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Disentangling interatomic repulsion and anharmonicity in the viscosity and fragility of glasses
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Within the shoving model of the glass transition, the relaxation time and the viscosity are related to the local
cage rigidity. This approach can be extended down to the atomic level in terms of the interatomic interaction or
potential of mean force. We applied this approach to both real metallic glass formers and model Lennard-Jones
glasses. The main outcome of this analysis is that in metallic glasses the thermal expansion contribution is
mostly independent of composition and is uncorrelated with the interatomic repulsion: As a consequence, the
fragility increases upon increasing the interatomic repulsion steepness. In the Lennard-Jones glasses, the scenario
is opposite: Thermal expansion and interatomic repulsion contributions are strongly correlated, and the fragility
decreases upon increasing the repulsion steepness. This framework allows one to tell apart systems where “soft
atoms make strong glasses” from those where, instead, “soft atoms make fragile glasses.” Hence, it opens up the
way for the rational, atomistic tuning of the fragility and viscosity of widely different glass-forming materials all

the way from strong to fragile.
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I. INTRODUCTION

One of the most puzzling properties of glass-forming
liquids is the huge increase of viscosity, by many orders
of magnitude, within a narrow range of temperature T
upon approaching the glass transition temperature T,. As
a consequence, considerable interest is being devoted to
understanding this phenomenon in terms of the underlying
atomic-level structure and dynamics of supercooled liquids [1].

For many decades, practically all experimental measure-
ments of viscosity or relaxation time as a function of T
upon cooling towards the glass transition 7, have been fitted
with the Vogel-Fulcher-Tammann (VFT) relation [2]. This
empirical formula, with three fitting parameters, can capture
the exponential or faster-than-exponential increase of viscosity
on cooling of practically all cooperative liquids, something that
physical theories have struggled to predict on a microscopic
basis. Mode-coupling theory predicts a power-law increase of
viscosity, whereas entropy-based theories such as Adam-Gibbs
and random-first-order are relatively successful in capturing
the exponential [3,4] trend using activation concepts. They
involve growing length scales and moreover can produce
predictions of the different steepness of viscosity as a function
of temperature [5]. An extended temperature-volume version
of this model was formulated [6], which predicts the fragility
parameter m for systems with different composition.

As shown by Angell [7], while some systems (strong
glass formers) have a viscosity which follows an Arrhenius
exp(a/T) dependence on T, other systems (fragile glass
formers) have a much steeper superexponential dependence
on T. Various attempts have been reported to formulate
physical models that can explain this fundamental observation
in terms of the underlying microstructure, dynamics, and
interaction picture.

In spite of these efforts, the VFT relation still lacks
a microscopic derivation, and most available closed-form
expressions for the viscosity are semiempirical extensions
of VFT where some parameter is given a tentative physical

2469-9950/2017/95(10)/104203(6)

104203-1

meaning in terms of a dynamical or structural parameter [8].
Recently, a different approach has been proposed [9,10], which
combines the shoving model of the glass transition [11,12] with
the atomic theory of elasticity [13,14].

There exists experimental support for both the shoving
model [15] and the Adams-Gibbs conjecture [16]. The con-
tributions of the Adam-Gibbs mechanism is, however, not
enough to explain the behavior of the fragility; it has to be
complemented with the effect of anharmonicity [17]. Applying
the shoving model and then adding the anharmonic effects to
describe the fragility of glass-forming liquids is the focus of
the present approach.

In the shoving model of the glass transition [11,18], the
relaxation time is an Arrhenius function of 7 where the
activation energy is provided by the local rigidity of the cage.
In other words, it is the energy needed to break and mobilize
the cage for a particle to escape, according to the original
idea of Eyring [19]. Hence, n ~ exp(G/kpT) [20], where
G is the high-frequency shear modulus which describes the
rigidity of the glassy cage. Within this approach it is possible
to go a step further and use the atomic theory of elasticity
to relate the shear modulus G to the average number Z of
mechanically-active interatomic connections per atom, G < Z
for the high-frequency affine modulus. Clearly, if G and Z are
relatively insensitive to any change in T, the relaxation time
and the viscosity are a simple Arrhenius function of 7', which
works well for strong glasses. In the opposite scenario, Z may
be a strong function of T because of thermal expansion: If the
attractive part of the interatomic potential is shallow, atoms
leaving the cage encounter little resistance, hence the viscosity
drops dramatically upon increasing 7 and one recovers the
fragile-glass limit.

II. DISENTANGLEMENT OF THE INTERATOMIC
POTENTIAL IN VISCOSITY AND FRAGILITY
Here we apply these ideas to two key systems: real metallic
glasses on one hand and Lennard-Jones model glasses on
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FIG. 1. (a) Representation of the Ashcroft-Born-Mayer inter-
atomic interaction (see Appendix A) using the one-parameter log-
arithmic expression in terms of the global interaction parameter A
(including the two separate contributions to the interatomic potential).
This illustrative plot was generated for a repulsive steepness A =
99.7. (b) Lennard-Jones potential for three different sets of power
exponents.

the other. The analysis of these systems is very revealing:
It is possible to fully disentangle the contributions of different
segments of the interatomic potential (repulsive and attractive)
to the viscosity and fragility. This outcome is of utmost
importance for developing rational guidelines in the design
of glassy materials with tunable mechanical and viscoelastic
properties.

In our recent work [9], an analytical model is proposed
that describes the elasticity, viscosity, and fragility of metallic
glasses in relation to their atomic-level structure and the
effective interatomic interaction. The model, which has only
one adjustable parameter (the characteristic atomic volume
for high-frequency cage deformation) is tested against new
experimental data from MD simulations of ZrCu alloys
and provides an excellent one-parameter description of the
viscosity down to the glass transition temperature.

We also consider the widely-used Lennard-Jones (LJ)
potential defined as: V(r) = < [p(71)? — q(*2)"], where €
is the depth of the minimum and ry is the position of the energy
minimum along the radial coordinate r. In this formulation,
the LJ potential is a very versatile model system in which the
anharmonicity can be varied by tuning the values of power-law
exponents (g, p). LI potentials with different anharmonicity
as given by different values of the pair (g, p) are plotted in
Fig. 1(b). This potential has been extensively used in numerical
simulations starting with the pioneering work of Kob and
Andersen to make binary mixtures that undergo glass transition
upon decreasing the temperature.

The influence of attractive forces in LJ systems has been
studied in detail in Ref. [21], where it was concluded that a
variation of attractive intermolecular forces has only a small
influence on the static structure of the LJ glass but may
drastically alter the dynamical relaxation behavior, i.e., the
viscosity or relaxation time.

Anharmonicity in this model system can be quantified in
various ways. For example, in Ref. [22], anharmonicity was
quantified by the radial distance & at which V(§) = —0.5. In
the older literature, a different measure of anharmonicity is
given by the cubic coefficient { < 0 in the Taylor expansion
of the potential about the minimum. Classical arguments by
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Y. Frenkel show that the linear thermal expansion coefficient
is proportional to | ¢ |.

Hence, a direct relationship exists between the thermal
expansion coefficient o7 and the attractive anharmonic tail
of the potential, as quantified by either £ or ¢. In the same
way, a similarly global parameter A represents the effect of
the repulsive part of the potential, as depicted in Fig. 1(a) and
is directly related to the short-range ascending slope of the
radial distribution function g(r) through the following simple
power-law expression [9,10]:

gr)~(r—o), ey

where o stands for the ion core diameter. The complex
relationship between these two interaction parameters and its
impact on viscosity and fragility is explored and disentangled
in the following.

III. aryT, VERSUS A FOR METALLIC
AND LJ GLASS FORMERS

We study the relation between A and ar7, for a number
of metallic glass formers, on one hand, and for LJ systems
with varying power-law exponent pairs, on the other, in a
comparative framework. The proposed interatomic potential
of our recent work has been applied to experimental data of
metallic alloys (see Appendix A). In some cases, A could be
extracted from experimental data of g(r), whereas in other
cases it has been fitted to the viscosity data. In the fitting of
metallic glass data using our proposed interatomic potential,
the values of T, and a7 were taken from the literature. Hence,
using those fittings, it is possible to analyze the interrelation
between A and a7 T, and the impact thereof on the fragility
m. For the model LJ systems, instead, we use the simulation
data of Bordat et al. [22] from the literature who studied three
different LJ systems with different values of the power-law
exponents as depicted in Fig. 1(b).

The «-relaxation time 7, was measured in Ref. [22], as a
function of the reduced temperature 7/ Ts for the three LJ
systems, where Tif ~ T,. Upon using that 7 o 1, we fitted
the simulation data for T using our interatomic potential (see
Appendix A). The proportionality constant between 7 and
n is absorbed in the parameter 7y. Furthermore, to keep
things simple, we also used the product V.Cs, where V,
corresponds to the characteristic atomic volume and Cg to
the shear modulus value at the glass transition temperature T,
(see Appendix A), as the only fitting parameter. The values of
A are determined by fitting the ascending flank of the first peak
of g(r) (for the majority particle species, since it is a binary
mixture) as reported in Bordat et al. [22], according to the
procedure reported in Ref. [10]. The results are shown in Fig. 2.

From the fittings, we thus obtain the values of a7 for the
three LJ systems. As expected based on lattice dynamical con-
siderations, a7 increases with increasing the anharmonicity
of the LJ potential, i.e., from the most harmoniclike to the
most anharmonic, in the following order: (12,11) — (12,6) —
(8,5). Also, we plotted the values of the product ar Tiet as a
function of A in Fig. 3(a), which enter the expression for the
fragility m as a product. By virtue of the definition of the LJ
potential, o7 is a decreasing function of A, which is also evident
from the plots in Fig. 1(a). In addition to that, the product
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FIG. 2. Theoretical fittings of simulation data of the LJ systems.
Symbols are simulation data for the a-relaxation time measured in
the simulations of the model LJ systems with variable exponents in
Bordat ez al. [22]. Solid lines are theoretical fittings using our effective
interatomic potential (see Appendix A).

ar Tt follows an empirical power law a7 Tyer ~ AL Upon
inserting this into the expression for m, we thus obtain the
scaling relation m ~ A~%7%, This implies that, for model LJ
systems, a softer interatomic repulsion is linked to a more
fragile glass former. This is the opposite of what is observed
in soft repulsive colloids and in metallic glasses, where “soft
atoms/particles make strong glass formers.” It is important
to emphasize that in the LJ systems studied, the increase in
anharmonicity in the attractive part of the potential (which sets
the thermal expansion coefficient «7) goes hand in hand with
softer short-ranged repulsion by construction. This is indeed
reflected in the fact that a7 is a decreasing function of A.

Let us now consider the situation with metallic glasses. In
Fig. 3(b), we have plotted values of ayT, (a7 is the linear
thermal expansion coefficient) of various real metallic glasses
taken from the experimental literature, as a function of the cor-
responding A values obtained in Ref. [9] by fitting experimental
viscosity data with Eq. (5) (see Appendix). The experimental
data sets were obtained at atmospheric pressure conditions
[20]. Additionally, in Fig. 3(c), the a7 T, (a7 is the volumetric
thermal expansion coefficient) values versus X are plotted for a
given metallic system, studied by MD simulations, where the
role of the stoichiometry has been added. The situation in both
cases looks as follows: There is no appreciable trend and a7 7,
appears to be much less dependent on X than in the LJ case. In
particular, a7 T, varies very little over a comparatively much
larger A interval, within a band of +£0.00131 of its average
value 0.00764, in the case of the real metallic glasses. This
behavior has been observed experimentally for a wide range
of different bulk metallic glasses [23]. In the second case of
the CuZr binary alloy of varying composition it varies within
£0.00913 around its average value 0.06266.

In the case of LJ, instead, we had not only a clear decreasing
trend, but also a larger variation in oy Tit, by more than a factor
of 2, over a comparatively much narrower A interval. Hence,
we can set approximately arT, ~ A’ ~ const in Eq. (A6)
(see Appendix A) for the case of metallic glasses, which gives
m ~ A for the fragility. This clearly explains that “soft atoms
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FIG. 3. arT, versus A—experiment and simulations. (a) Fitted
values of oy Tir for the three different LJ systems as a function of
the corresponding value of interparticle repulsion A. (b) Literature
values of arT, (ar is the linear thermal expansion coefficient) of
various metallic glasses as a function of the corresponding value of
A as fitted using Eq. (1) in Ref. [9]. From left to right (increasing
value of A): Zrsszs Tigas Nijg Cuzs Beyrs, Pdys Cuyy Nijg Poo,
Pts75 Nis3 Cuyg7 Paas, Lass Alys Nigg, Zrsy 2 Tijag Nijg Cuins Beys,
Pd40 Ni40 on, Pd77.5 Cllﬁ Silﬁ‘s. (C) Values of OlTTg (O{T is the
volumetric thermal expansion coefficient) of the ZrCu metallic glass
extracted from MD simulations for different stoichiometries as a
function of A calculated from the total g(r) of the corresponding
system by the way described in our recent work [10] (Appendix A).
(a) Lennard-Jones glasses (b) real metallic glasses (c) metallic glasses
MD simulations.

make strong glasses” in the case of metallic glasses, because
the product of the thermal expansion coefficient and the glass
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FIG. 4. Fragility m as a function of interatomic repulsion steep-
ness A. (a) For the LJ systems, while the inset shows how the
fragility m depends on the thermal expansion parameter oy Tier. (b)
For various metallic glasses: from left to right (increasing value of
A): Lass Alys Nigg, Zraz Tiizs Nijg Cuins Bexs, Pds Nig Pao,
Pd;;5 Cug Sijgs. The inset shows how the fragility m depends on
the thermal expansion parameter ay T,. (a) Lennard-Jones glasses (b)
real metallic glasses.

transition temperature in this case is practically independent of
the interatomic repulsion. This is a very subtle but important
point and a deep insight into our understanding of glasses.

Let us now consider what are the consequences for the
fragility, by looking at the plots of m as a function of A
and as a function of a7 T and arT, for the two classes of
systems, respectively. In Fig. 4(a), main panel, we plotted the
fragility as a function of A for the LJ systems. As discussed
above, in this case m is a decreasing function of A, even
though m increases with increasing a7 Tit, because o Tret 1S @
nonlinearly decreasing function of 1. Hence, according to our
expression for the fragility, m = ﬁ ‘,:ECTf [1+ @+ MarT,],
derived in the Appendix, the overall dependence of m is that
it decreases in the order (8,5) — (12,6) — (12,11).

InFig. 4(b), main panel, we plotted the fragility as a function
of A for the metallic glasses. As anticipated, here we have
the opposite trend: “soft atoms make strong glasses,” and the
fragility increases upon increasing the repulsion steepness A.
However, let us look also at the dependence of m on a7 T,:
It appears to be qualitatively the same dependence seen for
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the LJ systems, i.e., the fragility increases with increasing
the product of the thermal expansion coefficient and the glass
transition temperature, ar7T,, but the trend is comparatively
less pronounced for the same reasons mentioned in the context
of Fig. 3(b).

IV. CONCLUSIONS

Hence, we have shown that the fragility of the glass formers
investigated here under isobaric conditions is an increasing
function of the product of the thermal expansion coefficient and
the glass transition temperature, which is directly related to the
attractive anharmonicity for the model LJ glass formers. The
situation, however, is different for the repulsion steepness (and
its inverse, the softness). In LJ systems, by construction, the
repulsion steepness decreases upon increasing the attractive
anharmonicity, and the fragility is a decreasing function of the
repulsion steepness parameter A because o1 Tres is a stronger-
than-linear decreasing function of A, in the fragility formula
[Eq. (A6) in Appendix A]. Hence, the overall dependence of
the fragility m on the repulsion steepness is strongly influenced
by the strong dependence of a7 Ti.¢ on A. For metallic glasses,
the situation is reversed: a7 Ty is basically independent of A.
Hence the overall dependence of m on A in this case is of direct
proportionality as given by the expression for m quoted above
[Eq. (A6) in the Appendix].

In physical terms, this analysis clarifies that an increased
fragility is associated with larger values of the product o Ty,
which implies larger atomic mobilities at the level of third and
fourth neighbors [24], and the ability of the system to rearrange
into more stable local configurations upon decreasing 7. At
the same time, however, the fragility also increases upon
increasing the short-range repulsion steepness, because this
implies a steeper T dependence of the local cage rigidity
encoded in the high-frequency shear modulus G. This, in turn,
is controlled by the local coordination number Z and hence
by the T dependence of Z [25], which is a function of the
repulsion steepness A. The conceptual framework developed
here thus mechanistically explains the apparent contradiction
in the recent literature (that “soft atoms make strong glasses”
for metals [9] and colloids [26], whereas “soft atoms make
fragile glasses,” for LJ systems [22]) in terms of the underlying
interaction physics. This framework will prove useful to
achieve a rational design of mechanical properties of metallic
glasses and other amorphous advanced materials.
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APPENDIX A: EFFECTIVE ASHCROFT-BORN-MAYER
PSEUDOPOENTIAL-ANALYTICAL EXPRESSIONS
FOR THE HIGH FREQUENCY SHEAR MODULUS

AND THE VISCOSITY

In recent work [9], we analyzed several amorphous metallic
alloys in an attempt to extract an effective, averaged inter-
atomic potential which describes the short-range repulsion
between any two ions in a metallic alloy melt. Based on
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the systematic fitting of shear modulus and viscosity data
for various three- and five-component alloys we proposed
the following interatomic potential which comprises two
contributions: (i) the longer-ranged Thomas-Fermi (screened-
Coulomb) repulsion modulated by the Ashcroft correction and
(ii) the Born-Mayer closed-shell repulsion due essentially to
Pauli repulsion.

expquF(rfzao)

V(ir)=A + Be €09 (A1)

r — 261()
where

A=2Z> ¢ COShz(QTFRcore)~

mon

(A2)

The Thomas-Fermi contribution is more long ranged and
is described by a Yukawa-potential type expression. The
Born-Mayer contribution is a simple exponentially decaying
function of the core-core separation, motivated by the radial
decay of electron wave functions for the closed shells. The
effective (average) interatomic potential for two atoms in a
metallic glass or melt is schematically depicted in Fig. 1(a) of
the main paper.

We also consider the standard Lennard-Jones potential
defined as: V(r) = (qip)[p(’r—[’)" —q(“)P], where € is the
depth of the minimum and r( is the position of the energy
minimum along the radial coordinate r. Anharmonicity in
this model system can be quantified in various ways. For
example, in Ref. [22], anharmonicity was quantified by the
radial distance & at which V(§) = —0.5. In the old literature,
a different measure of anharmonicity is given by the cubic
coefficient ¢ < 0 in the Taylor expansion of the potential about
the minimum. Classical arguments by Y. Frenkel show that the
linear thermal expansion coefficient is proportional to | ¢ |.

Hence, a direct relationship exists between the thermal
expansion coefficient o7 and the attractive anharmonic tail
of the potential, as quantified by either & or ¢. The next step
is to find a similarly global parameter like oy to represent
the effect of the repulsive part of the potential. This can be
achieved as follows.

A simple parametrization of the short-range repulsive part
of the interatomic potential is obtained by fitting the repulsive
ascending part of the radial distribution function g(r) to a
power law: g(r) ~ (r — o')*, where o corresponds to the soft-
core diameter of the atoms. This fitting is valid between r ~ 0
and r = ry, where we approximate the maximum of the first
peak of g(r) with the minimum ry of the pair potential. Upon
inverting the Boltzmann relation g(r) = exp(— Veg(r)/kpT),
the potential of mean-force V. is obtained directly from
g(r). The potential of mean-force V. reduces to the pair
potential V(r) only in the limit of zero density of particles
(ideal gas limit). At the high density of supercooled liquids,
Vege crucially contains many-body effects and represents the
effective interaction between two particles mediated by the
motions of all other particles in the liquid [27]. At short range,
however, V¢ and V(r) are very similar and both dominated
by the repulsive part of the interaction (they both diverge as
r — 0). Since we are looking for a global repulsion parameter,
analogous to ar for the attraction, it is important to work with
Vegr rather than V (r). Hence, we can obtain an estimate of the
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repulsive part of the potential of mean force using

Veit = —AIn(r — 0), (A3)

where A comes from a power-law fitting of g(r) up to
the maximum of the first peak as described above and in
Refs. [9,10].

The next step is to find a way to connect the shear modulus
G, which enters the shoving model, to the global interaction
parameters, A and «7. The high-frequency (affine) shear mod-
ulus can be written using lattice dynamics as G = %Rioqbz,
where R, is some average (snapshot) distance between two
nearest-neighbor atoms in the equilibrated supercooled liquid,
k is the harmonic spring constant (i.e., the curvature of the
main energy minimum in Fig. 1), and ¢ is the atomic packing
fraction.

Using the fact that the upper integration limit of rp,x
increases with the packing fraction ¢, integrating the g(r) up
to a threshold which is proportional to ¢, as done in Ref. [10],
yields the scaling law Z ~ ¢'**. Although the upper limit of
the integral could be perhaps identified with ry,,x, since we are
interested here in the qualitative behavior we prefer to leave
it as a generic threshold o ¢ such that the limit Z — 0 is
correctly recovered when ¢ — O.

Moreover, the definition of the Debye-Grueneisen thermal
expansion coefficient o7, in terms of the atomic packing
fraction ¢ = vN/V (with v the characteristic atomic volume
and N the total number of ions in the material) gives
¢(T) ~e T as discussed, e.g., in Ref. [25]. According
to this result, ¢ decreases with increasing temperature 7,
an effect mediated by the thermal expansion coefficient
defined as ar = . (3V/dT) = —$(8¢/3T). Replacing the
latter relationship between ¢ and T in the expression for Z, we
finally obtain a closed-form equation which relates G to the
two global interaction parameters, the short-range repulsion
parameter A and the attraction anharmonicity parameter o7,
G(T) = 5 4 exp[—Q2 + Mar T].

The above expression for G can be rewritten as

T
G(T) = CG exXp |:OlT Tg(z + )\)(1 - F>i| y (A4)
g
where Cg = 5 z-e™ T:2+1 is defined as the shear modulus

value at the glass transition temperature Tg, i.e., Cg = G(Tj).
The constant ¢ stems from the integration of oy and from
the dimensional prefactor in the power-law ansatz for g(r).
All the parameters in this expression are either fixed by
the experimental/simulation protocol or can be found in the
literature. The parameter A has to be extracted from g(r)
data, according to the protocol that we give in Section VI
of Ref. [10].

We can now use our model for G(T) to evaluate the
activation energy E(T) involved in restructuring the glassy
cage and, hence, the viscosity n(7) of the melts. Within
the framework of the cooperative shear or shoving model
of the glass transition [11,18,19], the activation energy for
local cooperative rearrangements is E(T) = G V. The char-
acteristic atomic volume V. showing up here is accessible
through the theoretical fitting of the viscosity data, although
its value cannot be arbitrary and it must be representative of
the atomic composition of the alloy and of the atomic sizes of
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its constituents [9,10]. Replacing the expression for E(T) in
the Arrhenius relation given by the cooperative shear model of
the glass transition, and using Eq. (A4) for G(T) inside E(T),
we obtain the following analytical expression for the viscosity,

(T) V.C T
UAS) = exp { p TG exp |:(2 + )\.)OtTTg<1 — F)i| }, (AS)

1o g

where ng is a normalization constant set by the high-7" limit
of n.

It is important to consider how the double-exponential
dependence of the viscosity on the temperature arises. The first
exponential stems from the elastic activation described in the
framework of the cooperative shear model, whereas the second
exponential is due to the Debye-Grlineisen thermal expansion
rooted in lattice-dynamical considerations of anharmonicity.
This formula accounts for both anharmonicity, through a7,
and for the repulsion steepness A (or softness 1/1). It is clear
that, depending on the mutual inter-relation between A and the
thermal expansion factor a7 Ty, the viscosity may be affected
in a different way by the different sectors of the interatomic
interaction as depicted in Fig. 1. For example, in previous
work, it was found that 7 is a sensitive function of A meaning
that larger values of A are associated with a steeply rising
viscosity, and vice versa. This is reflected in the relation for
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the fragility m which can be readily derived from Eq. (A5) and
gives
1 V.Cg

m —=
In10 kg T,

[1+ @+ MarT,]. (A6)

APPENDIX B: SIMULATION MODEL

We performed molecular dynamics (MD) simulations of the
Cu,Zrjpo—x System (where x = 35,46,50,60,65), by employ-
ing a semiempirical many-body potential [28] in analogy to
the tight-binding scheme in the second-moment approximation
[29,30]. The equations of motion were integrated by using
the Verlet algorithm with a time step of 5 fs. The systems
of 1.28 x 10° atoms were prepared by equilibrating them
at 300 K in NPT ensemble (zero pressure) for 100 ps and
subsequently heated up to 2000 K for melting. After their
equilibration in the liquid state, the configurations were cooled
down to 300 K (NPT) with a cooling rate of 10 K/ps, where
they were finally equilibrated for 100 ps in a NPT ensemble
(zero pressure). In all the production simulation runs the
temperature and the pressure were kept constant by coupling
the system to a Nose [31] thermostat and to an Andersen [32]
barostat, respectively. Upon cooling the average pressure of the
system was maintained zero by alloying the simulation box to
change dimensions (volume) without changing its shape.
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