers for JK = 1.

dispersion near the Fermi level that can be further reduced by
considering just two bands, since the other two are separated by
an energy on the order of the interlayer hopping t ′. In previous
work [35], it was shown that this two-band problem yields a
trivial RKKY interaction between impurities. However, if one
considers linear contributions, second-neighbor interactions
[61], or values of JK � t , these assumptions are no longer
valid, and a more general four-band model is required, as the
one used here.

We focus on the symmetric stacking, and results for the
Bernal stacking look qualitatively very similar. The hopping
within a layer is taken to be the same as pure graphene, while
for the one between layers we use t ′ = 0.1t . Note that unlike
graphene, BLG has a small but finite density of states at the
Fermi level. The Lindhard function along the x and y directions
(not shown here) is qualitatively similar to the one for MLG,
with the sign of the interactions reversed when impurities are
on opposite layers. Numerical nonperturbative results at half
filling are shown in Figs. 11(a) and 11(b). The correlations on
a single layer look identical to those for graphene, but decay
faster due to the increased DOS near the Fermi point, and
also due to the increased dimensionality which interpolates
between 2D and 3D. However for the BLG case, impurities on
opposite layers along the y direction are in the free moment
regime, or antiferromagnetic (results look similar to those
in Fig. 3 and are not shown), while along the x direction
they are weakly coupled ferromagnetically if on the same
sublattice. Away from half filling, we find, the same as for
graphene, that the correlations completely depart from the
expected RKKY behavior and ferromagnetism is absent, as
shown in Figs. 11(c) and 11(d) for 13% doping. We find the
same qualitative behavior at other doping densities.

IV. CONCLUSIONS

The cooperative many-body behavior of quantum impuri-
ties in 2D materials, such as graphene and bilayer graphene,
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is complex and defies intuition, with a nontrivial competition
between screening and magnetism. In addition, due to the small
density of states at the Fermi level, impurities may not couple to
the conduction electrons at all, behaving as free moments. Our
numerical nonperturbative results show that indirect exchange
at half filling is quite well described by the perturbative RKKY
interaction in the ferromagnetic case when both impurities are
on the same sublattice. However, antiferromagnetism in the
undoped half-filled case only becomes a dominant feature
for JK larger than a critical value and impurities remain
in the local moment regime otherwise. Recent experiments
with hydrogen atoms on MLG [63] show vanishing coupling
between substrate and spins when they are placed on opposite
sublattices, in agreement with our results, that predict free
moments. DFT calculations [63] indicate that this effect may
be due to single-particle physics, and explained by the way
electrons occupy different orbitals once one accounts for the
chemistry of the problem. This experimental example can be
described in terms of s and p orbitals and is weakly interacting.
The physics departs from our strongly interacting regime
and is probably simpler and well described by DFT and/or
perturbative techniques. Our work applies mainly to the case of
extrinsic magnetic impurities in graphene; the corresponding
situation for defect or vacancy induced intrinsic magnetism in
graphene is more complex. We point out, however, that the
lack of spin signature would also occur in the case of free
moments, in which case the impurity would be transparent,
as recently observed in Ref. [64] for Ho atoms adsorbed on
Pt(111).

At finite doping, the departure from the RKKY theory
is more dramatic: ferromagnetism is completely absent, in

contrast to the result in Ref. [34], and the physics is completely
dominated by a competition between antiferromagnetism and
Kondo.

For bilayer graphene, impurities on opposite layers remain
in the free moment regime, unless the interaction JK is
increased to values of the order of half the hopping t . Away
from half filling, in the doped situation, oscillations between
ferromagnetic and antiferromagnetic phases are absent, sig-
nificantly departing from the expected 1/R2 decay found
in Ref. [35]. These results highlight the importance of the
correlations in this problem and the failure of perturbative
approaches in studying these phenomena. In addition, they
illustrate the relevance of the band structure, the interference
effects of the electronic wave function on the lattice [38,54,65],
and the presence of edge states at half filling in small flakes.

This work indicates a route toward realizing a dilute
antiferromagnet in graphene, and emphasizes the key im-
portance of the nonperturbative interplay between Kondo
and RKKY physics in determining adatom-induced graphene
magnetic properties. We hope that our exact calculations of
adatom-induced graphene magnetic properties will motivate
experimental studies of MLG and BLG magnetism.
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[20] T. Eelbo, M. Waśniowska, M. Gyamfi, S. Forti, U.
Starke, and R. Wiesendanger, Phys. Rev. B 87, 205443
(2013).
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