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Non-Hookean statistical mechanics of clamped graphene ribbons
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Thermally fluctuating sheets and ribbons provide an intriguing forum in which to investigate strong violations
of Hooke’s Law: Large distance elastic parameters are in fact not constant but instead depend on the macroscopic
dimensions. Inspired by recent experiments on free-standing graphene cantilevers, we combine the statistical
mechanics of thin elastic plates and large-scale numerical simulations to investigate the thermal renormalization
of the bending rigidity of graphene ribbons clamped at one end. For ribbons of dimensions W x L (with L > W),
the macroscopic bending rigidity «x determined from cantilever deformations is independent of the width when
W < £y, where £y, is a thermal length scale, as expected. When W > ¢y, however, this thermally renormalized
bending rigidity begins to systematically increase, in agreement with the scaling theory, although in our
simulations we were not quite able to reach the system sizes necessary to determine the fully developed power
law dependence on W. When the ribbon length L > £,, where £, is the W-dependent thermally renormalized
ribbon persistence length, we observe a scaling collapse and the beginnings of large scale random walk behavior.
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I. INTRODUCTION

Two-dimensional crystals as mechanical objects are, at first
glance, rare and delicate, but graphene belies expectations. It
is a robust 2D membrane with unique and tunable material
properties that can be exploited in micro- and nanoscale
metamaterials. While the electronic properties of graphene
are well understood, the continuum mechanical behavior
remains a frontier of research. In particular, experimental
studies on graphene [1,2], along with previous theory [3—16]
and Monte Carlo simulations [17-25], indicate that thermal
effects dramatically modify the mechanical properties of the
membrane (see also Refs. [26-29]). Here we study how the
interplay between thermal effects and boundary conditions, as
well as geometry, affect the measured mechanical properties
of graphene sheets. The results presented here are also directly
applicable to the study of the thermalized behavior of other
free-standing covalently-bonded atomically thin membranes,
such as MoS, [30]. The extended translational order typical
of crystals can be unstable to thermal fluctuations, and the
situation is even more precarious when the crystalline sheet is
a membrane free to fluctuate in the third dimension. Although
thermal fluctuations will eventually decorrelate long range
order in the membrane normals in liquid membranes (such as
lipid bilayers), for crystalline membranes the nonlinear cou-
pling of height fluctuations to in-plane phonon deformations
leads to a length-scale dependent stiffening of the microscopic
bending rigidity at long length scales [3].

To emphasize the remarkable nature of the ordered phase of
crystalline membranes note that if one views the local normals
as classical vector spins then one would expect the model to
be disordered in the same way as the 2d-Heisenberg model of
magnetism, a consequence of the Mermin-Wagner-Hohenberg
theorem [31,32]. A crystalline membrane differs from the
Heisenberg model, however, in several crucial ways. First of
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all, the “spins” are constrained because they must be strictly
normal to a continuous underlying membrane surface. Such
constraints, intimately connected with the existence of an in-
plane shear modulus, change the available configuration space
and consequently alter the statistical mechanical behavior of
the system, including the phase diagram itself. In a perturbative
field theory treatment, these constraints lead to the nonlinear
coupling of in-plane phonons to height that renormalize
the bending rigidity so that it flows with length scale (or
wave vector) rather than being a fixed material parameter at
long wavelengths. Height fluctuations inevitably cost elastic
energy because the two planar phonon degrees of freedom
cannot compensate for the three degrees of freedom in the
symmetric 2d strain tensor associated with an arbitrary height
deformation. The result is long-range flatness of the thermally
stiffened membrane or, equivalently, long-range order in the
normal-normal correlation function describing the spatial
correlations of local normals to pieces of the membrane.
While these effects have been studied theoretically, suitable
experimental systems have been more difficult to find.

One might expect that thermal fluctuations of a mem-
brane would only be important for extremely soft systems
such as the spectrin cytoskeletal network of the red blood
cell [33], spherical assemblies of spider silk proteins [34],
or polymersomes [35]. Even here, however, the bending
rigidity is typically much larger than the temperature at
which such systems are stable, and the corresponding length
scales at which thermal fluctuations are important can be
dozens of particle spacings or more. Graphene, however, has

a very large Young’s modulus Y, (order 20 eV A_z), but a
relatively modest microscopic bending rigidity «y ~ 1.2 eV.
Perturbative corrections to the microscopic bending rigidity «
due to thermal ripples for a fluctuating crystalline membrane
are described by a scale-dependent bending rigidity of the
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form kg(q) = ko + k"K—TOY”I(q), where q is a wave vector, 7

is a momentum integral that scales as 1/¢*> when q — 0,
or equivalently as L%, with L being a long wavelength
cutoff provided by the system size L and Y, the 2D Young
modulus [3,4,8,10,12,14,26]. One readily sees that corrections
to the bare bending rigidity are of the order of the bare
rigidity itself for L > £y, with £y ~ \/%ﬁ Remarkably,
for graphene at room temperature this thermal length scale
is extremely small, ¢y ~ 1.5 A, comparable to the spacing
between carbon atoms. The high in-plane elastic modulus
of this covalently bonded material thus leads to significant
thermal stiffening of the bending rigidity even at microscopic
length scales!

This shape stiffening is essential for stabilizing graphene
as a 2D, approximately planar, crystal against the thermal
fluctuations that often entropically dominate 2D systems with
continuous symmetry. One should contrast covalently bonded
sheets of graphene (or MoS,) with soft matter, where the much
lower Young moduli mean that thermal fluctuations become
strong only for much larger length scales.

The correction to the bending rigidity, in units of kg7,
is proportional to vK = Y‘;—ﬁz, the dimensionless Foppl-von
Karman number measuring the ratio of typical elastic de-
formation energies to bending energies [36]. Large values
of vK, even in the absence of thermal fluctuations, lead to
the notoriously difficult problems of thin plates and shells,
important for understanding the strength of macroscopic
objects such as domed sports arenas and submarines [37].
For an L =200 um square graphene sheet the Foppl-von
Kéarméan number is vK ~ 10'%, a number which can also be
obtained by extrapolating the continuum elastic theory of thin

plates of thickness i as vK =~ 10(%)2 [36] for atomically thin

graphene with 4 ~ 1 A. To appreciate the enormous size of
vK in graphene, it is helpful to recall that the deformations
involved in crumpling an ordinary piece of paper “only”
involve VK &~ 10°. The vK number in the thin limit is a
predominantly geometric quantity determined by the aspect
ratio of the material. Very large vK numbers naively mean
that bending should be a soft mode compared to elastic
deformations. Here, however, the nonlinear coupling of height
fluctuations to in-sheet phonons thermally stiffens the bending
rigidity over scales larger than the microscopic mesh size
and consequently stabilizes the extended crystalline sheet flat
phase of graphene. This remarkable interplay of materials
and concepts from both hard- and soft-matter physics is a
striking feature of graphene and related materials, embodied
in recent pioneering experiments on graphene ribbons by Blees
et al., who observed a ~4000-fold enhancement of the bending
rigidity at room temperature [1]. In these experiments the
~10 um wide ribbons were approximately 50 000 times wider
than they were thin.

In the rest of the paper we will utilize numerical simulations
to measure the effect of thermal fluctuations on the bending
rigidity of a clamped elastic ribbon and its dependence on
the ribbon geometry. In Sec. II, we describe the numerical
method underlying our molecular dynamics simulations of
thin ribbons clamped at one end along its width W. We find
it convenient to use a triangular discretization of an elastic
ribbon of length L, with a microscopic bending rigidity and
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FIG. 1. (a) Our numerical simulations of a graphene strip of
undeformed size L x W are performed with a coarse-grained model
commonly used to study elastic membranes [42]. The strip is
represented as an equilateral triangulation of a rectangle with bending
and stretching energies defined along the edges and plaquettes of
the triangulation. (b) For computational reasons, it is convenient to
describe bending energy as a penalty of changing the dihedral angle
between two triangles sharing an edge.

Young’s modulus adjusted to match the parameters of the
dual honeycomb lattice of, say, a covalently bonded graphene
sheet. Our numerical results are described and interpreted
in terms of the renormalization group theory of ribbons in
Sec. III. We find a scale-dependent bending rigidity when W
exceeds the thermal length scale, and the beginnings of random
walk behavior for ribbons when L exceeds the thermally-
renormalized persistence length. Concluding remarks appear
in Sec. IV.

II. NUMERICAL MODEL

Instead of a fully atomistic description based on, say, the
empirical bond-order (AIREBO) potential function [38,39], as
used in Ref. [40] for example, or the approach of Ref. [41],
we have found it convenient to model a graphene strip using
a coarse-grained dual representation commonly employed
to study two-dimensional elastic membranes [42]. With the
limited computer resources available to us, this strategy allows
us significant gains in simulation sizes and speeds, without
affecting the long time- and length-scale behavior we are
studying here. The strip is discretized as a triangulation of
a rectangle of size L x W [Fig. 1(a)]. In the initial flat
configuration, all triangles are equilateral with edge length
a, which sets the microscopic length scale in the model and
will also be our unit of length. A hexagon composed of six such
triangles has the same symmetry as a graphene single crystal
and is assumed to be large enough to average over the detailed
properties of a cluster of covalently bonded carbon atoms, but
small enough not to affect the long time- and length-scale
behavior of the macroscopic ribbon. The first two rows of
vertices (in the W direction, which we choose to coincide with
the direction of the y axis of the laboratory reference frame)
remain immobile throughout the simulation. By fixing two
rows of vertices we impose a boundary condition that fixes the
normals and position of one ribbon edge, thus mimicking the
clamping of one end of a strip in an otherwise unconstrained
graphene experiment. The rest of the strip is free to move.
The clamped region is included as part of the strip’s initial
(undeformed) length L.

The elastic energy in our model calculations contains
two terms, bending and stretching. The bending energy
is described using a common discretization [42] of the
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continuum bending energy:

1
Event = 5% UZJ) In; —ny |, (1

where n; is the unit-length normal to the triangle / and the
sum is carried out over all nearest neighbor pairs (/J) of
triangles. Triangle edges along the free sides and end of the
strip are not treated in any special manner; if an edge is on
the boundary it is assumed not to contribute to the bending
energy. Equation (1) can be rewritten as the dihedral energy
associated with the edge (I J) as

Ebena =& ) _(1 4 cos6y,), )
()

where 6, is the dihedral angle between two triangles sharing
edge (IJ) [Fig. 1(b)]. While the last two expressions are
mathematically equivalent, computation of the dihedral forces
is a standard feature of many molecular dynamics (MD)
packages, thus allowing for a simple implementation in the
existing MD software packages. The stretching energy is
modeled by assigning harmonic springs of rest length a and
spring constant € to each edge [42], i.e.,

1
2
Egreteh = 58 Z(rij —ay’, (3)
(i.J)
where r;; = |r; —r;| is the Euclidean distance between
nearest-neighbor vertices i and j. Note that our discretization
parameters & and ¢ are directly related to the continuum

Young’s modulus, Yy = %5 [42] and bare continuum bending

rigidity ko = 27 [42,43].

All numerical simulations were performed using the
HOOMD-blue molecular dynamics package [44] in the con-
stant temperature (NVT) ensemble. The temperature was
controlled using a standard Nosé-Hoover thermostat [45,46]
and was set to 7 = 1. [In our simulations, decreasing the
microscopic bending rigidity k¢ (or increasing the microscopic
Young’s modulus Yj) can be viewed as a proxy for increasing
the temperature in experiments on graphene ribbons.] In all
simulation runs the initial configuration was chosen to be
planar. A typical run consisted of up to 2 x 10° time steps,
or 10’t, where t = as/m/kgT is the reduced unit of time
with m = 1 being the the vertex mass and kz7T (kg being
the Boltzmann constant) setting the unit of energy. The step
size was setto 5 x 10~37. Converted into execution time, each
simulation takes between 24 and 60 hours on a single NVIDIA
GTX 790Ti Graphical Processing Unit (GPU).

III. RESULTS

In order to demonstrate that the coarse-grained model
presented in the previous section can indeed capture the long
time- and length-scale behavior of graphene sheets, we first
studied the spectrum of height fluctuations A (x) of rectangular
sheets of size 100 x 86.6. As in previous atomistic Monte
Carlo simulations of graphene [13,20], we used periodic
boundary conditions, where the bounding box was allowed
to change its size, while maintaining zero external stress. This
is achieved by running simulations in the NPT ensemble [47].
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FIG. 2. Scaling collapse for height fluctuations (|h(q)*) of a
rectangular sheet of size 100 x 86.6a characterized by different
values of bending rigidity & and spring constant € that are defined in
Eqgs. (2) and (3). For large wave vectors g >> gy, height fluctuations are
well described with the harmonic approximation (dashed green line),
where the renormalized bending rigidity «z(¢) can be approximated
with the bare bending rigidity o [see Eq. (5)]. For small wave
vectors g < qu the renormalization of bending rigidity xg(g) with
the characteristic exponent n becomes apparent. Solid black line
corresponds to the perturbative renormalization group result from
Ref. [16]. The dotted red line is adapted from the atomistic Monte
Carlo simulations in Ref. [13], and the small bump at ¢ /gy ~ 5-10
corresponds to wave vectors close to the edge of the first Brillouin
zone.

Theory [4,7,8,26] predicts that the height fluctuations in
momentum space scale as
kT
@) = ———, “)
( ) Akr(q)g*
where A is the sheet area, h(q) = [ (d*x/A) e 9% h(x), and
the renormalized bending rigidity scales as

Ko, q >> ch

. 5
ko(g/qmn)™", g < gm )

Kr(q) ~ {
The scaling exponent n &~ 0.80-0.85 quantifies the scale de-
pendence of the bending rigidity driven by thermal fluctuations
in the range of wave vector up to the transition scale gy, above
which thermal fluctuations are no longer significant:

3T Y,
= |20 6
qth 167‘[[((% ( )

For graphene at room temperature the transition wave vector
is gn ~ 0.16 A

Figure 2 shows that both the atomistic Monte Carlo
simulations [13,20] and our coarse grained simulations agree
quite well with the predicted scalings in Egs. (4) and (5) as long
as the wave vectors ¢ are much smaller than the microscopic
cutoff A ~ 1/a. In atomistic simulations the microscopic
length cutoff is related to the characteristic distance d between
nearest-neighbor carbon atoms, while in our coarse-grained
approach it is related to the lattice constant a.
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FIG. 3. Renormalization of ribbon elastic constants due to ther-
mal fluctuations. (a) Snapshot of thermal fluctuations on a W x W
patch of ribbon, the latter represented schematically, where color
encodes the height of fluctuations with red (blue) describing positive
(negative) height fluctuations. The effect of thermal fluctuations is
to renormalize the bending rigidity kx(W) and the Young’s modulus
Yr(W) on the scale of ribbon width W according to Egs. (7). (b)
Coarse-grained ribbon is constructed with square blocks of size
W x W with the renormalized elastic constants kz(W) and Yg(W).
(c) A coarse-grained representation of ribbon configurations tracks
the orientation of an orthonormal triad (é;(s),é,(s),é5(s)) relative to
a laboratory frame (é,,é,,é,) as a function of arc length s along the
ribbon [16].

We then explored graphenelike ribbons in a wide range of
aspect ratios with W = 10—40a and L = 40-300a, where the
strip is able both to flap as well as to twist along the long (L)
direction. Slow elastic modes in the system make both reaching
the thermal equilibrium and collecting statically independent
samples for computing thermal averages a challenge. Typical
autocorrelation times were around approximately 10%z, which
allowed for sampling the MD trajectories at time intervals
AT = 2.5 x 10*1 in order to obtain ~200—400 statistically
independent samples, resulting in the typical error of <5% for
measured quantities.

Before we discuss MD simulations, we briefly summarize
the theoretical study in Ref. [16]. Here, renormalization
group methods were used to demonstrate that ribbons behave
like highly anisotropic polymers, with, however, strongly
renormalized width-dependent elastic constants. A heuristic
understanding arises from coarse-graining and constructing a
ribbon with L/ W > 1 into square membrane blocks of size
W x W (see Fig. 3). Thermal fluctuations generate a width-
dependent bending rigidity «gx(W) and Young’s modulus
Yr(W) according to [16]

Ko, W << Eth
~ 7
“x(W) { OW/tay, Wt Y
Yo, W <
Yp(W) ~ , 7b
=(W) {Y0<W/eth>"u, W (7b)
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with exponents n &~ 0.80-085 and 1, = 2 — 25 ~ 0.30-0.40
characteristic of thermalized sheets [4,7,8]. Evidently, the
renormalization only becomes important for ribbons whose
width W is larger than the thermal length scale discussed in
the Introduction. A more precise estimate of £y, is [16]

b4 16733
bp= — = , (3)
Gth 3kpTYy

where gy, is defined in Eq. (6). As discussed above, this
scale is on the order of nanometers at room temperature
for graphene and related atomically thin covalently-bonded
sheets, indicating very large thermal renormalization even
for ribbons with relatively modest widths W > £q4,. If we
characterize the coarse-grained orientations of the ribbon
by rotations of the orthonormal triad [€;(s),é2(s),é3(s)] [see
Fig. 3(c)] as a function of arc length s along the ribbon,
dé;/ds = Q x é;, the ribbon free energy takes the form
(48]

1 L
F = 5/ ds[A19:% + A7 + €7 )
0

The renormalized one-dimensional ribbon bending rigidities
Aj, A, and twisting rigidity C are also strongly width
dependent [16]

Ay ~ Wir(W), (10a)
As ~ W3YR(W), (10b)
C ~ Wkg(W). (10c)

Note that A, > A;,C for ribbons with large Foppl-von
Kéarman numbers vK ~ (W/h)?. Ribbons thus behave like
highly anisotropic polymers with persistence length [49]
_ 2 __ 2Wkr(W)
 kpT(A7 4+ A kgT

)

Ly

where the W dependence of kgx(W) in Eq. (7a) indicates a
strong breakdown of Hookean elastic theory.

To test the theoretical predictions above against our
simulations, the persistence length £, was determined from
the decay of the autocorrelation function of the tangent
vectors 7(s) = é3(s) to the midline along the ribbon’s length
[49]

(t(s) - t(s + x)) = e /%, (12)

Here, the averaging was done over all possible pairs of
tangent vectors that were separated by distance x along the
ribbon backbone and also over all 200 independent ribbon
configurations. Measured persistence lengths £, were then
used to obtain the values of renormalized bending rigidities
as kg(W) =kpT¥L,/(2W) [see Eq. (11)], which are displayed
in Fig. 4. When W /£y < 1, the renormalized elastic constant
is approximately independent of W, consistent with classical
elasticity theory. However, the resulting data collapse is con-
sistent with a scale-dependent renormalized bending rigidity
that starts increasing for ribbons whose width W is larger than
the thermal length scale £y, similar to Eq. (7a). More extensive
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FIG. 4. Renormalized bending rigidity xx(W) for ribbons of
width W extracted from simulation measurements of the persistence
length £, [see Eq. (11)]. The scaling collapse for ribbons of various
dimensions and bare bending rigidities k is consistent with Eq. (7a),
where the red theoretical curve was obtained with renormalization
group procedure described in Ref. [16]. The theoretical calculations
were done with periodic boundary conditions across the ribbon
width. We attempted to account for our different boundary conditions
(clamped at one end and free at other) by shifting the theoretical curve
along the horizontal direction. In these simulations, the value of ratio
W /€y was set by tuning the Young’s modulus Y, of the ribbon.

simulations would be needed to convincingly demonstrate
the (W /€y)" scaling of kg /k expected for W /€y > 1. Note
that our extensive computer simulations are unfortunately
limited to W/£y < 30, as opposed to the values 5 < W /€y, <
5000 accessible in thermalized graphene ribbons at room
temperature [1].

Finally, we test whether long fluctuating ribbons in fact
behave like anisotropic polymers by measuring the ribbon
height fluctuations (h?(x)), where h(x) is the deviation away
from the average ribbon position, and x represents the
distance from the clamped end along the ribbon backbone.
For each value of x at a given time t the value of h(x)
was determined by averaging over the width of the ribbon,
ie., h(x)= M%Zz h(x,y;), where i counts all vertices at
distance x from the clamp and M, is the total number of
such vertices. In order to ensure that results were not affected
by this averaging procedure, the data was also analyzed by
extracting the mid-line bisecting the width of the ribbon and
computing the same root mean-square average of (x). Results
for the two approaches are nearly identical (data not shown).
In Fig. 5 we show the scaling collapse of measured height
fluctuations (h?(x)) using our measured persistence length £ P>
in excellent agreement with height fluctuations for anisotropic
polymers [16]

2x3/(3¢,),
2x¢,/3,

x L 4L,

. 13
>0, (13)

(h*(x)) = {
Close to the clamp (x « £,) ribbons behave like stiff
cantilevers, with an x3 dependence for the mean square
height fluctuation, while far away (x > £,) they transition
to random walk behavior. Because we do not include distant
self-avoidance in our simulations, we have /(h2(x)) ~ x'/2,
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FIG. 5. Scaling collapse for ribbon height fluctuations

(h*(x))/€;, where x represents the distance from the clamped end
along the ribbon backbone. The red line indicates the analytically
predicted curve for anisotropic ribbons in Eq. (13), which is in
good agreement with results of numerical simulations with no
adjustable parameters. The persistence length £, is measured from
the simulations by computing the autocorrelation function of tangent
vectors to the ribbon’s midline as described in text.

in this regime, rather than the behavior of a self-avoiding
random walk.

IV. CONCLUSIONS

In the past theoretical studies and simulations have pri-
marily focused on the effects of thermal fluctuations in
flat sheets. The recent experimental realization of graphene
kirigami [1], however, and the possibility of growing graphene
on curved substrates via chemical vapor deposition, motivates
an analysis of the role of geometry. With the coarse-grained
molecular dynamics simulations of ribbons in this work and
with the accompanying theoretical study in Ref. [16], we
have demonstrated that long ribbons behave like interesting
hybrids between flat sheets and asymmetric polymers. Just like
polymers, ribbons become semiflexible beyond a characteristic
persistence length £,,. The persistence length, however, scales
nontrivially (¢, o W!*7/T1=7/2) with the ribbon width W and
with temperature 7, when the thermal length scale becomes
smaller than the ribbon width (¢4, < W). This is a direct
consequence of the renormalization of the ribbon bending
rigidity at the scale of the ribbon width.

The spontaneous curvature of sheets also leads to new
surprising phenomena as was demonstrated in recent Monte
Carlo simulations [22] and in a theoretical study [50] of
thermalized spherical shells. In spherical shells thermal fluc-
tuations produce effective negative surface tension, which can
be interpreted as an effective external pressure. As a result
thermal fluctuations reduce the critical buckling pressure for
spherical shells up to a point that shells, which are larger
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than some temperature dependent critical radius, become
crushed even when the pressure difference between the inside
and outside of the shell is zero [50]. A similar result was
observed in numerical simulations of carbon nanotubes [51],
where thermal fluctuations reduced the critical axial
load.

While shape fluctuations have only a modest effect on
the electronic properties of pure graphene [52], we see that
its mechanical moduli, typified by the bending rigidity, are
strongly length-scale dependent and tunable geometrically.
This opens the door to designable elements for metamaterials
with targeted mechanical properties whilst retaining all the
other material virtues of pure graphene.

PHYSICAL REVIEW B 95, 104109 (2017)
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