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We propose a dynamic Jahn-Teller approach to elucidate the generation mechanism of asymmetric modes
of coherent phonons induced in crystals by irradiation with a short optical pulse in the opaque energy region.
This is a natural extension of the impulsive excitation model of symmetric modes to multi dimensions in the
configuration coordinate space. We show that the two generation mechanisms of coherent phonons coexist in
this case, namely the impulsive absorption (IA) mechanism and impulsive stimulated Raman scattering (ISRS)
mechanism. The dependence of the phonon amplitude on the polarization of the pump pulse is exactly the same
in IA and ISRS processes and is in agreement with the prediction of the argument based on Raman tensors.
The dependence of the excitation efficiency of the coherent phonons on the frequency of the pump pulse is
calculated using a simplified model of the optical response function of the crystal. Generally, the IA mechanism
predominates in the opaque region, although ISRS makes a comparable contribution to phonon generation in the
near-edge opaque region. The initial phase of the coherent phonon is always cosine-like in IA but depends on the
excitation frequency in ISRS.
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I. INTRODUCTION

Irradiation of crystal surfaces with ultrashort optical pulses
often induces coherent oscillation of optical phonons. These
coherent optical phonons can be most conveniently observed
by time-resolved pump-probe measurement of optical reflec-
tion and transmission [1–3] or x-ray diffraction [4–6]. The
microscopic mechanism of generation of coherent phonons
has long been a subject of interest in this research area [7–11].

There are two well-known models for coherent phonon
generation. In the impulsive stimulated Raman scattering
(ISRS) mechanism, the Raman transition caused by an
ultrashort optical pulse induces a transition to the excited
Fock state of phonons in the electronic ground state, which is
coherently overlapped with the zero-phonon state and initiates
the lattice oscillation in the electronic ground state. In the
displasive excitation of coherent phonon (DECP) mechanism,
the coherent linear combination of the Fock state of phonons
occurs in the electronic excited state. In both the ISRS and
DECP models, it is tacitly assumed that there are electron-
phonon interactions in the excited state, and it is necessary to
excite the crystal impulsively by a pump pulse with spectrum
wider than the phonon frequency. It is generally accepted that
the ISRS model is the only possible mechanism in the case of
excitation in the transparent region [12].

Excitation in the opaque region is more problematic
to explain, because the resonant ISRS and DECP paths
should coexist according to quantum mechanics. Recently,
we conducted a theoretical study using a simple two-level
model to clarify the relationship between the ISRS and
DECP mechanisms by applying a density matrix formalism
[13]. We showed that the ISRS and DECP paths coexist as
distinct quantum processes, especially in the case of resonant
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excitation. The amplitude of the oscillation of the optical
phonon in the ISRS path is much smaller than that of DECP
path when the pulse width is less than half of the period of the
phonon oscillation. However, we considered only the totally
symmetric phonon mode in this work.

For asymmetric modes of optical phonons such as the
Eg mode of bismuth [14,15], antimony [9,16], and their
compounds [17–19], it is often asserted that the generation
mechanism is ISRS even in the case of pumping in the opaque
region, while that of the A1g mode is assigned to DECP [14].
One of the reasons for this assignment is the experimental
observation that the oscillation amplitude of the asymmetric
mode of coherent phonon depends on the polarization angle
of the pump pulse relative to the lattice coordinate, and this
angular dependence agrees with that expected from the Raman
tensor.

For example, take the case of the Eg mode of Bi. For a
pump-pulse incident along the z axis, which is chosen to be
parallel to the c axis of the crystal, the Raman tensors for the
Eg-mode scattering are given by

M1 =
⎛
⎝d 0 0

0 −d 0
0 0 0

⎞
⎠, M2 =

⎛
⎝ 0 −d 0

−d 0 0
0 0 0

⎞
⎠, (1)

with the definition of the linear polarized electric fields,
�E1 ‖ �ex and �E2 ‖ �ey , where �ex and �ey are the unit vectors along
the x and y axes, respectively. The degenerated phonon modes
Q1 and Q2 have the symmetry Q1 ∝ x2 − y2 and Q2 ∝ −2xy.
The transition probability Pi caused by the Raman process
described by Mi is then given by

Pi ∝ ∣∣ �Et
outMi

�Ein

∣∣2
, (2)

where �Ein and �Eout are the electric fields of the incident
and scattered light, respectively, and �Et

out means the trans-
pose of �Eout . In the pump process involving ISRS, we set
�Ein = �Eout = �E ∝ cos θ �ex + sin θ �ey , where θ is the angle
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between the polarization of the pump-field �E and the x axis.
Then we find the polarization dependence of the scattering
amplitude S1 and S2 by the generation of the Eg phonons Q1

and Q2 given by

S1 ∝ d cos 2θ,

S2 ∝ −d sin 2θ. (3)

In the case of coherent phonons, the generated Eg-mode
phonons modulate the electric susceptibility, which can be
probed as a pump-induced change of the transient reflectivity
or transmissivity. The signal amplitudes caused by the asym-
metric modes are generally much smaller than that induced
by the symmetric mode. We may select the signals assigned
to each phonon mode by electro-optic measurement with a
suitable choice of the crystal axis. The agreement of the
observed angular dependence of the pump pulse in the signal of
the coherent phonons with the prediction by the Raman tensors
[14,18] seems to suggest that the generation mechanism is
ISRS. However, it should be stressed that this agreement does
not necessarily confirm that the microscopic origins of the
two distinct processes of the resonant Raman scattering by a
stationary field and coherent phonon generation by a pump
pulse are the same.

For the theoretical studies of generation mechanism of
coherent phonons, Zeiger and coworkers [7] proposed in
their pioneering work a phenomenological model based on
a semiclassical equation of motion. Kuznetsov and Stanton
[8] studied the microscopic origin of coherent motion of
phonons on the electron-phonon-coupled Hamiltonian. They
derived an equation of motion for the coherent amplitude of the
annihilation operator of phonons by the Heisenberg equation
of motion. Since the Heisenberg equation for harmonic
oscillators has essentially the same structure as the classical
counterpart, their results allow an intuitive understanding of
the generation mechanism. Here, only the DECP process for
fully symmetric mode was included.

In the work by Garrett and coworkers [9], Merlin [10],
and Stevens et al. [11], theory was extended to cover also
the case of multiple bands in the excited state. In these
works too, the semiclassical equation of motion of the phonon
coordinates plays a central role. The distinction between DECP
and ISRS was included in the difference of the force term. In
Ref. [11], it was asserted that the notion of DECP is not a
distinct mechanism, but a particular case of stimulated Raman
scattering. However, this statement is confusing because the
final states of the electronic system are different between
DECP and ISRS. The optical absorption is not a particular
case of the Raman scattering.

In the present work, we propose a different approach to the
problem of coherent phonon generation with special attention
to the case of asymmetric mode. Before going into details, we
adopt henceforth the term impulsive absorption (IA) instead
of DECP, because the term DECP has been used only in the
case of fully symmetric mode [8]. The difference between IA
and ISRS is whether the excited electron occupies the excited
state (IA) or has returned to the ground state (ISRS) after the
passage of the pump pulse. Therefore, DECP is a particular
case of IA.

In this work, we use a simplified band model to elucidate
the generation process of the coherent phonons of asymmetric
modes with the dynamic Jahn-Teller interaction. We do not
resort to the equation of motion of the phonon coordinate
but directly calculate the density matrix for the electron-
phonon coupled system and the expectation value of the
phonon amplitude on the assumption that the coupling constant
is weak. We then discuss the dependence of the phonon
amplitude on the polarization of the pump pulse. We find
that, as observed previously [13], the IA and the ISRS paths
coexist as distinct quantum processes, and both display the
same dependence of the amplitude of the coherent phonons on
the polarization angle. The IA mechanism predominates over
the ISRS process with respect to the generation efficiency in
the opaque region except for the case of excitation to the band
edge, where the IA and ISRS processes compete in terms of
the generation efficiency. Furthermore, we revealed that the
initial phase of the oscillation of coherent phonon is always
cosine-like in the IA path, while it depends on the frequency
of the pump pulse in the ISRS process.

II. MODEL

First, it should be noted that behind the Raman tensors, a
set of electron-phonon interactions with the same symmetry
exists, from which the Raman tensors are derived [20]. In the
case of asymmetric modes, this interaction works between the
degenerate electronic states that transform as a distinct basis
set in an irreducible representation of the crystal. In 1937, Jahn
and Teller [21] proved a theorem that if a symmetric nonlinear
molecule has a degenerate electronic states, it distorts in such
a way to remove the electronic degeneracy. This effect is
called a static Jahn-Teller effect, because the atomic degrees
of freedom were treated as classical variables which define
the static adiabatic potentials. The dynamic aspect of the
Jahn-Teller effect was then studied, in which the quantum
mechanical interaction between the electronic and atomic
degrees of freedom was a subject of interest [22]. The concept
of Jahn-Teller interaction was extended to localized centers in
solids [23]. For example, the splitting of the optical absorption
band in some heavy metal ions doped in alkali halides is
explained theoretically as a result of the Jahn-Teller interaction
between the localized electronic states with the asymmetric
distortion of the surrounding ions [24].

Another extension of the Jahn-Teller scenario is the band
Jahn-Teller effect, which is closely related to our work. In the
band Jahn-Teller model, a set of symmetry-degenerated bands
of itinerant electrons are coupled locally with asymmetric
phonon modes. This is to explain the origin of d-d interaction
in cuprate superconductors [25–27]. In the present work, we
apply the dynamic Jahn-Teller interaction model of band
electrons to the coherent phonon generation of asymmetric
phonons. Although the following argument can be easily
extended to general types of Jahn-Teller interactions, we
consider here the case of Eg mode coupled with a set
of electronic states with two-dimensional representation for
concreteness.

First we derive our model Hamiltonian in a simplified form.
We consider an optical pumping of a uniaxial semiconductor
or semimetal. For simplicity, the sample is assumed to be a slab
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of single crystal with size L × L × L′, where L is the length
of sides and L′ is the thickness. It is assumed that the crystal
surface is perpendicular to the c axis, and the pump pulse hits
the surface along the normal direction of the surface. For the
model of the electronic state, it is assumed that the valence band
is composed of even-parity s-like states, and the conduction
band is degenerate with x-like states and y-like states with odd
parity. The Hamiltonian is given by

He =
∑

�k
εv(k)a†

k,sak,s +
∑

�k

∑
ξ=x,y

εc(k)a†
k,ξ ak,ξ , (4)

where ak,s and ak,ξ (ξ = x,y) are the annihilation operator
for the Bloch electrons of the valence band with s-like
symmetry and energy εv(k), and the conduction band with
ξ -like symmetry and the energy εc(k), respectively. The
twofold degenerate conduction band is called an e band.

The electronic states in the conduction band are assumed
to be locally coupled with Eg-mode phonons as described by
the Hamiltonian

HeL = c
∑

j

{
Q

j

1(a†
j,xaj,x − a

†
j,yaj,y)

−Q
j

2(a†
j,xaj,y + a

†
j,yaj,x)

}
, (5)

where Q
j

λ (λ = 1,2) is the coordinate of the λ component of
Eg phonon at j th unit cell, c is the coupling constant, and aj,ξ

is the annihilation operator for the Wannier state at j th unit
cell, which is given by

aj,ξ = 1√
N

∑
�k

ak,ξ e
−i�k· �Rj , (6)

in which N is the number of unit cells in the crystal, �Rj is
the lattice vector for the j th unit cell, and the summation

∑
k

should be taken over the points in the first Brillouin zone.
Likewise the phonon coordinate is expanded into the normal
modes as

Q
j

λ =
∑

�q

√
h̄

2NMωq

{bλ,qe
i �q· �Rj + b

†
λ,qe

−i �q· �Rj }, (7)

in which M is the reduced mass of atoms per a unit cell, ωq

is the frequency of the optical phonons, and (bλ,q,b
†
λ,q) are the

annihilation and the creation operators for the normal mode
satisfying the commutation relation

[bλ,q,b
†
λ′,q ′ ] = δq,q ′δλ,λ′ . (8)

Inserting Eqs. (6) and (7) into (5), we rewrite (5) as

HeL = c
∑

�q

∑
�k

1√
2NMωq

×{(b†1,q + b1,−q )(a†
k+q,xak,x − a

†
k+q,yak,y)

− (b†2,q + b2,−q )(a†
k+q,xak,y + a

†
k+q,yak,x)}. (9)

The Hamiltonian for the phonon energy is written as

HL =
∑

�q
h̄ω�q(b†1,qb1,q + b

†
2,qb2,q ), (10)

where h̄ω�q is the energy of the Eg-mode phonon.

It should be noted here that, according to the phase
matching, the wave vectors of phonons which can be excited by
the optical processes are only those lying close to the � point
�q = 0 because the optical wavelength is much larger than the
lattice constant. The eigen modes of phonons form a continuum
around �q = 0. The electromagnetic field interacts only with the
atoms within the penetration depth δL′. In the opaque region,
δL′ is usually much smaller than the crystal thickness L′.
This effect relaxes the condition of phase matching and allows
the modes with δq ∼ 1/δL′ around �q = 0 to be excited [9].
Furthermore, the pump pulse is focused on the spot size which
is smaller than the surface area size L. This means that the
phase-matching condition along the lateral direction is also
relaxed.

We may roughly classify all of the normal modes into two:
the 2N ′ active modes around �q = 0 which are excited by the
optical pulses and 2(N − N ′) inactive modes which are not
excited. Then the model Hamiltonian is greatly simplified by
taking into account only the active modes as follows. We define
the creation operators for the interaction modes b

†
λ (λ = 1,2)

by

b
†
λ ≡ β

∑
�q

′
b
†
λ,q , (λ = 1,2), (11)

where the summation
∑′

�q runs over the N ′ active modes
around �q = 0. The constant β is determined by the normaliza-
tion condition,

[bλ,b
†
λ] = β2N ′ = 1, (12)

as β = 1/
√

ρN , where ρ ≡ N ′/N << 1 is the fraction of the
phase space volume occupied by the active modes. Dropping
the inactive modes from the summation (9), and approximating
�q = 0 for the active modes, we find

HeL = αh̄ω
∑

�k
{(b†1 + b1)(a†

k,xak,x − a
†
k,yak,y)

− (b†2 + b2)(a†
k,xak,y + a

†
k,yak,x)}, (13)

where we set ω�q=0 = ω, and α is the dimensionless coupling
constant

α = c
1

h̄ω

√
ρh̄

2Mω
. (14)

Note that α is independent of the system size N . Note also that
it depends not only on the material constants but also on the
experimental condition.

We have selected only two modes out of the 2N ′-
dimensional subspace of active modes. The concept of the
interaction mode was introduced into the theory of Jahn-Teller
effects in localized centers by Toyozawa and Inoue [24] and
O’Brien [28] in a slightly different context. Other 2N ′ − 2
modes can be defined within this subspace by an orthogonal
transformation of the phonon variables to be orthogonal each
other and also with the interaction mode. Because the original
modes (b†λ,q,bλ,q) are normal modes, this transformation
may give rise to the bilinear off-diagonal coupling between
the new variables through the dispersion of energy in the
Hamiltonian (10). It can be proven that it is always possible to
choose this orthogonal transformation so as the off-diagonal
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Q1 Q2

V

FIG. 1. Adiabatic potential energy surface for the Jahn-Teller
interaction with Eg-mode phonons (top). Potential surface of the
ground state (bottom).

couplings to appear only between the interaction modes and
the rest modes. The 2N ′ − 2 rest modes are then regarded
as forming a reservoir modes for the interaction modes and
induce the relaxation of the coherent motion of the interaction
modes [29]. In the present case, however, the off-diagonal
coupling is considered small, because the original modes are
optical modes in the vicinity of � point. In the present work,
we neglect this coupling, and simply rewrite HL by taking into
account only the interaction modes,

HL = h̄ω(b†1b1 + b
†
2b2). (15)

Modes 1 and 2 correspond to the two Raman-mode phonons
described in Eq.(1). It is easily ascertained by a first-order
perturbation calculation with respect to HeL that the above
Hamiltonian reproduces the Raman selection rule Eq. (1) in
the continuous-wave Raman scattering.

If we define the configuration coordinates and their conju-
gate momenta for the Eg interaction modes by

Qλ =
√

h̄

2Mω
(b†λ + bλ),

Pλ = i

√
Mh̄ω

2
(b†λ − bλ), λ = 1,2, (16)

the adiabatic potential V (Q1,Q2) for the excited state with a
fixed value of k is given as

V (Q1,Q2) = Mω2

2

(
Q2

1 + Q2
2

) ± αω
√

2Mh̄ω

√
Q2

1 + Q2
2.

(17)

In Fig. 1, V (Q1,Q2) is illustrated schematically [22,23]
together with the adiabatic potential of the ground state.
V (Q1,Q2) has a conical intersection at Q1 = Q2 = 0. The
relaxation energy is α2h̄ω. The eigenvalue problem for the
vibronic system under the Hamiltonian He + HL + HeL and
its optical responses are called an E ⊗ e problem and have
been studied extensively for some decades [22,24].

For the interaction Hamiltonian with the pump pulse, we
take

HeR(t) = Ef (t)
∑

k

μk(cos θa
†
k,xak,s

+ sin θa
†
k,yak,s)e

−i�0t + H.c., (18)

where f (t) is the dimensionless pulse envelope localized
around t = 0, �0(
ω) is the central frequency of the pump
pulse with field strength E, and μk is the transition dipole
moment. Here we approximated that the optical transition
takes place vertically in the Brillouin region. In actual
calculations, we used the Gaussian pulse with the pulse
width σ ,

f (t) = 1√
πσ�0

exp(−t2/σ 2). (19)

We consider the resonant impulsive excitation and de-
excitation processes by HeR(t) under the condition that h̄�0

exceeds the band-gap energy. In this work, we are interested
in the possible mechanisms of coherent phonon generation
and, especially, in the initial amplitude of phonon oscillation.
Therefore, we simply neglect various relaxation pathways for
the electrons and phonons.

III. RESULTS AND DISCUSSION

It is assumed that the system was initially in the ground state
with zero phonons, described by the ket vector |ψ(−∞)〉 =
|g〉 ⊗ |0〉 where |g〉 is given by |g〉 = ∏

k a
†
k,s |vac〉, with |vac〉

being the vacuum of electron, and |0〉 is the vacuum of phonon.
If we set the unperturbed Hamiltonian H0 as

H0 = He + HL, (20)

the temporal development of the ket vector under the
electron-photon and electron-phonon interactions obeys the
Schrödinger equation

ih̄
d

dt
|ψ(t)〉 = [H0 + HeR(t) + HeL]|ψ(t)〉, (21)

which is formally solved as

|ψ(t)〉 = exp

(
− i

h̄
H0t

)
exp+

×
(

− i

h̄

∫ t

−∞
{H̃eR(t ′) + H̃eL(t ′)}dt ′

)
|ψ(−∞)〉,

(22)

where exp+ means the time-ordered exponential and H̃eR(t)
and H̃eL(t) are given by

H̃eR(t) = eiH0t/h̄HeR(t)e−iH0t/h̄,

H̃eL(t) = eiH0t/h̄HeLe−iH0t/h̄, (23)

respectively.
We calculate the density matrix ρ(t) = |ψ(t)〉〈ψ(t)| to the

lowest order perturbation expansion with respect to H̃eR(t)
and H̃eL(t) that gives nonzero expectation values of Q1(t) and
Q2(t). The double-sided Feynman diagrams for the density
matrices corresponding to the IA and ISRS processes are
shown in Fig. 2. In these diagrams, the temporal evolution of
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(c)

(d)
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2τ2τ
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FIG. 2. Double-sided Feynman diagrams representing the pho-
toinduced processes, (a) and (b) IA and (c) and (d) ISRS. The upper
and lower lines represent the time evolution of the ket and bra vectors,
respectively. Thin lines represent the electronic ground state and thick
lines denote the excited states |x〉 and |y〉. Wavy lines represent
photons and dashed lines represent Eg-mode phonons 1 and 2. The
filled circles indicate the vertices of the absorption and emission of
photons. The empty circles are the vertices of emission of phonon
1 or 2, which are indicated by dashed lines. Time runs from left to
right.

the ket (bra) vectors is shown in the upper (lower) propagators.
The time runs from −∞ (far left) to t (far right). The filled
circles indicate the vertices of the absorption and emission
of photons. The empty circles are the vertices of emission
of phonon 1 or 2, which are indicated by dashed lines.
Figures 2(a)–2(d) correspond to the processes that contribute to
〈Q(A)

λ (t)〉 and 〈Q(S)
λ (t)〉(λ = 1,2), where (A) and (S) represent

the IA and ISRS paths, respectively. The Hermitian conjugate
diagram, which is obtained by interchanging the upper and the
lower propagators, is also indicated for each diagram.

The time-ordered integral should be carried out for both
photon and phonon vertices. The subspace of the excited states
is composed of |�k,ξ 〉 ⊗ |0〉 and |�k,ξ 〉 ⊗ |1λ〉 where |�k,ξ 〉 =
a
†
k,ξ ak,s |g〉 and |1λ〉 = b

†
λ|0〉, (ξ = x,y, λ = 1,2). Inspection

of the interaction Hamiltonians H̃eR(t) and H̃eL(t) reveals the
following rule for assignment of factors: Assign cos θ (sin θ ) to
each photon vertex connecting |g〉 with |�k,x〉 (|g〉 with |�k,y〉).

Assign α to each phonon vertex connecting |�k,x〉 with |�k,x〉.
Assign −α to each phonon vetex connecting |�k,y〉 with |�k,y〉
and |�k,x〉 with |�k,y〉.

The calculation was performed for time t well after the
passage of the pump pulse t >> σ , allowing us to determine
the expectation values for the phonon coordinates,〈

Q
(A)
1 (t)

〉 = A(t) cos 2θ,〈
Q

(A)
2 (t)

〉 = −A(t) sin 2θ,〈
Q

(S)
1 (t)

〉 = S(t) cos 2θ,〈
Q

(S)
2 (t)

〉 = −S(t) sin 2θ, (24)

in which

A(t) = LA(�0)(e−iωt + eiωt ) − 2�, (25)

S(t) = LS(�0)e−iωt + L∗
Se

iωt , (26)

with

LA(�0) = D

∫ ∞

−∞
due

− u2

2σ2 ei(�0− ω
2 )uF (u), (27)

LS(�0) = 2iD

∫ ∞

0
due

− u2

2σ2 sin (ωu/2)ei�0uF (u). (28)

In the above equations, 〈· · · 〉 means that the expectation value
over the electronic and phononic states should be taken,

D = α

√
h̄

2Mω

(
E

h̄�0

)2 1√
2πσ

e−σ 2ω2/8,

� = α

√
h̄

2Mω

(
E

h̄�0

)2 1√
2πσ

∫ ∞

−∞
due

− u2

2σ2 −i�0F (u),

and F (u) is the response function defined by

F (u) =
∑

k

|μk|2e−iεku/h̄−γ |u| (γ = 0+), (29)

in which εk ≡ εc(k) − εv(k). The term � corresponds to the
shift of the equilibrium of phonons in the excited state. The
derivation of the above formulas is given in the appendix.

It should be noted that F (u) can be obtained once
the absorption spectrum I (�) = ∑

k |μk|2δ(� − εk/h̄) corre-
sponding to the e band is known: F (�) is given by its Fourier
transform,

F (u) =
∫ ∞

−∞
I (�)e−i�ud�. (30)

The Laplace transform of F (u)

χ (�) ≡ i

∫ ∞

0
F (u)ei�udu (31)

is the optical susceptibility which describes the response to
stationary fields. We define the pulse suceptibility χp(�) by

χp(�) ≡ i

∫ ∞

0
e
− u2

2σ2 F (u)ei�udu. (32)
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Then Eqs. (27) and (28) can be written as

LA(�0) = 1

i
D

{
χp

(
�0 − ω

2

)
− χ∗

p

(
�0 − ω

2

)}
, (33)

LS(�0) = D

{
χp

(
�0 + ω

2

)
− χp

(
�0 − ω

2

)}
. (34)

As shown here, the expectation values of the phonon
coordinates are factorized into products of the dynamical
factors, A(t) and S(t), and the geometrical factors cos 2θ

and sin 2θ . The dynamical factors found here are essentially
the same as those for the case of interaction with a totally
symmetric mode. To recover the formulas for the symmetric
mode, we need only set θ = 0 formally in Eq. (24), change the
value of coupling constant α appropriately, and reinterpret Q1

as the coordinate for the symmetric mode. Then, in the limit
of zero bandwidth, 〈Q(A)

1 (t)〉 and 〈Q(S)
1 (t)〉 reduce to those

obtained in Eqs. (19) and (22), respectively, in our previous
work [13].

An important point is the fact that the geometrical factors
for the IA and ISRS processes are the same. This is easily
ascertained from the diagrams shown in Fig. 2. Although
the final electronic states of the IA and ISRS processes are
different, there is a correspondence between Figs. 2(a) and 2(c)
and between Figs. 2(b) and 2(d); for example, the left diagram
in Fig. 2(a) is topologically equivalent to the left diagram in
Fig. 2(c) if one traces the evolution of the state clockwise
from −∞ to t , then from t to −∞. Thus, the polarization
dependence of the coherent phonon amplitude is identical in
both IA and ISRS processes, as shown in Eq. (24).

Stevens and coworkers [11] have shown a formula for the
generation amplitude of A1g coherent phonons in Sb based
on their theoretical framework [9,10]. In their theory, the
equation of motion for the phonon coordinates is derived in the
Heisenberg picture. The force term to this equation contains
the operators for the electrons. This term was evaluated
by the zeroth-order approximation. Therefore, the theory is
essentially a perturbation theory to the lowest order of the
electron-phonon interaction. This is the same as the present
theory based on the Schrödinger picture. Our formulas (33)
and (34) seem to be similar to the two-Raman tensor formula in
Ref. [11], if one takes the sum 〈Q(t)〉 = 〈Q(A)

1 (t)〉 + 〈Q(S)
1 (t)〉,

except for a discrepancy in the arguments by the amount of
ω/2 [30]. However, it will be advantageous to consider the
two quantum-mechanically different processes, IA and ISRS,
distinctly, as was done here. This is especially true when we
analyze the experimental data in which not only the coherence
of phonons but also the coherence of the electronic states are
being measured and controlled by a double-pulse technique
[31], because the IA and ISRS pathways give rise to quite
different temporal profiles of interference. Details will be
presented elsewhere [32].

Let us discuss the excitation energy dependence of the
generation efficiency of coherent phonons and their initial
phase. To reveal the essential features, we assume that the
absorption spectrum of the e band is a simple hemielliptic
band,

I (�) = I0

√
(� − �l)(�u − �), �l � � � �u,

= 0, otherwise, (35)

Detuning ( ħω)

Detuning (ħω    )  
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FIG. 3. (a) Amplitude of coherent phonons as a function of the
central frequency of the pump pulse measured from the absorption
edge. The bandwidth is assumed to be 50h̄ω, and the pulse width
is σ = π/ω. Both IA (red line) and ISRS (blue line) processes are
plotted. (b) Initial phase of coherent phonons for the IA (red) and
ISRS (blue) processes. The values of B and σ are the same as those
in panel (a).

where h̄�l and h̄�u are the lower and upper band edges,
respectively, and I0 is a constant. From Eq. (30), we find

F (u) = I0e
−i(h̄�l+B)u/h̄ B

h̄u
J1(Bu/h̄), (36)

where B is the half-band width, B = h̄(�u − �l)/2, and J1(x)
is the first-order Bessel function.

In Fig. 3(a), the calculated generation efficiencies of
coherent phonons for the IA (red line) and ISRS (blue line)
processes are shown as a function of the detuning h̄(�0 − �l)
normalized by the phonon energy h̄ω. The chosen bandwidth
2B was 2B = 50h̄ω. The pulse width was assumed to be σ =
π/ω. Figure 3(a) reveals that the amplitude of the coherent
phonon caused by the IA process is almost proportional
to the absorption spectrum I (�). To be more precise, it is
proportional to the convolution of I (�) with the Gaussian
function f̃ (ω′) = exp [−σ 2ω′2/2] as

|LA(�0)| ∝
∫ ∞

−∞
I (�0 − ω

2
− ω′)f̃ (ω′)dω′. (37)

As can be seen in Fig. 3(a), the amplitude due to IA rises up
not at the band edge �l but at �l + ω/2. The physical reason
is that to induce a coherent motion of phonons in the excited
state, it is necessary to excite both the zero-phonon state and
the one-phonon state simultaneously.

In contrast, the ISRS component |LS | becomes appreciable
only at the absorption edge, or more generally, around the van
Hove singularities. This is because LS(�0) is proportional to
the difference of χp(�0) at �0 ± ω/2, as shown in Eq. (34).
Therefore, LS(�0) becomes small in the region where I (�) is

104302-6



DYNAMIC JAHN-TELLER VIEWPOINT FOR GENERATION . . . PHYSICAL REVIEW B 95, 104302 (2017)

smoothly varying. Deep into the opaque region, IA predomi-
nates, while in the transparent region, only ISRS contributes to
the generation of coherent phonons. It is noticeable that both
the IA and ISRS paths coexist with comparable magnitudes of
generation efficiency in the band-edge region.

The initial phase of coherent phonon is sometimes con-
sidered to be a clue to the generation mechanism. The
initial phase φ is determined experimentally [9,14,18,33] by
fitting the oscillation of the transient reflectivity �R(t) (or
transmissivity) by the sinusoidal function as

�R(t) = �R0 sin(ωt + φ), (38)

in which t is the delay time of the probe pulse measured from
the pump pulse and �R0 is the amplitude of oscillation. It is
often asserted that, in the case of IA, the oscillation is cosine-
like; namely φ = π/2 with modulus π . Conversely, in the
case of ISRS, the oscillation is sine-like, φ = 0 with modulus
π . This seems to be in agreement with the simple picture of
the generation of coherent phonons. The IA process occurs
because of the sudden shift of the equilibrium configuration
for the phonons, while the ISRS process is triggered by the
sudden acquirement of momentum induced by the stimulated
Raman scattering. However, it should be noted that, in the case
of resonant excitation in the opaque region, it takes a finite time
for the Raman process to occur effectively in ISRS [13].

From Eq. (33), it is obvious that LA is a real quantity. Thus,
according to Eq. (25), the oscillation by the IA process is
always cosine-like; namely φ = π/2. In contrast, LS(�0) is a
complex quantity. The initial phase φ was obtained by putting
LS(�0) in the form

LS(�0) = |LS(�0)| exp
[
i
(
φ + π

2

)]
. (39)

In Fig. 3(b), the calculated values for the initial phase are
plotted as functions of the central frequency �0 of the pump
pulse. The initial phase of coherent phonons formed by the IA
process is always π/2, as noted above. However, the initial
phase for ISRS depends on the frequency of the pump pulse.
In the transparent region, φ = 0 and the oscillation is sine-like.
As �0 traverses the absorption edge, the initial phase changes
rapidly, and then increases gradually in the opaque region until
it reaches 2π after �0 traverses the whole absorption band.

We found that the polarization-angle dependence of the
coherent-phonon amplitude cannot be used as a key to
differentiate the generation mechanism of the asymmetric
mode, because it is always in agreement with the prediction by
the Raman tensor. Considering the relative magnitude of the
oscillation, the IA mechanism is a dominant pathway in the
case of excitation far into the opaque region. Furthemore, IA
also predominates in the limit of short pulse excitation [13].

As for the initial phase of the oscillation, we demonstrated
that IA and ISRS behave distinctly. The initial phase in the
IA path is always cosine-like, but that in the ISRS depends
on the excitation energy. It is suspected that this is one of
the reasons why the experimental measurements of the initial
phase give diverse results [9]. In the transparent region, ISRS is
the only mechanism that generates coherent phonons and their
initial phase is sine-like. This appears to be in agreement with
the observation for the uniaxial wide-gap materials such as
GaN [34], ZnO [33], CdS [35], and α quartz [36].

According to the dynamic Jahn-Teller model, the amplitude
of the coherent phonon is expected to be proportional to that
of the resonant Raman scattering. One of the methods to
ascertain this criterion is to compare the ratio of the amplitude
between the A1g mode and Eg mode in the Fourier transform
of the coherent phonons and the Raman scattering measured
for the excitation to the same band. In the case of Sb, good
agreement has been reported for the excitation wavelength
λ = 815 nm [9]. In the case of Bi2Te3, on the other hand, a
large discrepancy between the ratio has been reported [37].
One of the possible origins is the difference in the relaxation
processes during and after the irradiation of pump pulse [38].
Detailed investigation in experiment and in theory should be
needed to clarify this point.

In experimental observations of the coherent phonons in
uniaxial materials, the signals corresponding to the asymmetric
modes are generally very weak compared with those for the
symmetric modes. The main reason for this is attributed
to the difference in the magnitude of the electron-phonon
coupling constants of the modes. In the case of symmetric A1g

mode, the electron-phonon coupling is roughly proportional
to the difference of the charge distribution between the ground
state and excited states. Conversely, the dynamic Jahn-Teller
interaction works between the electronic states that are both in
the excited-state subspace. This will decrease the off-diagonal
coupling constant in the dynamic Jahn-Teller effect. As
observed by Melnikov et al. [15], the generation efficiency of
the Eg-mode phonons is expected to have different excitation-
energy dependence than that for the A1g-mode ones because
of the different symmetry of the excited states. To resolve
the long-lasting controversy over the generation mechanism
of coherent phonons, especially for asymmetric modes, it is
desirable to perform a careful experiment to determine the
initial phase by sweeping the pump pulse across the band
edge.

IV. CONCLUSION

The generation mechanism of the asymmetric mode of
coherent phonons was considered under the condition that a
short pump pulse in the opaque wavelength region excites the
electronic system. Using a simplified model for the Eg mode in
bulk crystals, we showed that the two distinct mechanisms IA
and ISRS coexist quantum mechanically. We found that both
mechanisms displayed essentially the same dependence of the
oscillation amplitude of phonons on the relative polarization of
the pump pulse, in agreement with the prediction by the Raman
tensor. The IA process predominates in far above-band-gap
excitation, while the ISRS mechanism plays an important role
in the case of excitation to the near-threshold region.

The present theory indicates that the generation processes
of coherent phonons of the totally symmetric A1g mode and
asymmetric Eg mode can be formulated on essentially the
same footing. In fact, the formulas for the dynamic factors
A(t) and S(t) given in Eqs. (24) and the arguments on the
generation efficiency and initial phase presented here are also
valid for A1g-mode phonons. This is a consequence of the
assumption that the electron-phonon coupling is weak so that
the lowest order perturbation theory is applicable, which yields
formally the same expressions for the dynamical factors.
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In the present work, we restricted ourselves to elucidating
the generation process of coherent phonons. The detection
process can be also formulated within the same model
Hamiltonian. In the analyses of experimental data, however, it
is necessary to take into account various relaxation processes
appropriately, because the pump-probe delay time is typically
as long as some picoseconds. Among others, the intraband and
interband scatterings of the electrons excited by the IA process
are expected to be very fast. This will result in the difference
in the fate of coherent phonons created via IA and ISRS,
because in ISRS, the electronic system returns to the initial
configuration just after the pump pulse with only phonons
remaining in crystal. From the experiment side, it will be a
challenge to work out techniques to observe coherent phonons
discriminating between the IA path and ISRS path.
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APPENDIX: CALCULATION OF DYNAMICAL FACTORS

We derive formulas (27) and (28). As described in the
text, we may concentrate on the calculation of the dynamical
factors LA(�0) and LS(�0) assuming that the excited states
are composed of a nondegenerate single band |k〉 ≡ a

†
k,eak,s |g〉

with the ground state |g〉 ≡ ∏
k a

†
k,s |vac〉. The degeneracy

of the phonon modes is also neglected as if they are fully
symmetric mode. Then we have only two types Feynman
diagram corresponding to IA and ISRS.

For ISRS, we calculate the ket vector |ψs
u(t)〉 at time t(
σ )

corresponding to the upper propagators of Fig. 2. It is in the
second-order term of perturbation expansion with respect to
HeR(t) and the first-order term with HeL,

∣∣ψs
u(t)

〉 =
(−i

h̄

)3

E2αh̄ω

∫ t

−∞
dτ2

∫ τ2

−∞
dτ1

×
∫ τ2

τ1

dxf (τ1)f (τ2)ei�0(τ2−τ1)eiωx

×F (τ2 − τ1)e−iωtb†|g〉, (A1)

where we set the energy of the ground state equal to
zero. The integral over the phonon vertex x yields a factor
(eiωτ2 − eiωτ1 )/(iω). The integral over τ1 and τ2 is performed
as follows. We introduce new variables s ≡ (τ2 + τ1)/2, u ≡
τ2 − τ1, and rewrite f (τ1)f (τ2) as

f
(
s − u

2

)
f

(
s + u

2

)
= 1

πσ 2�2
0

exp

[
−

(
2s2

σ 2
+ u2

2σ 2

)]
.

(A2)

Because of the assumption t 
 σ , the integral domain is
safely extended to −∞ < s < ∞ and 0 < u < ∞. The
Gaussian integral over s is carried out analytically, and

we find

∣∣ψs
u(t)

〉 = 2i

(
E

h̄�0

)2

α
1√

2πσ
e−σ 2ω2/8

∫ ∞

0
due

− u2

2σ2

× sin
(ωu

2

)
ei�0uF (u)e−iωtb†|g〉. (A3)

The lower propagator is the unperturbed state |ψs
l (t)〉 =

|g〉. The expectation value of the annihilation operator b is
then given by 〈ψs

l (t)|b|ψs
u(t)〉, and together with its Hermitian

conjugate, we obtain LS(�0) in Eq. (28) for the expectation
value of Q(t) in ISRS.

For IA, the upper propagator is calculated to the first order
of HeR(t) and HeL as

|ψa
u (t)〉 =

(−i

h̄

)2

Eαh̄ω
∑

k

μk

∫ t

−∞
dτ1

×
∫ t

τ1

dxf (τ1)eiωxe−i(h̄�0−εk)τ1/h̄e−i(εk+h̄ω)t/h̄b†|k〉.

(A4)

The integration over x yields (eiωt − eiωτ1 )/(iω). The ket
vector for the lower propargator is given by

∣∣ψa
l (t)

〉 = −i
E

h̄

∑
k′

μk′

×
∫ t

−∞
dτ2f (τ2)e−i(h̄�0−εk′ )τ2/h̄e−iεk′ t |k′〉. (A5)

The expectation value for b is now given by

〈
ψa

l (t)
∣∣b∣∣ψa

u (t)
〉 =

(
E

h̄

)2

α

∫ t

−∞
dτ2

∫ t

−∞
dτ1f (τ1)f (τ2)

× (eiωτ1e−iωt − 1)ei�0(τ2−τ1)F (τ2 − τ1).

(A6)

Again, setting t → ∞ in the upper limit of the integrals and
changing the variables from (τ1,τ2) to (s,u) as before, we find

〈
ψa

l (t)
∣∣b∣∣ψa

u (t)
〉 =

(
E

h̄�0

)2

α
1√

2πσ

×
{
e−σ 2ω2/8

∫ ∞

−∞
due

− u2

2σ2 ei(�0− ω
2 )uF (u)e−iωt

−
∫ ∞

−∞
due

− u2

2σ2 ei�0uF (u)

}
. (A7)

Together with the Hermitian conjugate of the above equation,
we arrive at Eq. (27).
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