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Here we address two nonequilibrium Green’s-function approaches for a resonant tunneling structure under a
sudden switch of a bias. Our aim is to stress that the time-dependent Keldysh formulation of Jauho, Wingreen,
and Meir and the partition-free scheme of Stefanucci and Almbladh are formally equivalent in the ubiquitous case
of wide-band limit and noninteracting electrons, if leads and dot are in equilibrium before the time-dependent
perturbation. We develop explicit closed formulas of the lesser Green’s function and time-dependent current,
reminding that the different integration limits preclude a face-to-face comparison of two approaches. This study
sheds light on both practices, which are of great interest to the mesoscopic transport community.
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I. INTRODUCTION

Nonequilibrium Green’s functions (NEGFs) provide a
solid basis for the theoretical understanding of the quantum
electronic transport properties in a broad variety of systems [1].
The NEGF framework encompasses linear response as well
as far from equilibrium conditions, yielding transient time-
dependent and/or steady-state currents, and two-time propaga-
tors as a function of the coupling and bias [2–7]. Nonetheless,
despite the significant advances in treating out-of-equilibrium
quantum many-body problems [8,9], further developments
are needed in order to better account for relaxation mech-
anisms [10,11], external perturbations [12–15], and initial
conditions [16,17]. Recent efforts towards a nonequilibrium
ab initio theory and a unified contour picture have contributed
to a growing interest on the subject [9,18].

The Keldysh NEGFs were introduced in the theory of
transport through tunneling junctions by Caroli et al. [19], who
developed a nonequilibrium perturbation theory assuming that
the initial state consists of separate leads and a central region.
In a remote past each partition is in equilibrium characterized
by their own chemical potential. The full system is adiabat-
ically connected by switching on the contact tunneling. The
authors [19] alert that in this procedure the application of
the bias happens before the different parts of the system are
connected. The coupling corresponds to the time-dependent
(switch on) perturbation. Following these lines, an important
contribution was achieved by Jauho, Wingreen, and Meir
(JWM) [3], who developed formal expressions for resonant
tunneling transport through an interacting region based on
Green’s functions on the Keldysh contour, for both steady-state
and transient regimes [3].

More recently, alternative NEGF formulations have been
explored to account for correlated initial conditions, relevant
for short-time transients [20]. The extended Keldysh contour,
discussed at length for instance in Refs. [21–24], considers
an initial state where the whole system is already in thermal
equilibrium in the grand-canonical ensemble. An extended
imaginary branch is added to the original contour, which starts
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at a time t0, where Matsubara Green’s functions describe the
correlated initial state. Stefanucci and Almbladh [4] have
obtained a closed formula for the lesser Green’s function
of the central region in a lead-device-lead configuration
using the extended Kadanoff-Baym contour, which exhibits
contributions due to the imaginary time convolutions that
are apparently missing in the JWM approach. Thus, for
the out-of-equilibrium situation of a sudden switch-on of a
bias, Stefanucci and Almbladh claimed to have developed an
improved description of the transient currents over the Keldysh
partitioned scheme of JWM [2,3]. Ridley et al. [25] have
recently arrived at the same currents using both formalisms by
taking the limit of t0 → −∞. However, in their understanding,
only the steady-state would be reproduced, while transients
would be missing from the partitioned scheme of JWM.

In this paper we investigate these conflicting results by
examining these two nonequilibrium Green’s-function ap-
proaches for the double-barrier resonant tunneling system, the
simplest prototype of a nanoelectronic device. At time t0 we
consider a sudden switch-on of a bias in one lead and develop
the explicit expressions of the lesser Green’s function and
time-dependent current in the Keldysh and Kadanoff-Baym
contours. For noninteracting electrons and in the wide flat
band approximation, the problem is analytically soluble. In an
effort to clarify the partitioning discussion in the literature, we
address questions such as the following: Why do these two
methodologies lead to the same results if the initial states are
different? Why are the more general imaginary contour terms
reproduced by the Keldysh approach? Can one stick to the
state-of-the-art Keldysh NEGFs for transients even beyond the
wide band limit (WBL) and interacting electrons? Questions
of this kind arise when extending the NEGF formalism to
transients, therefore it is timely to identify very clearly the
points of discrepancy or equivalence between the two present
schemes.

This paper is structured as follows: in Sec. II we present
the Jauho, Wingreen, and Meir formulation of time-dependent
resonant tunneling transport. In Sec. III the assumptions of
the Keldysh approach are discussed and within this contour
the time-dependent current is obtained. In Sec. IV we present
the extended Keldysh contour and the results of lesser Green’s
function, followed by the conclusions.
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II. GENERAL FORMULATION

The model of time-dependent resonant tunneling transport
we consider consists of a central region, such as a quantum
dot, connected to the two metallic electrodes, described by the
bilinear Hamiltonian [3]

H =
∑

k,α=L,R

εkα(t)c†kαckα + ε0(t)d†
0d0

+
∑

k,α=L,R

[Vkα(t)c†kαd0 + H.c.], (1)

where c
†
kα(ckα) creates (annihilates) an electron with mo-

mentum k in the left (α = L) or right (α = R) lead, d
†
0(d0)

creates (annihilates) an electron at the resonance of energy ε0

in the central region C, and Vkα is the tunneling coupling
parameter. For clarity we consider a single-level quantum
dot (a noninteracting multilevel treatment is straightforward
but algebraically involved). This approximation has the main
advantage that the problem becomes analytically soluble,
allowing a direct comparison of the two time-dependent ap-
proaches. The absence of electron-electron or spin-dependent
interactions allows us to treat the electrons as spinless.

Following Jauho et al. [2,3], the external time dependence
due to a bias is absorbed in the tunneling matrix elements and
in the single-particle energies, which become time dependent.
This assumption preserves the temporal phase coherence in
the leads and central device, producing interference effects.

The time-dependent current from the lead α to the central
region C can be obtained from the time evolution of Nα =∑

k c
†
kαckα . The current Jα(t) is conveniently given by

Jα(t) = 2e

h̄
Re

[∑
k

V ∗
kα(t)G<

kα,0(t,t)

]
, (2)

in terms of the dot-lead lesser Green’s function G<
kα,0(t,t ′) =

i〈d†
0(t ′)ckα(t)〉. As standard, to calculate G<

kα,0 we use the
method of equations of motion to obtain the time-ordered
Green’s function Gt

kα,0(t,t ′) followed by a contour deforma-

tion. One writes Gt
kα,0(t,t ′) = −i〈T [ckα(t)d†

0(t ′)]〉 as [1]

Gt
kα,0(t,t ′) =

∫
dt1g

t
kα(t,t1) V ∗

kα(t1) Gt(t1,t
′), (3)

where Gt(t,t ′) = −i〈T [d0(t)d†
0(t ′)]〉 is the Green’s function of

the central region and gt
kα(t,t ′) = −i〈T [ckα(t)c†kα(t ′)]〉 is the

“free” uncoupled Green’s function of the leads.
For steady-state nonequilibrium transport, all involved

quantities depend only on time differences. In this case, the
time integral in Eq. (3) is a simple convolution, and one can
replace the integral equation in time by an algebraic equation in
energy by a Fourier transform. Explicit time-dependent terms
in the Hamiltonian break time-translational invariance, making
it necessary to evaluate the two-time Green’s functions.

In a similar way, one obtains the Dyson equation for the
central region Green’s function

G(τ,τ ′) = G0(τ,τ ′) +
∫∫

dτ1dτ2G0(τ,τ1)�(τ1,τ2)G(τ1,τ
′),

(4)

where the self-energy �(τ1,τ2) = ∑
kα Vkα(τ1)gkσ (τ1,τ2)

V ∗
kα(τ2) describes the coupling to the contacts. Here we

consider the wide band limit (WBL), which captures the main
physics of typical metallic electrodes while providing analytic
results. The wide-band approximation is valid if the density
of states of the leads ρ(ε) is a slowly varying function of
the energy ε in the neighborhood of the resonance energies
of the central device. Typically it amounts to neglecting the
energy shift of the dot resonance and the energy dependence of
the coupling. The retarded/advanced self-energy in the WBL
reads [1]

�r,a
α (t,t ′) = ∓ i

2
	αδ(t − t ′), (5)

where 	 = 2π
∑

α ρ(ε)|Vα|2. In this picture, the leads are
metallic contacts with infinite bandwidths. For the interacting
case, the approximation given by Eq. (5) is more severe, since
it means that interactions are instantaneously screened.

In the model under analysis the resonant tunneling device
is suddenly taken out of equilibrium by a switch-on of a bias
�α on the α lead. The application of an external bias produces
the formation of a dipole around the central region, which is
incorporated only as a shift in the single-particle energies of
the leads [2,3]. There is no further time dependence stemming
from the tunnel coupling, since we restricted ourselves to the
wide-band limit, Eq. (5). The time lapse between the lead and
dot will appear in the time evolution of the observables as
coherent oscillations in the short-time transients.

In the forthcoming sections we evaluate the current using
the two nonequilibrium approaches discussed in the Introduc-
tion.

III. KELDYSH CONTOUR

The problem of calculating the objects defined in the
previous section can be solved via Keldysh NEGF. In his
seminal paper [26], Keldysh proposed a generalization of
the diagrammatics for systems driven out of equilibrium.
By defining time-ordered contour operators in the interaction
representation, the expectation values of the Green’s functions
can be evaluated over the noninteracting states. One assumes
that system starts as noninteracting in the remote past at
t0 = −∞ and that the interaction is slowly switched on via
adiabatic hypothesis. When the system is fully interacting,
the external time-dependent perturbation is applied. To avoid
inconvenient integrals and, most importantly, to avoid referring
to the asymptotic nonequilibrium state at t = ∞, the contour
is folded backwards in order to switch off both perturbations
returning to the noninteracting state. This procedure is equiva-
lent to defining a two-branch time-ordered contour, exploited
by Schwinger and by Keldysh [7,26,27], illustrated in Fig. 1(a).

To evaluate the time-dependent current, we need to trans-
form integrals of two-time Green’s functions in the complex
contour of Eq. (3) into an integration in the real time domain.
We proceed according to Langreth’s prescription [28], and
rewrite the current in terms of the lesser, advanced, and
retarded contributions,

Jα(t) = −2e

h̄
Re

[
�<

α · Ga + �r
α · G<

]
(t,t), (6)
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(a) (b)

FIG. 1. Contours in the complex plane: (a) Schwinger-Keldysh
contour; (b) extended Keldysh (Kadanoff-Baym).

which is commonly known as the Meir-Wingreen formula for
the time-independent case. In Eq. (6), we adopted the short-
hand notation for integrals along the Keldysh contour [f · g] =∫ ∞
−∞ dt̄ f (t̄) g(t̄).

The embedding self-energies, which incorporate the renor-
malization of the dot due to the coupling with the leads, are
given by

�<,r
α (t,t ′) =

∑
k

Vkαg
<,r
kα (t,t ′)V ∗

kα, (7)

where we have already neglected any time dependence in the
couplings. In Eq. (7), the Green’s functions of the leads have
a simple analytic form [3],

g<
kα(t,t ′) = if (εkα)e−i

∫ t

t ′ εkα (t1)dt1 , (8)

gr
kα(t,t ′) = −iθ (t − t ′)e−i

∫ t

t ′ εkα (t1)dt1 . (9)

As mentioned previously, in our model the application of
the time-dependent bias results in a shift of the single-particle
energies εkα(t) = εkα + �α(t). Writing the self-energies in the
wide band approximation, one obtains

�<
α (t,t ′) = i	α

∫
dε

2π
fα(ε)e−i[ε(t−t ′)+∫ t

t ′ �α (t1)dt1], (10)

�r
α(t,t ′) = −i

	α

2
e−i[ε(t−t ′)+∫ t

t ′ �α (t1)dt1]δ(t − t ′), (11)

where 	 = ∑
α 	α and �< = ∑

α �<
α , and α = L,R.

The central region has the following retarded and advanced
Green’s functions:

Gr(t,t ′) = −iθ (t − t ′) e−i(ε0−i	/2)(t−t ′), (12)

Ga(t,t ′) = iθ (t ′ − t) e−i(ε0+i	/2)(t−t ′), (13)

simplified by the WBL self-energy, Eq. (5).
The lesser Green’s function of the dot is obtained in the

integral form via Dyson’s equation, Eq. (4). By iteration and
applying Langreth’s rules, the Dyson’s equation is rewritten
as [3]

G<(t,t ′) = G<
in(t,t ′) + [Gr · �< · Ga], (14)

where

G<
in(t,t ′) = [1 + Gr · �r] · G<

0 · [1 + �a · Ga]. (15)

In Eq. (14), the first term G<
in(t,t ′) refers to the initial

free distribution, the disconnected dot. A possible lack of
uniqueness, due to such dependence on the initial condition,
was discarded by Keldysh [26] based on the analysis of the

equation of motion of G<
0 . In addition, it is expected that a

heat bath washes out any dependence on the initial conditions
in the remote past, i.e., for time differences much larger than
the relaxation scale. In contrast, Caroli et al. [19] considered
a finite value for G<

in(t,t ′), attributing this feature to the lack
of relaxation in their model of the leads. In our problem, we
have explicitly verified in the time domain representation that
the contractions in (15) make G<

in(t,t ′) strictly zero, helped
by the singularity of the wide band approximation (5). We
stress that Keldysh’s prescription assumes Dyson’s equation
and a well-established solution, such as a stationary state or
thermodynamical equilibrium, before the time perturbation
sets in. Thus, one should be cautious when dealing with
Green’s functions that violate the above conditions and for
more general external fields, for instance, with no time
translational invariance.

For a vanishing initial condition term, the correlator
G<(t,t ′) reduces to the commonly known “Keldysh” lesser
Green’s function:

G<(t,t ′) =
∫∫

Gr(t,t1)�<(t1,t2)Ga(t2,t
′) dt1 dt2, (16)

expected to provide the long-time transport contribution.
Let us now consider the specific case of a sudden switch-on

of the bias on the α lead at t0 = 0, namely,

�α(t) = 0, − ∞ < t < 0
= �α, t � 0.

After the perturbation, one expects to observe coherent
oscillations in the α current Jα inversely proportional to �α ,
smoothened by the coupling from the leads.

Having specified the perturbation, we can evaluate the
current in Eq. (6). The two corresponding convolutions result
in

[�<
α · Ga] = i

∫
dε

2π
fα(ε)	α

[
e−i(ε−ε0−i	/2+�α )t

(ε − ε0 − i	/2)

+ (1 − e−i(ε−ε0−i	/2+�α )t )

(ε − ε0 − i	/2 + �α)

]
, (17)

and

[
�r

α · G<
] =

∫
dε

2π

∑
α′

fα′ (ε)	α	α′e−	t

∣∣∣∣ 1

(ε − ε0 + i	/2)

+ (e−i(ε−ε0+i	/2+�α′ )t − 1)

(ε − ε0 + i	/2 + �α′)

∣∣∣∣
2

. (18)

These objects have a nice interpretation: the first contribu-
tion, Eq. (17), is related to the current flowing into the central
region, while the second one, Eq. (18), gives the current flow
from the central region to the contact α.

It is important to notice that while deriving Eqs. (17)
and (18) we performed the unperturbed time integrals from
−∞ to 0 with the Green’s function in (13), i.e., a connected
dot. This means that, for all negative times, leads and dot are
coupled via wide band approximation. Therefore, the initial
state is in equilibrium, with equal chemical potentials, and
already coupled via WBL, which would dismiss the need of
an adiabatic switch-on of the connection. This is probably due
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to the fact that all electrons were considered as noninteracting
and the coupling simplified to the wide band limit, which
makes the problem soluble. The equivalence of the initial
buildup or adiabatic coupling for the noninteracting case with
relaxation is indicated by Ref. [6] by other methods. Another
delicate point is that in Ref. [3] JWM claim that the time-
dependent perturbation shift is performed before the adiabatic
coupling. In our interpretation, immediately before t0, the
system is already wide band coupled, with equal chemical
potentials, and at t0 the perturbation starts. This is equiva-
lent to the partition-free idea.

Direct substitution of (17) and (18) in (6) results in a closed
formula for the time-dependent current:

Jα(t) = J S
α + J T

α (t), (19)

where the J S
α is independent of time, given by

J S
α = −e

h̄

∫
dε

2π
	α	α̃

fα(ε − �α) − fα̃(ε − �α̃)

(ε − ε0)2 + 	2/4
; (20)

since J S
α = Jα(t 	 1/	) we call it the stationary current.

We associate the time-dependent part of Jα(t) with the
transient current, that reads

J T
α (t) = 2e

h̄
	αe−	t/2

∫
dε

2π
fα(ε)�α

{
−

∑
α′

fα′ (ε)	α′

2

[
�2

α′e−	t/2

[(ε − ε0)2 + 	2/4][(ε − ε0 + �α′ )2 + 	2/4]

+ �α′ [2(ε − ε0)cos[(ε − ε0 + �α′)t] + 	sin[(ε − ε0 + �α′)t]]

[(ε − ε0)2 + 	2/4][(ε − ε0 + �α′ )2 + 	2/4]

]
− Im

[
e−i(ε−ε0+�α )t

(ε − ε0 − i	/2)(ε − ε0 − i	/2 + �α)

]}
,

(21)

which reproduces the expression obtained by the partition-free
method [4]. Figure 2 shows the numerical time evolution of the
left, right current and dot occupation for different values of the
switched bias �L. The “ringing” response of the left current,

FIG. 2. Time-dependent (a) left current JL(t) and (b) minus the
right current JR(t) through the double-barrier tunneling device after
the switch of a sudden bias �L in the left lead. Note that (a) shows the
same “ringing” behavior of Ref. [2] (compare for instance, �L = 6	).
The inset in (b) shows the time evolution of the occupation of the dot.
Numerical integration was performed at zero temperature, chemical
potentials μL = μR = ε0 = 0, and symmetric coupling 	L = 	R =
0.5 (	 = 	L + 	R).

reported in Ref. [2], is also observed here, due to the phase
difference between the left bias and the dot level. The larger the
energy difference, the shorter is the period of oscillation. On
the other hand, the right current of Ref. [4] is also reproduced,
here for values of 	L = 	R = 0.5. Thus we have found that
for this problem the Keldysh approach of Jauho, Wingreen and
Meir describes transients exactly.

The Keldysh approach was expected to reproduce the
partition-free results only for very large time differences, i.e.,
the steady state. To achieve this full agreement in the transients,
some approximations were crucial. The most evident is the
absence of electron-electron interactions, which can be tackled
only by a proper perturbation theory along the Kadanoff-Baym
contour. Another important point is that before applying the
time perturbation, one must have an initial state at equilibrium:
that both chemical potentials must be aligned with the level
of the dot. This is the partition-free starting point, namely,
the device is at chemical and thermal equilibrium. Lastly, the
Markovian (or “memory-free”) character of the wide band
coupling simplifies integrations from −∞ to 0 leading to the
coupled initial state at t = 0. The dot is dressed by the leads
from −∞ to 0 by a mean field, with trivial time/energy scales.
In the next section we examine the partition-free approach via
the Kadanoff-Baym contour to have an explicit comparison of
how the two methods develop in different contours.

IV. EXTENDED KELDYSH (KADANOFF-BAYM)
CONTOUR

Another method of dealing with the expectation values in
the Green’s functions is defining the latter in a grand-canonical
ensemble average [23,24]. In this description, it is standard
to use Green’s functions defined along the imaginary axis
with periodic boundary conditions, namely Matsubara Green’s
functions. The advantage of such a procedure is to open
the possibility of considering more general initial conditions,
in contrast to the Keldysh approach which assumes an
uncorrelated initial condition in the remote past, as well as their
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influence in the very short-time transients. The mixed contour
including an imaginary extension, depicted in Fig. 1(b), was
shown to accommodate the many-body perturbation theory
without need of an adiabatic hypothesis [21,22]. This extended
Keldysh contour is often referred to in the literature as
Konstantinov-Perel [23], Danielewicz [20,22], and Kadanoff-
Baym [24]. We will adopt the latter nomenclature.

The three-branch contour of Fig. 1(b) favors the introduc-
tion of new “mixed” Green’s functions with time arguments
in the real and imaginary tracks. We follow the notation of
Ref. [28], namely

G
(τ,t) = −iGM (τ,0) Ga(t0,t), (22)

G�(τ,t) = iGr(t,t0) GM (0,τ ), (23)

where GM are the Matsubara Green’s functions,

GM (τ1,τ2) = 1

−iβ

∞∑
m=−∞

e−ωm(τ1−τ2)

(ωm − h − �M + μ)
. (24)

Integrals along the real and imaginary axes are denoted as [[f ·
g]] = ∫ ∞

t0
dt̄ f (t̄) g(t̄) and [[f � g]] = −i

∫ β

0 dt̄ f (t̄) g(t̄),
where in the former the lower integration limit is t0; this is why
we change slightly the brackets notation to avoid confusion
with the Keldysh contour. Langreth’s rules are also modified,
e.g., the product c = a · b in the Kadanoff-Baym contour has
the lesser component c< = a< · ba + ar · b< + a� � b
. With
this in hand, we can write the current through the central
device,

Jα(t) = 2e

h̄
Re

[[
�<

α · Ga + �r
α · G< + ��

α � G
]](t,t), (25)

which is similar to the Keldysh current, Eq. (6), except for
the different integration limits and the extra term on the right-
hand side. The latter is expected to account for possible initial
correlations and initial-state dependence [29]. Note that in the
noninteracting problem there are no initial correlations. The
mixed self-energy contains a sum over Matsubara frequencies
of the lead ωq , which in the wide band limit results in [9]

��
α(t,τ ) = 	α

−iβ

∑
q

eωqτ

∫
dε

2π

e−i(ε+�α )t

ωq − ε + μ
. (26)

The current in Eq. (25) is often presented as a generalization
of the Meir-Wingreen current [30] to the transient time domain,
due to the contribution [[��

α � G
]]. However, we have just
found in the noninteracting case that currents from the Keldysh
contour provide the same transients and steady state from the
partition-free approach of Stefanucci and collaborators [4],
which is equivalent to integrating along the Kadanoff-Baym
contour. Next we show that this contradiction is only apparent
by examining how each contraction in (25) contributes to the
current.

For the extended contour of Fig. 1(b), the integrals in
Eq. (25) become

[[�<
α · Ga]] = i

∫
dε

2π
fα(ε − μα)	α

1 − e−i(ε−ε0−i	/2+�α )t

(ε − ε0 − i	/2 + �α)
,

(27)

[[��
α � G
]] = i

∫
dε

2π
fα(ε − μα)	α

e−i(ε−ε0−i	/2+�α )t

(ε − ε0 − i	/2)
,

(28)

[[
�r

α · G<
]] = −i	α

2
G<(t,t). (29)

First, we observe that the integration [[�<
α · Ga]] is not equal

to [�<
α · Ga] found in (17), but rather, it is the sum of Eqs. (27)

and (28) that reproduces Eq. (17), the current that enters the
dot. This illustrates that a direct comparison of the formulas
integrated along different contours should be avoided. Another
example is the case of the “Keldysh lesser” Green’s functions
Gr · �< · Ga, which will be examined later below.

For the second convolution, [[��
α � G
]], the Matsubara

sums were converted into integration along a deformed
contour, indicated in Refs. [4,9]. Although the contraction
runs over imaginary times, it yields a function of real times
and pure transients, i.e., limt→∞[[��

α � G
]] = 0. Uncorrelated
transients (i.e., produced by a noninteracting Hamiltonian),
are present in all contributing terms of Eq. (25), not only in
[[��

α � G
]]. (This has been also noticed in Ref. [25].)
The current that leaves the dot is linked to Eq. (29). Along

the extended contour, the lesser Green’s function has a more
complex structure than those of the previous section. The
several mixed contractions were also examined by Velicky
et al. in the study of initial correlations [6] and in references
therein. We will keep with the notation of Stefanucci and
Almbladh [4]. The application of Langreth’s rules to the Dyson
equation along the Kadanoff-Baym contour, and substitution
of additional Dyson’s equations, results in [4,9]

G<(t,t) = Gr(t,t0)G<(t0,t0)Ga(t0,t)

+ i Gr(t,t0)[[GM � �
 · Ga]](t0,t)

− i [[Gr · �� � GM]](t,t0)Ga(t0,t)

+[[Gr · �< · Ga]](t,t)

+[[Gr · [[�� � GM � �
]] · Ga]](t,t), (30)

which is more intricate than Keldysh’s integral form of the
Dyson’s equation, Eq. (14).

In Eq. (30), the first term is related to the initial distri-
bution, G<(t0,t0) = GM (t0,t

+
0 ) = ∫

dζ

2π
f (ζ ) 1

ζ−h0
, given by the

thermodynamical ensemble. The first and the fourth term,
Gr · �< · Ga, have no information about initial correlations,
indicated by the absence of the “hooks” �,
. The second and
third convolutions in Eq. (30) depend on the initial occupation
of the dot via integrals along the imaginary track and mixed
embedding �
,�. The double integral in the last term of
Eq. (30) vanishes, since the nonzero contributions from the
two integrals are located in different half planes [4,9].

The explicit form of each contribution of Eq. (30) is given,
in order, by [4]

G<(t,t)

= i

∫
dε

2π
e−	t

{
	 f (ε)

[(ε − ε0)2 + 	2/4]

+
∑

α

fα(ε)	α

[
ei(ε−ε0−i	/2+�α )t − 1

(ε − ε0 − i	/2 + �α)(ε − ε0 + i	/2)
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+ e−i(ε−ε0+i	/2+�α )t − 1

(ε − ε0 + i	/2 + �α)(ε − ε0 − i	/2)

+ [ei(ε−ε0−i	/2+�α )t − 1][e−i(ε−ε0+i	/2+�α )t − 1]

(ε − ε0 − i	/2 + �α)(ε − ε0 + i	/2 + �α)

]}
.

(31)

This result is also reproduced with the Keldysh contour,
Eq. (14), as long both leads and dot are in thermal equilibrium,
with equal chemical potentials. In Eq. (31), we can identify the
unperturbed but connected dot in the denominator of the first
three terms, which refer to the initial state at t0 = 0. Although
developed along different contours, the substitution of G< of
Eq. (31) back into [[�r

α · G<]], in Eq. (29), reproduces the
Keldysh current leaving the dot, Eq. (18).

In the long-time limit the factor e−	t quenches Eq. (31),
except for the Keldysh-like convolution [[Gr · �< · Ga]]. This
integral contributes, together with Eq. (27), to the formation
of the steady state current, since

lim
t→∞

[[
�r

α · G<
]] = 	α

2π

∑
α′

	α′ fα′ (ε − �α′ )

ε2 + 	2/4
, (32)

lim
t→∞[[�<

α · Ga]] = − 	

2π

	αfα(ε − �α)

(ε2 + 	2/4)
. (33)

In the presence of relaxation, properties of the initial state
are expected to be washed out at late times of the process,
which is verified by the quenching of G<. In this limit both
currents converge to the steady state.

V. CONCLUSIONS

In this paper we have investigated two nonequilibrium
Green’s functions approaches to the problem of a central quan-
tum dot connected to two metallic leads. Our aim is use this
simple model to compare the electronic transport results using
the state-of-the art Keldysh approach of Jauho, Wingreen, and
Meir [3], with those obtained from the so-called partition-free
extended Keldysh approach of Stefanucci and Almbladh [4].
For the case of interacting electrons, initial-state correlations
lead to differences in the time transients [5,29,31]. In contrast,
within the single-particle approximation we find that, contrary
to previous claims in the literature, the two approaches lead
to identical results in the wide band approximation. This limit
leads to a closed solution of the Dyson’s equation. Despite the
presence of additional contractions along the imaginary axis
of the extended Keldysh contour, e.g., in Eq. (30), they unfold
to the same Keldysh expressions. This raises a flag of caution
regarding straightforward comparison of formulas evaluated
along different contours. We believe that the corrections in
more realistic models, beyond the wide band limit, are small,
as long as the energy dependency in the density of states of the
leads does not introduce an additional energy scale of the order
of the transient time. Attempts to insert an energy dependence
in the couplings can be found in Refs. [5,32].

We also call attention to the fact that the JWM Keldysh
result relies on a WBL-connected dot for all times before
the perturbation is turned on, which contrasts with the view
of an adiabatic turn-on of the couplings between isolated
partitions. We consider that for this particular problem of
noninteracting electrons with a wide band coupling to the

leads, there is no need for the adiabaticity hypothesis, since the
problem is analytically soluble from beginning. Another point
of interest is that the system is connected and in equilibrium
before the time perturbation, with equal chemical potentials in
the central region and leads. This supports a “partition-free”
reinterpretation of JWM’s approach.

A generalization of the problem, e.g., the incorporation of
electronic interactions even at an approximate level or more
realistic model for the junctions with couplings beyond WBL,
raises the question whether the initial condition term G<

in is
zero for more intricate approximate self-energies that do not
properly satisfy Dyson’s equation or Keldysh’s assumptions.
It has been shown that correlations modify the short-time
transient profiles [5,29,31], as well as finite bandwidths [32].

These issues are of central interest for the theory of time-
dependent transport. We believe that our study sheds some
light on the literature current controversies.
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APPENDIX: NOTATION

In this paper we use the following shorthand notation for
the convolution time integrals:

[f · g](t,t ′) =
∫ ∞

−∞
dt̄ f (t,t̄) g(t̄ ,t ′), (A1)

[f � g](t,t ′) = −i

∫ β

0
dt̄ f (t,t̄) g(t̄ ,t ′). (A2)

To compact the expressions Ref. [2] introduces the time-
dependent spectral function A(ε,t),

Aα(ε,t) =
∫ t

−∞
e
iε(t−t1)+i

∫ t

t1
�α(t2)dt2Gr (t,t1)dt1. (A3)

In the time-independent case (�α = 0), Aα is just the
Fourier transform of the retarded Green’s function, reducing
to the standard spectral function. To reproduce the closed
analytical expression [2,3] for a sudden step bias,

A(ε,t) = 1

ε − ε0 + i	/2

{
1 + �α

1 − ei(ε−ε0+i	/2+�α )

ε − ε0 + i	/2 + �α

}
,

(A4)

one needs to consider a connected dot before the perturbation.
In addition, it was claimed [3] that the perturbation shift was
performed first, and the adiabatic coupling later. However the
perturbation starts from a certain time t0, when the system
is already wide band interacting. This message might be
significant for several Keldysh applications on tunnel devices.

In this notation, the current is written in the common form

Jα(t) = −e

h̄
	α

[∫
dε

π
fα(ε) Im[Aα(ε,t)] + n(t)

]
, (A5)

n(t) =
∑
α′

	α′

∫
dε

2π
fα′ (ε)|Aα′(ε,t)|2, (A6)

where the out contribution is written explicitly as a time-
dependent occupation n(t) of the central device.
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(2010).
[21] M. Wagner, Phys. Rev. B 44, 6104 (1991).
[22] P. Danielewicz, Ann. Phys. 152, 239 (1984).
[23] O. V. Konstantinov and V. I. Perel, Zh. Eksp. Teor. Fiz. 39, 197

(1960) [Sov. Phys. JETP 12, 142 (1961)].
[24] G. Baym and L. P. Kadanoff, Phys. Rev. 124, 287 (1961).
[25] M. Ridley, A. MacKinnon, and L. Kantorovich, Phys. Rev. B

91, 125433 (2015).
[26] L. V. Keldysh, Zh. Eksp. Teor. Fiz. 47, 1515 (1964) [Sov. Phys.

JETP 20, 1018 (1965)].
[27] J. Maciejko (unpublished).
[28] R. van Leeuwen, N. E. Dahlen, G. Stefanucci, C. O. Almbladh,

and U. von Barth, in Time-dependent Density Functional Theory
(Springer, New York, 2006), pp. 33–59.

[29] P. Myöhänen, A. Stan, G. Stefanucci, and R. van Leeuwen, Phys.
Rev. B 80, 115107 (2009).

[30] Y. Meir and N. S. Wingreen, Phys. Rev. Lett. 68, 2512 (1992).
[31] V. Vovchenko, D. Anchishkin, J. Azema, P. Lombardo, R.
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