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We investigate the issue of eigenfunction localization in random fractal lattices embedded in a two-dimensional
Euclidean space. In the system of our interest, there is no diagonal disorder—the disorder arises from random
connectivity of nonuniformly distributed lattice sites only. By adding or removing links between lattice sites, we
change the spectral dimension of a lattice but keep the fractional Hausdorff dimension fixed. From the analysis
of energy level statistics obtained via direct diagonalization of finite systems, we observe that eigenfunction
localization strongly depends on the spectral dimension. Conversely, we show that the localization properties
of the system do not change significantly while we alter the Hausdorff dimension. In addition, for low spectral
dimensions, we observe superlocalization resonances and a formation of an energy gap around the center of the
spectrum.
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I. INTRODUCTION

Anderson localization (AL) is a single-particle disorder
induced effect, which leads to exponential localization of
particles’ eigenfunctions [1–5]. In his ground breaking work,
Anderson considered noninteracting electronic gas in a tight-
binding model in the presence of on-site disorder. Since then,
AL was investigated in many different models, including
off-diagonal disorder [6–8], disorder correlations [9–12],
random fluxes [13,14], localization in the momentum space of
classically chaotic systems [15,16] and, recently, localization
in the time domain [17,18].

The interest in AL was renewed after the first experimental
observation of the phenomenon in ultracold atomic gases
[19–22]. Although the Anderson model was created to describe
electronic gases, AL is difficult to observe in metals due to
electron-phonon and electron-electron interactions. On the
contrary, interatomic interactions can be switched off in a
system of ultracold atomic gases trapped in optical lattice
potentials [23]. An optical lattice serves as an artificial,
phononless crystalline structure, whose geometry and prop-
erties can be easily changed [24,25]. Therefore, in recent
years, ultracold atoms in optical lattices have become a very
important toolbox used to test diverse physical models and
phenomena [26–28].

The dimensionality of a system plays an important role in
the context of AL [2,3,5]. In particular, in three-dimensional
(3D) space, a phase transition occurs at a critical energy,
called the mobility edge, separating localized and extended
states [29,30]. It is therefore natural to investigate the AL
phenomenon in systems with noninteger dimension, i.e., in
fractals [31,32]. Whereas in Euclidean space it is sufficient
to define one kind of space dimension, in the case of fractals
one needs to distinguish: the dimension of the embedding
Euclidean space D, the Hausdorff dimension dH , and the spec-
tral dimension ds [32,33]. Whereas the Hausdorff dimension
describes how the number of sites scales with the system size,
the spectral dimension is related to a random walk on the
lattice: the number of distinct sites Sn visited by a random
walker in n steps scales as Sn ∝ nds/2, provided that ds < 2.
The studies proved that it is the spectral dimension ds that is

relevant in AL and that ds = 2 is the lower critical dimension,
below which all the states are localized in the presence of a
disorder potential [34].

Another important theoretical model in the study of
localization properties is the quantum percolation model
(QP) [35–38]. The Anderson model describes particles in the
presence of potential disorder (purely diagonal), whilst QP
involves the binary kinetic disorder (purely off-diagonal). In
QP models the disorder comes from random geometry: a QP
lattice, which is a subset of the D-dimension lattice, arises by
a removal of a number of sites or links with a probability q

(being the only parameter of the model). Despite its simplicity,
QP models still give rise to controversies. The main concern
is the question of existence of the localization-delocalization
transition in 2D models for q > 0 (see Refs. [39–41] and
references therein). In particular, this issue might be important
in the context of application of QP models in the description
of transport properties in, e.g., manganite films [42], granular
metals [43], and doped semiconductors [44].

In the present paper, we investigate eigenfunction localiza-
tion in random fractal lattices (RFL), i.e., in fractal objects
with random site connectivity in the absence of any diagonal
disorder, Fig. 1. We would like to stress that QP systems do not
belong to fractal objects. That is, in the QP case only an infinite
cluster of a percolated lattice at the percolation threshold
is a fractal object [45]. Here, on the contrary, we consider
a family of lattices with well defined Hausdorff dimension
dH [46]. Starting with the minimal, connected lattice (i.e.,
a lattice without loops) and adding links between nearest
neighbors, we can increase the spectral dimension ds of a
lattice and keep the Hausdorff dimension dH fixed. Therefore
the main focus of this paper is to investigate the presence or
absence of localization in RFLs while changing the spectral
and Hausdorff dimensions independently. It is worth noting
that the theoretical model investigated here can be realized
in ultracold atoms laboratories where lattice geometry can be
nearly arbitrarily shaped [47–49].

This paper is organized as follows. In Sec. II, we describe
the growth algorithm of random fractal lattices and how the
spectral dimension changes when new lattice links are created.
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FIG. 1. An example of a minimal random fractal lattice (RFL)
mapped on the 2D square lattice for η = 1, see text. The solid blue
lines indicate that the neighboring sites are linked, i.e., the quantum
tunneling between these sites is possible. Red dotted lines represent
the lack of quantum tunneling between nearest neighbors. By adding
links to the lattice (i.e., replacing a number of red dotted lines
with blue lines) one increases the spectral dimension but leaves the
Hausdorff dimension unchanged.

In Sec. III, we focus on localization properties of RFLs and on
their dependence on the spectral and Hausdorff dimensions.
Particularly, we analyze superlocalization resonances and for-
mation of an energy gap which emerges in the system for small
spectral dimension. In Sec. IV, we investigate transmission
probabilities through the system and quantum evolution of
initially localized particles. Finally, in Sec. V, we conclude.

II. RANDOM FRACTAL LATTICES

We consider a family of lattices that we call random fractal
lattices (RFLs), which first arose in a model of dielectric
breakdown [46]. The RFLs are lattices with random site
connectivity and with well-defined Hausdorff dH and spectral
ds dimensions. The Hausdorff dimension, or the capacity
dimension, describes how the number of sites scales with the
system size. In other words, if a lattice in Fig. 1 is a fractal
object, then the number of sites inside a sphere of radius r

is proportional to rdH , where in general dH is a noninteger
exponent [45]. On the other hand, the spectral dimension is
related to a random walk on the lattice. The number of distinct
sites Sn covered in n steps of a random walk is proportional to
nds/2, if ds < 2. From a general analysis, the spectral dimension
is never larger than the Hausdorff dimension [32,33].

RFLs under consideration are embedded in the 2D Eu-
clidean space and have their Hausdorff and spectral dimensions
smaller than 2. A minimal RFL, i.e., a lattice with the smallest
number of lattice links, is a single connected lattice generated
by the growth algorithm defined in Ref. [46]. In a nutshell,
a new lattice site (i ′,j ′) is chosen and linked to the existing
lattice at site (i,j ) with the probability

P ((i,j ) → (i ′,j ′)) = (φi ′,j ′ )η∑
(φi ′,j ′ )η

, (1)

where the summation goes over all possible choices, η is a
free parameter and φi,j is a function fulfilling discrete Laplace
equation:

φi,j = 1
4 (φi,j+1 + φi,j−1 + φi+1,j + φi−1,j ). (2)

FIG. 2. The plot illustrates the change of the spectral dimension
of RFLs for the Hausdorff dimension dH = 1.75 ± 0.02 when
increasing the number of lattice links. The dimensionless parameter p

is the fraction of links added to the minimal, single connected lattice.
A parameter value p = 0 represents RFLs with the minimal number
of links, i.e., no link can be removed without disconnecting a part
of the lattice. Conversely, p = 1 represents RFLs with the maximal
number of links, i.e., no link can be added without creating an extra
lattice site. The value of the spectral dimension ds for a given p was
obtained from the exponent of the number of distinct sites visited by
a random walker Sn ∝ nds/2, and averaging over 2000 independent
RFLs and 500 realizations of random walks of length 2500.

At start, we set φi,j = 0.5 everywhere. When a site (i ′,j ′)
is being connected to the lattice, then the value of φi ′,j ′ is
changed to zero. Before linking another lattice site, the values
of φ in the neighborhood of (i,j ) needs to be updated [typically
in 5–20 iterations of Eq. (2)]. The algorithm is stopped after
reaching N lattice sites. The lattices grown in this manner have
nonuniform geometry, both in the lattice sites and lattice links
occurrence, as in Fig. 1. In particular, the two neighboring
lattice sites do not necessarily need to be connected and the
closed loops are forbidden, i.e., a minimal RFL is created. By
adding links between nearest neighbors to a given minimal
RFL, one opens up new possibilities for a random walker to
explore and therefore increases the spectral dimension ds of
the system while keeping the Hausdorff dimension dH intact.

The Hausdorff dimension of RFLs depends on the value
of the parameter η [46]. For example, setting η = 1 one can
generate a minimal RFL with the Hausdorff dimension dH =
1.75 ± 0.02 and the spectral dimension ds = 1.33 ± 0.03.
Adding links to a minimal RFL results in an increase of the
spectral dimension, Fig. 2. At the same time, the Hausdorff
dimension dH remains unchanged.

III. LOCALIZATION PROPERTIES

In the following, we analyze solutions of the Schrödinger
equation

Eψ(i,j ) = −
∑

i ′,j ′
ψ(i ′,j ′), (3)

where (i,j ) denotes a position on a RFL embedded in the 2D
Euclidean space and the sum runs over nearest-neighbor sites
if there is a link between (i,j ) and (i ′,j ′). We assume that the
tunneling amplitudes of a particle between neighboring sites
and the Planck constant are equal to unity.
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A. Analysis of energy level statistics

In our analysis we investigate two distinct scenarios. First,
we fix the Hausdorff dimension by setting η = 1 in (1),
which corresponds to dH = 1.75 ± 0.02. Then, we change
the spectral dimension in the range between 1.33 and 1.55 by
adding links to the minimal RFLs, see Fig. 2. In the second
scenario, we do the opposite, i.e., we fix the spectral dimension
(ds ≈ 1.35 or ds ≈ 1.5) and change the Hausdorff dimension
by varying the parameter η in (1).

In order to explore the presence or absence of localization
of eigenfunctions of a particle in RFLs, we use a convenient
method engaging the energy level statistics obtained via
direct diagonalization of finite systems [50–52]. Since the
localized states usually have very small overlaps (as they
may be localized in different parts of the system), the energy
levels can be nearly degenerate. This is why the localization
of eigenstates can be observed directly from the spectrum.
Therefore we expect that in the localized phase the energy level
statistics follow the Poisson distribution, and in the delocalized
phase fulfill the Wigner-Dyson distribution [50–52]. Having
the ordered spectrum of energy levels {Ei}, we can calculate a
quantity

ri = min(δi,δi−1)

max(δi,δi−1)
, (4)

where δi = Ei − Ei−1. Next, we average the results over 2000
realizations of RFL and over neighboring energies r(E) = 〈ri〉.
The distinction between the two regimes is possible since for
the Poisson distribution r(E) ≈ 0.3863 localized phase) and
for the Wigner Dyson distribution r(E) ≈ 0.5359 (delocalized
phase) [50–52].

To investigate the localization properties of wave functions
under the change of the spectral dimension of RFLs, we plot
r(E) in Fig. 3 (top panel). The vertical axis expresses the
spectral dimension via the dimensionless parameter p, see Fig.
2. The panel illustrates strong dependence of the localization
properties on the spectral dimension ds . While increasing
the spectral dimension we observe a smooth transition from
the localized to delocalized phase, what is evident in the
middle panel of Fig. 3, where the averaged ratio r(E) is
plotted for two extreme values of ds . Furthermore, we observe
nonmonotonous dependence of r(E) on energy (i.e., the
localization is stronger near the edges and the center of the
spectrum), which has been also observed in QP models [37,40].

In the bottom panel of Fig. 3, we present r(E) for a
few different Hausdorff dimensions dH and very similar
spectral dimension ds . The data with different dH do not differ
significantly apart from the edges of the spectra. The results
show that, similarly to the AL models [34], it is the spectral
dimension ds that is the relevant dimension in the context of
the localization properties of the system.

B. Energy gap and superlocalization resonances

In Fig. 3, we can observe a peculiar narrow energy gap
� around E = 0 for ds � 1.4, which eventually closes up
when the spectral dimension is being increased. We find
that the value of energy gap � for the minimal RFLs (i.e.,

FIG. 3. A plot of the averaged ratio of consecutive energy
level spacings r(E) of RFLs with the fixed Hausdorff dimension
dH = 1.75 ± 0.02 (top), and two cuts for the extreme cases (middle).
The vertical axis in the top panel shows the impact of the spectral
dimension ds , through the dimensionless parameter p, see Fig. 2,
on the level statistics. With increasing ds , the system gradually
delocalizes. For low values of p (corresponding to ds ≈ 1.35) and
near E = 0, there is a narrow energy gap emerging, see the discussion
in the main text. The localization is not much influenced by a
change of the Hausdorff dimension (bottom). The RFL systems with
different values of dH and very similar ds possess similar localization
properties, showing that it is the spectral dimension ds that is the
relevant dimension in this context. All RFLs analyzed here consist of
N = 5000 sites.

ds = 1.33 ± 0.03) of length N = 5000 is

� = 0.114 ± 0.017. (5)

The energy gap (5) decreases slightly in larger systems,
however, it seems that � survives in the thermodynamical
limit, see Fig. 4. In order to illustrate the energy gap more
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FIG. 4. The change of the energy gap � near E = 0 with the
increasing size of the system N for the minimal RFLs. The values
were averaged over 200 realizations. The error bar indicates one
standard deviation, and the black dashed lines represent the minimal
and the maximal value obtained in 200 realizations. The numerical
values were obtained via the direct diagonalization.

clearly we show in Fig. 5 the participation ratio PR(E),

PR(E) =
∑

(i,j )

|〈(i,j )|ψ(E)〉|4, (6)

where |ψ(E)〉 is an eigenstate corresponding to an energy E

and |(i,j )〉 is a state localized at a lattice site denoted by (i,j ) in
the 2D Euclidean space. The participation ratio is yet another
measure of the localization [2,3]. That is, the inverse of PR

estimates a number of fractal points on which an eigenstate is
localized on.

What is most striking in Fig. 5 is the emergence of
peaks that are related to superlocalization resonances also
observed in the QP model [37]. The resonances appear for
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FIG. 5. A plot of the participation ratio PR(E) of the minimal
RFLs (averaged over 2000 realizations). The participation ratio PR

confirms the existence of the energy gap �. Also, an additional
structure is revealed: we observe some very narrow superlocaliza-
tion resonances for a discrete set of degenerate energies, where
Er = 0,±

√
5±1
2 ,±1,±√

2 are the most dominant. For the resonant
eigenenergies Er , the system reduces to a few very small clusters, see
Fig. 6. Note that the energy gap � is averaged over many realizations
and a single realization value might differ, see Fig. 4. Due to this fact,
the averaged PR(E) is smeared around E = �.

FIG. 6. A sample building blocks responsible for the superlocal-
ization resonances: an eigenstate of a four-site block corresponding to
E = 0 (a) and an eigenstate of a ten-site block related to E = √

3 (b).
A dot represents a nonzero value of an eigenstate on a given sites ψi :
a dot’s size scales with |ψi | and red/blue color represents plus/minus
sign of ψi . Notice that a state of block (a) has the same energy as an
eigenstate of a lattice in (c) [connecting empty sites to an empty leg
of block (a) does not change its energy].

a discrete set of energies Er and they are dominant for
Er = 0,±

√
5±1
2 ,±1,±√

2. The presence of the resonances is
not visible in Fig. 3 because in Eq. (4) the degenerate levels
are discarded to avoid divergence. The name superlocalization
stems from the fact that the eigenstates localize on very small
(a few lattice site) disjoint clusters. For example, a zero-energy
state can be localized on two sites only, as long as a certain
building block appears on the lattice boundary. In Fig. 6(a),
we see a block with one vertex and four lattice sites. Note that
its zero-energy eigenstate has nonzero values on two sites only
and the other two sites form an “empty leg.” Now notice that a
structure in Fig. 6(c) must have similar zero-energy eigenstates
because connecting an empty lattice to an empty leg of a block
like in Fig. 6(a) does not change a zero-energy eigenstate
localized on two sites. Therefore, if a lattice geometry allows
for small blocks [like, e.g., (a) or (b) of Fig. 6], then some
eigenstates of the lattice coincide with those of small blocks
and superlocalization resonances emerge.

If some blocks are frequently occurring in the lattice, the
corresponding superlocalization resonances can be extremely
degenerate. For example, for the minimal RFLs with dH =
1.75 ± 0.02 about 10% of eigenstates have zero eigenenergy.
The zero-energy manifold is thus extended over a substantial
number of lattice points that is related to the appearance of the
energy gap in the spectrum. That is, the zero-energy manifold
is large and other eigenstates with nonvanishing overlap on the
manifold must necessary possess different energies.

The four-site structure shown in Fig. 6(a) has also non-
zero-energy eigensolutions, for instance, corresponding to
E = −√

3. However, such eigenstates do not have an empty
leg and therefore if the block is connected to an empty big
lattice, these eigenstates are disturbed. Nevertheless, it is
possible to build a three-vertex block, see Fig. 6(b), where there
are eigenstates corresponding to E = −√

3, which possess the
empty legs and are not disturbed when the block is attached
to a big empty lattice. Such a three-vertex structure is far less
common in RFLs, which explains the low abundance of the
E = −√

3 superlocalization resonance (less then 1‰).
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FIG. 7. The energy-dependent transmission probability of a
quantum particle between the most distant sites of a lattice of length
500 for η = 1 (top) and the same transmission probability averaged
over the corresponding energy spectra (bottom). The curves on the top
panel were plotted for p = 0.95 (solid red), 0.55 (black dashed), and
0.05 (blue dotted). We observe that the transition probability strongly
increases while we add links to the lattice, which is in agreement
with Fig. 3. Also, one can distinguish the termination of transport for
p = 0.05 around E = 0, which corresponds to the energy gap in the
system and for the resonant energies Er (most critically for E = ±1).
The data were averaged over 2000 realizations.

IV. TRANSMISSION AND QUANTUM EVOLUTION

In this section, we investigate the transport properties of
a quantum particle on RFLs: the transmission probability
through the lattice and the evolution of a particle initially
localized on a single lattice site. Here, we focus on small
systems with 500 lattice sites only because smaller systems
are closer to the experimental reality in ultracold atomic gases.

The transmission probability from site r to site r ′ of a
quantum particle with the energy E is defined [2] as

t(r,r ′,E) = 〈|〈r|G+(E)|r ′〉|2〉, (7)

where 〈..〉 denotes average over different realizations of
RFL, G+(E) = limη→0+ (E + iη − H )−1 is the retarded one-
particle Green’s function [53]. We plot the transmission
probability throughout considered lattices, i.e., between the
most distant sites, in Fig. 7. The top panel presents the
dependence of the transmission probability on energy for
different spectral dimensions of RFLs, whereas in the bottom
panel, there are transmission probabilities averaged over entire
energy spectra for different number of links in the system. In
an agreement with the results presented in Fig. 3, we observe

FIG. 8. The evolution of a quantum particle in a sample RFL
lattice for the two extreme cases: the minimal number of links (a)
and the maximal number of links (b) in a given fractal geometry. We
chose a system of 500 lattice sites generated for η = 1, Eq. (1). The
initial state was localized on a single lattice site. (a) and (b) present the
probability densities of finding a particle for different evolution times.
(c) and (d) present the time averaged densities for 50 < t < 150.

a drastic reduction (five orders of magnitude) of the transport
while decreasing the number of links in the system (bottom
panel). Furthermore, we can see a number of strong dips in
the plot of t(E) (top panel), especially for p = 0.05. These
dips correspond to the energy gap around E = 0 and the
superlocalization resonances for discrete degenerate energies,
see Fig. 5. The most pronounced dips are related to E = 0
(about 10% of all energy levels correspond to E = 0), ±1
(4%), and ±√

2 (1%). Note that an increase of p (black dashed
and red solid curves in the top panel) narrows the dip around
E = 0 significantly down because the gap is disappearing.

Furthermore, the transport properties of a quantum particle
can be investigated more directly by solving the time-
dependent Schrödinger equation

i∂tψ(i,j ) = −
∑

i ′,j ′
ψ(i ′,j ′), (8)

cf. Eq. (3).
In panels (a) and (b) of Fig. 8, we present the snapshots

of the evolution of a quantum particle in lattices for the two
extreme cases: the minimal and the maximal number of links
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for a given geometry. In panels (c) and (d), the time averaged
results are shown. Starting from the same initial, fully localized
(on a single lattice site) state, we obtain the opposing results:
the probability density of finding a particles is either localized
around the initial state or explores the whole lattice.

V. CONCLUSIONS

We have investigated localization and transport of a
quantum particle in lattices with a fractal structure. The
lattices consist of points that form a connected cluster. Sites
of the lattices are generated so that their fractal (Hausdorff)
dimension dH is controlled. Independently, one can control
the spectral dimension ds of the systems by choosing how
many nearest-neighbor sites are linked to a given lattice
point. It allows us to analyze how the localization properties
vary with independent changes of the Hausdorff and spectral
dimensions.

Analysis of energy level statistics and participation ratio of
eigenstates shows that while the localization properties depend
very weakly on dH , they change strongly with ds . For the
smallest spectral dimension of the systems, we observe strong
localization of eigenstates. With an increase of ds , eigenstates
loose their localization properties and become extended over
the entire finite lattices that we consider. Disorder in our

systems stems from a nonuniform distribution of lattice points
and from their random connections. When ds approaches
dH , all nearest-neighbor sites become connected and the
randomness is related to the nonuniform distribution of lattice
points only. The latter introduces too weak dephasing and
eigenstates do not localize.

We observe also eigenstates that are strongly localized on
small parts of the random fractal lattices. The smaller the part
of the fractal, the higher the chance for such eigenstates to
occur. The zero-energy eigenstates can occupy two sites only
and consequently they form the largest degenerate manifold.
At low spectral dimension, they are so many that an energy gap
around E = 0 is created. The presence of strongly localized
eigenstates is imprinted in the transport properties of the
systems, i.e., the particle transmission probability drops at
the corresponding energies.
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