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‘We investigate the accuracy and transferability of a recently developed high-dimensional neural network (NN)
method for calcium fluoride, fitted to a database of ab initio density functional theory (DFT) calculations based
on the Perdew-Burke-Ernzerhof (PBE) exchange correlation functional. We call the method charge equilibration
via neural network technique (CENT). Although the fitting database contains only clusters (i.e., nonperiodic
structures), the NN scheme accurately describes a variety of bulk properties. In contrast to other available
empirical methods the CENT potential has a much simpler functional form, nevertheless it correctly reproduces
the PBE energetics of various crystalline phases both at ambient and high pressure. Surface energies and structures
as well as dynamical properties derived from phonon calculations are also in good agreement with PBE results.
Overall, the difference between the values obtained by the CENT potential and the PBE reference values is less
than or equal to the difference between the values of local density approximation (LDA) and Born-Mayer-Huggins
(BMH) with those calculated by the PBE exchange correlation functional.
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I. INTRODUCTION

Atomistic simulations have become a widespread and
integral part of materials research in physics and chemistry,
providing a powerful tool to predict materials properties prior
to their synthesis. The accuracy of quantities obtained from
such calculations however strongly depends on the model em-
ployed to describe the atomic interactions. A wide spectrum of
methods have been developed, ranging from quasiexact many-
electron wave function approaches [1], density functional
theory (DFT) calculations [2], and semiempirical quantum
mechanical methods [3,4] to empirical, classical potentials
[5]. Methods based on quantum mechanics in general allow
an accurate prediction of physical and chemical properties of
materials. However, the associated high computational cost
may prevent their use for target applications with systems
containing a large number of atoms. DFT has proven to provide
a convenient compromise between accuracy and efficiency
for many applications and has thus become the quasistandard
in materials science. Nevertheless, its range of application
still remains limited to few hundreds of atoms whenever a
large number of energy and force evaluations are required,
such as in molecular dynamics simulations or in structure
prediction. Numerous efforts have been therefore made to
develop empirical potentials which preserve the accuracy of
ab initio methods at reduced computational cost.

A variety of force fields (FF) have been proposed to model
ionic materials, e.g., the Buckingham potential [6], which are
several orders of magnitude faster than ab initio methods. In
a classical FF, the total energy is a sum of atomic energies
arising from physically motivated analytic functions to model
the atomic interactions which contain parameters often fitted
to experimental or (more accurate) computational reference
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data. Most force fields take into account classical electrostatic
interactions, but the charges giving rise to these interactions
are often fixed, limiting the accuracy of such FFs. Therefore,
polarizable FFs [7] and charge equilibration methods [8] have
been developed to overcome these limitations. In some of
the most advanced charge equilibration schemes, such as the
charge optimized many body (COMB) potentials [9] and the
ReaxFF [10] force field, the atomic charges depend on
the environment via some analytic functions. These potentials
have been successfully applied to study materials and other
condensed matter systems [11-13]. Nevertheless, the basic
shortcoming of all standard FFs, namely that the optimal
analytical functional form is unknown, still remains in these
FFs.

In contrast to conventional FFs, machine learning based po-
tentials do not require a predefined, physically motivated func-
tional form to model the atomic interactions. Such schemes
have recently attracted considerable attention since they are
capable of reproducing a large number of ab initio reference
data with a very high accuracy. High dimensional artificial
NN [14] (ANNSs) and Gaussian approximation potentials [15]
(GAP) are two of the most promising approaches and have
been successfully used in many studies involving atomistic
simulations [14-21]. In these methods, the total energy is
again a sum of atomic or pairwise energies, which are however
directly obtained from a machine learning process. In fact, the
majority of these methods are based on purely mathematical
models and do not account for any sort of physical or chemical
principles. However, there are several attempts to combine
machine learning techniques with physically motivated energy
functionals such as the Coulombic interaction for zinc oxide
bulk [22] and the bond order potential for small silicon
clusters [23]. Although such potentials give excellent results
for systems with chemical environments comparable to those
used during the training process, they often fail to describe
structures dissimilar to all training data: if a potential is
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trained with molecular structures, it cannot be used for bulk
environments with periodic boundary conditions.

A new approach was recently proposed by Ghasemi et al.
[24], in which a short range intermediate physical quantity,
namely an environment dependent atomic electronegativity,
is obtained from an ANN process while the total energy is
computed from a charge equilibration process. The method is
thus called charge equilibration via neural network technique
(CENT). By allowing the electronic charge to distribute itself
in an optimal way in the system, both neutral and charged
systems can be equally described with a high accuracy [24].

In this work we train the CENT potential to calcium
fluoride (CaF,) clusters and investigate its transferability to
systems with different boundary conditions by comparing
various bulk and surface properties to ab initio results.
CaF; is representative of the fluoride-structured halides, an
important class of ionic materials with numerous technological
applications [25-28]. As a chemically inert, wide band gap
semiconductor, it can be grown in high-grade single crystals
with excellent optical transmission properties over a wide
energy range and exhibits a very high elastic compressibility
[29-32]. Furthermore, CaF, is also well known for being a
fast-ion conductor [33,34]. Here we evaluate the accuracy
of the CENT potential for bulk properties such as enthalpy
differences between polymorphs at high pressure, surface
geometries, vacancy formation energies, and lattice dynamics.
Our results show that the CENT potential trained on clusters
can successfully predict crystalline properties with accuracies
close to DFT results. In fact, the difference between the CENT
results and the DFT reference methods used for the fitting
process is less than or comparable to the differences between
both popular DFT exchange correlation functionals and the
empirical BMH potential.

II. METHODS
A. Feed-forward artificial neural network

ANN techniques are inspired by biological neural structures
and provide a framework that can be used to approximate
mathematical functions. In an ANN there are many nodes
which are connected through so-called weights. These nodes
are commonly distributed in layers, organized as an input,
(multiple) hidden and an output layer. In atomistic simulations,
ANNs are used to calculate total energies, where some
representation of the atomic coordinates is passed into the input
layer, and the output layer, which only contains a single node,
provides the desired scalar quantity (energy). Such ANNs
usually work in a feed-forward fashion where signals are
only transmitted in one direction along the layers. In high
dimensional ANN [14,35] potentials, the total energy is the
sum of atomic energies, each obtained from an ANN process.
A major disadvantage of currently available ANN potentials
is that they can only reproduce bulk properties for structures
that have been used in the fitting data base, as demonstrated
by Eshet et al. [36].

B. Charge equilibration via neural network techniques

In 2015, Ghasemi et al. proposed a new method to
generate interatomic potentials for ionic systems based on
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NN by interpolating the electronegativity rather than the total
energy [24]. Here we provide a concise summary of its
essential concepts. In this scheme, the total energy of a system
containing N atoms is given by

N

1
Ua({gi}) = Z (EQ + xiqi + EJn‘ql‘z)

// (r)p(f drdr. )
r—r|

where E? are the energies of individual, isolated atom i,
xi is the environment dependent atomic electronegativity of
atom i whose functional dependence is determined by the
ANN, g; are the atomic charges, J;; is the element-dependent
atomic hardness [37] of atom i, and p(r) is the charge density
of the system, which in our implementation is given by a
superposition of spherical Gaussian functions centered at the
atomic positions r;, each normalized to the corresponding
atomic charge g;. Thus, Eq. (1) can be rewritten as follows:

N

2 2]
Uio({gi},{r:}) = Z [(E? + Xiqi + 5 5 (J” + })q,z]

i=I

L erf(yyrip)

+ Y ag )
i>J t
N
atomic charge densities, and r;; is the distance between
the atoms i and j. The atomic charges ¢; are implicitly
environment dependent through the atomic electronegativity
Xi- As a consequence, long distance charge transfers for
a given system are possible while the total charge of the
system is conserved. In the charge equilibration process the
atomic charges are distributed such that the electrostatic
energy is minimized. This is done by differentiating Uy
with respect to the atomic charges using Lagrange multipliers,
which constrain the total charge to a constant value, leading
to a system of linear equations of the form AQ = —y,
where A is a (N + 1) x (N + 1) matrix, and Q and yx are
(N + 1)-dimensional vectors. In the case of free boundary
conditions and a small number of atoms the system of linear
equations is solved directly, whereas for large systems it is
solved iteratively. In contrast, for periodic systems it is always
solved iteratively irrespective of the system size. Since the
system of linear equations is well-conditioned the total number
of iterations to reach sufficient convergence never exceeds
20 based on extensive tests. When performing molecular
dynamics simulations or local geometry relaxations with
relatively small atomic displacements in each time step, the
initial guess for the first iteration can be taken from the atomic
charges obtained in the previous step, hence significantly
reducing the number of iterations to reach convergence.

The input layer of a high dimensional NN is a set of
symmetry functions {G; } to describe the chemical environment
of each atom. We use the symmetry functions proposed in
Ref. [35], which have the advantage that the array representing
the chemical environments is invariant under translation and
rotation of the structure. The adopted functional form of the
radial and angular symmetry functions used in this work is

where y;; = and «; are the widths of the Gaussian
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described in Ref. [24]. We used in total 70 symmetry functions,
16 and 54 for the radial and angular part, respectively,
parametrized according to Ref. [38]. The cutoff radius for
the symmetry functions were well tested and a value of 6.35 A
was sufficient to generate accurate potentials. The appropriate
values for Gaussian widths are 0.53 A for both calcium and
fluorine atoms. The atomic ANNs contain two hidden layers
with three nodes each. Similar to Ref. [24], we found that such
a small number of nodes in the hidden layers is sufficient to
reduce the root mean square error to less than 0.33 mHa per
atom upon validation tests (see Sec. II C). Furthermore, the
optimal values found for the atomic hardnesses of calcium
and fluorine are 0.01 and 0.02 in atomic units, respectively.

Due to the well-defined functional form of the individual
terms in the ANNS, an analytic expression of the atomic forces
can be derived as follows:

N

N
dxi aV;;
Fj=- i iq;—,
J Z(q arl>+§qq1 ar]

i=l1

3

where V;; = . The first term in Eq. (3) is calculated

during the neural network process based on the chain rule
for differentiation. In the case of fully periodic systems the
Hartree energy in Eq. (1) and its derivative, i.e., the second
term in Eq. (3), cannot be directly computed and is evaluated
in Fourier space. To calculate the Hartree energy for slab
systems, e.g., to evaluate surface energies, the P°D method
[39] is employed which is both efficient and accurate while
preserving the original boundary condition. In the P*D method,
the Poisson equation is solved by expanding the charge density
and potential in terms of plane waves in the periodic directions
and by using finite elements in the nonperiodic dimension.

erf(vij)
P

C. Preparation of the training data

The reference calculations to construct the ANN potential
were performed using DFT with the Perdew-Burke-Ernzerhof
(PBE) [40] exchange-correlation functional as implemented
in the FHI-aims code [41]. A set of reference structures
consisting of 2800 charge-neutral CaF, clusters with sizes
ranging from 24 to 99 atoms was used to train the ANN
potential. These structures were not generated all at once.
Instead, the final training data set was built up iteratively
since it is of great importance to train a NN potential on
a set of diverse structures. Therefore, we first generated a
smaller set of reference data points with random structures
to train a preliminary ANN potential. Then, using this ANN
potential together with the minima hopping global geometry
optimization method [42,43] (MHM), the low energy regions
of the (preliminary) energy landscape were explored. Local
geometry optimizations within the MHM were performed
with the recently developed and highly efficient stabilized
quasinewton minimizer [44] to reduce computational cost. The
resulting low energy structures from these MHM runs were
carefully filtered to avoid duplicate structures and to ensure
a large diversity in structural motifs within the augmented
data set, a task performed by comparing structures with the
fingerprint method proposed in Ref. [45]. Thereby, a measure
of similarity is given by the configurational distance d(p,q)
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FIG. 1. Distribution of the errors in the total energies per atom
with respect to reference DFT calculations for all data points in the
training and validation sets. The number of data points are normalized
such that the total number of data points gives 100%. In total,
the training and validation sets contain 2379 and 419 structures,
respectively.

between two structures p and g according to

N 172
d(P,CI) =mlnP<Z’G£ —G%(k)f) )
k

where P is a permutation function to match an atom k
in structure p with atom P(k) in structure g. The optimal
permutation P which minimizes the configurational distance

“

(©)

FIG. 2. Unit cell of the four different CaF, polymorphs: (a) cubic
fluorite (Fm3m), (b) P4/mmm, (c) Pmc2;, and (d) Pnma. The
blue (large) and purple (small) spheres denote Ca and F atoms,
respectively.
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TABLE 1. Lattice constants (A), bulk moduli By (GPa), cohesive energies E/ (eV/atom), and the energy differences E 'f (eV/atom) with
respect to cubic CaF, of four CaF, phases at ambient condition. The entries denoted with BMH, CENT, PBE, and LDA contain results from
the present work, whereas the other results were taken from literature, either from calculations (Theory) or experiments (Expt.). The values in
parentheses next to the BMH, CENT, and LDA values indicate the deviation from PBE results.

Phase Method ap by o B, Ef Ef
Fm3m BMH 5.460 (—0.055) 88.30 (10.34) —9.048 (—3.246)
CENT 5.483 (—0.032) 85.40 (7.44) —5.835 (—0.033)
PBE 5.515 77.96 —5.802
LDA 5.332 (—0.183) 101.23 (23.27) —6.379 (—0.577)
Expt. 5.466 [49] 87 [49]
Expt. 5.463 [50] 82 [51]
Theory 5.5252 [52] 77 [52] —4.290 [53]
Theory 5.4872 [54] 79.54 [54]
Theory 5.509 [55] 79 [55]
Theory 5.579 [56] 77.06 [56]
Pnma BMH 5.979 (—0.033) 3.607 (—0.040) 6.963 (—0.122) 96.52 (12.93) —8.978 (—3.229) 0.070
CENT 5.998 (—0.014) 3.608 (—0.039) 7.062 (—0.023) 104.28 (20.69) —5.799 (—0.050) 0.036
PBE 6.012 3.647 7.085 83.59 —5.749 0.053
LDA 5.797 (—0.215) 3.482 (—0.165) 6.846 (—0.239) 111.34 (27.75) —6.347 (—0.598) 0.032
Expt. 5.63 [49] 3.49 [49] 7.15 [49] 75 [52]
Expt. 5.96 [57] 3.58 [57] 7.03 [57] 70.92 [54]
Expt. 6.018 [58] 3.614 [58] 7.023 [58] 66 [55]
Theory  6.0274 [52] 3.6682 [52] 7.0413 [52]
Theory 5.9826 [54] 3.6303 [54] 7.0499 [54]
Theory 6.020 [55] 3.660 [55] 7.108 [55]
Theory 5.9909 [56] 3.6025 [56] 7.0717 [56] 86.78 [56]
Pmc2, BMH 3.511 (—0.030) 4.069 (—0.096) 5.999 (0.019) 79.347 (7.41) —8.778 (—3.160) 0.270
CENT 3.516 (—0.025) 4.035 (—0.130) 5.925 (—0.055) 82.998 (11.06) —5.659 (—0.041) 0.176
PBE 3.541 4.165 5.98 71.933 —5.618 0.184
LDA 3395 (—0.146)  4.048 (—0.117)  5.785 (—0.195) 93552 (21.62)  —6.170 (—=0.552)  0.208
P4/mmm  BMH 3.028 (0.008) 3.648 (—0.099)  3.728 (—0.019) 85.513 (9.99) —8.724 (=3.164)  0.324
CENT 2926 (—0.094)  3.687 (—0.060)  3.687 (—0.060) 95338 (19.81)  —5.637(—0.077)  0.198
PBE 3.020 3.747 3.747 75.528 —5.560 0.243
LDA 3.621 (0.601) 3.621 (—0.126) 2.927 (—0.820) 98.724 (23.20) —6.133 (—0.573) 0.246

is obtained through the Hungarian or Munkres algorithm [46].
The complete process of performing MHM runs, filtering
the structures, and then retraining the ANN potential was
repeated several times. The structures are thus reasonably
diverse and contain various morphologies. They are disordered
structures similar to amorphous solids rather than containing
ordered crystalline motifs. In fact, they do not resemble any
well-known CaF, crystalline phases such as those illustrated
in Fig. 2. Also, they do not contain vacancylike structures
or structures containing void regions. The surface of the
structures are curved and do not resemble surfaces which
are cut out of bulk crystalline CaF, structures along different
crystallographic planes. The final dataset contained 2800
clusters, and the following approach was used to validate
the training of CENT: 85% of the total data were randomly
selected as training points to obtain a CENT potential, which
was then used to predict the energies of the remaining 15% of
the structures for validation, a common procedure to detect
potential overfitting. This process was repeated ten times,
based on which a RMS error of 0.33 mHa/atom was achieved
with a standard deviation of +0.04 mHa/atom. Figure 1 shows

a representative error distribution for one of these training
processes. The error in the validation data is only slightly
larger compared to the errors in the training data, and only a
fraction of less than 3% of the total data results in an error larger
than 1.0 mHa/atom. In machine learning techniques, one way
of avoiding overfitting is early stopping, which we have also
employed in our trainings. In addition, since we do not use
the information of atomic forces as training data, the predicted
forces are closely monitored to analyze the accuracy: in the
case of overfitting the error in the forces would increase while
the error in the energies continues to decrease.

III. NUMERICAL RESULTS

In this section we examine the transferability of the CENT
potential. Trained exclusively on a dataset consisting of cluster
reference structures as described in Sec. II C, CENT was used
to compute various bulk and surface properties. The results are
compared to DFT results to assess the accuracy of the CENT
potential. Furthermore, to provide a comparison between the
results of the CENT potential and a FF, the BMH form of
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FIG. 3. Enthalpy differences per atom with respect to the Fm3m
phase as a function of pressure for three different polymorphs, using
CENT (a), PBE (b), LDA (c), and BMH (d).

Buckingham potential was used as implemented in the GULP
code [47] and parametrized according to Ref. [48]. Note that
the BMH potential was originally fitted to bulk properties and
is thus expected to perform well for periodic systems.

A. Bulk properties

As a first benchmark we computed the bulk properties of
four well-known CaF, crystalline phases: the cubic fluorite
(Fm3m) and three orthorhombic cotunnite PbCl,-type struc-
tures with space groups Pnma, Pmc2;, and P4/mmm (see
Fig. 2). Table I contains the lattice constants, bulk moduli,
formation energies, and the energy differences with respect
to the most stable Fm3m phase from CENT, BMH, and
DFT calculations together with experimental data whenever
available. The formation energies obtained with the CENT
potential are close to the reference training method, i.e., PBE.
Based on the average errors, which are around 1%, 11%, and
56% for CENT, LDA, and BMH, respectively, we conclude
that the error of CENT results with respect to PBE is much
smaller than the differences between LDA or BMH and PBE.
Furthermore, the standard deviations between the predicted
CENT, LDA, and BMH energy differences and the PBE values
are 0.028,0.018, and 0.069 (eV /atom), respectively, indicating
that the energies from the CENT potential and LDA correlate

PHYSICAL REVIEW B 95, 104105 (2017)

FIG. 4. Three different low-index surfaces of CaF, shown from
the side along the a axis (denoted by a) and the top along the ¢ axis
(denoted by b) after a local relaxation. The blue (large) and purple
(small) spheres denote Ca and F atoms, respectively.

well with the PBE results. The lattice constants and the bulk
moduli obtained with CENT and BMH are considerably closer
to the PBE results than those obtained with LDA.

Pressure induced phase transitions in CaF, have been
reported and are well studied both experimentally and the-
oretically (see Refs. [49,51,52,55,57,59-62]). Cubic Fm3m is
known to transform into the orthorhombic Pnma phase at a
pressure between 8 and 10 GPa, accompanied by an increase of
the coordination number of Ca from 8 to 9. Xray diffraction and
Raman spectroscopy have shown that this high pressure phase
is stable up to 49 GPa at room temperature [49,51]. In Fig. 3,
the enthalpy of the Pnma phase together with the Pmc2; and
P4/mmm structures are plotted with respect to the Fm3m
phase as a function of pressure. Our calculations show that
the phase transition from F m3m to Pnma occurs at 4.6, 8, 6,
and 10 GPa, in LDA, PBE, CENT, and BMH, respectively, all
values close to experimental measurements. The transition is
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TABLE II. Thickness, atomic relaxation, and rumpling (all in A) of the (111), (110), and (100) surfaces. The quantities in parentheses

indicate differences with respect to PBE results.

Surface Method Thickness Relaxation Rumpling
(111) BMH 11.100(—0.065) —0.005(—0.024) —0.002(—0.054)
CENT 11.213(0.048) 0.033(0.014) 0.052(0.049)
PBE 11.165 0.019 0.003
LDA 10.778(—0.387) 0.010(—0.009) 0.004(0.001)
(110) BMH 19.435(—0.091) —0.176(—0.089) —0.123(-0.174)
CENT 19.368(—0.158) —0.130(—0.043) 0.079(0.028)
PBE 19.526 —0.087 0.051
LDA 18.879(—0.647) —0.102(-0.015) 0.036(—0.015)
(100) BMH 15.251(—0.436) —0.490(0.020) —0.019(—0.136)
CENT 15.543(—0.144) —0.425(0.085) 0.121(0.004)
PBE 15.687 —0.510 0.117
LDA 15.068(—0.619) —0.429(0.081) 0.041(—0.076)

accompanied by a collapse of the unit cell volumes by 13.6%,
8.16%, 5.7%, and 8.81% for LDA, PBE, CENT, and BMH,
respectively, comparable to the experimental value of 8.3%
given in Ref. [62].

B. Surfaces

Next, we investigated the accuracy of the CENT po-
tential for surface properties, which have been the subject
of extensive experimental and theoretical studies in the
past [63—69]. Puchin et al. [63] for example performed a
systematic theoretical investigation of various surfaces with
respect to their relative stabilities and the effect of surface
relaxation/reconstruction on band gaps. Sicher et al. performed
extensive structure prediction calculations with the MHM
[42,43] to compare the stability of hydrated (100) and (111)
surfaces, giving insight into different experimentally observed
morphologies in CaF, nanocrystals (not yet published).

In the present work we considered three low-index surfaces,
namely (111), (110), and (100), which are illustrated in
Fig. 4. Equilibrium lattice parameters of 5.332, 5.515, 5.483,
and 5.460 A were used for LDA, PBE, CENT, and BMH
calculations, respectively. The BMH, LDA, and PBE calcu-
lations were performed using slabs in a supercell including
a vacuum region of more than 14 A to avoid interactions
between periodic images. No vacuum region was required
for the CENT calculations since the P*D method was used to
solve the Poisson equation with surface boundary conditions.
Polarized surfaces require additional care due to nonvanishing
dipole interactions. The (111) and (110) surfaces are dipole

free, whereas (001) is a polar surface (so-called Tasker-type-I11
structure) consisting of oppositely charged planes. Therefore,
50% of the fluorine atoms are moved from the top of the slab
to the bottom to suppress the dipole moment.

After preparing the slabs from the ideal bulk structure,
all atoms were fully relaxed to release the strain induced
by the broken bonds at the surfaces. The amount of this
relaxation can be defined as the mean difference between the
first and second surface layers before and after relaxation. The
same quantity, but with respect to the change of the distance
between the second and third sublayers, is called rumpling.
The effect of the relaxation on the structure is shown in Fig. 4,
and all numerical quantities are summarized in Table II. Our
calculations are qualitatively in good agreement with previous
reports. A detailed discussion of each of the three surfaces is
given below.

(111) Surface: We modeled the (111) surface with 12
atomic layers, which can also be interpreted as four layers
of combined F-Ca-F triple layers. The perfectly flat (111)
surface after cleaving from the bulk is F~ terminated, forming
a hexagonal array on the surface. The symmetry elements of
the surface are inversion and mirror planes perpendicular to
the surface, as well as the translational in-plane symmetries of
the slab. The ions Ca>" and F~ in the second and third atomic
layers have a threefold symmetry, which is preserved even after
relaxation. The thickness of the complete 12-layer slab, defined
as the distance between the outmost atoms of the whole slab, is
listed in Table II after a local geometry relaxation, indicating
that the value obtained by the CENT potential is very close to
the PBE result. All the results show that the outmost sublayers

TABLE III. Surface energies (in J/m?) for the (111), (110), and (100) surfaces.

Present work Others
BMH CENT PBE LDA Expt. Theory
(111) 0.538(0.161) 0.539(0.162) 0.377 0.563(0.186) 0.45 [71] 0.39 [72], 0.437 [32], 0.52 [65], 0.467 [63]

(110) 0.870(0.276) 0.763(0.169) 0.594

(100) 1.964(1.070) 1.032(0.138) 0.894

0.815(0.221)

1.195(0.301)

0.45-0.5[73] 0.39 [74], 0.497 [75], 0.476 [64]
0.61 [72], 0.717 [32], 0.82 [65], 0.819 [63]
0.969 [75], 0.760 [64]

0.9-0.95 [73] 0.84 [72], 0.957 [32], 1.189 [63]
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move only very little along the nonperiodic z direction upon
relaxation, which is in good agreement with the results of
Jockisch et al. [70]. While in the unrelaxed structure the
outmost F and Ca layers are separated by 0.792, 0.796, 0.770 A
in CENT, PBE, and LDA, respectively, their distances increase
t0 0.824, 0.815, and 0.779 A upon relaxation. However, in the
BMH results, this distance decreases from 0.766 At00.761 A.
In the layers further away from the surface, i.e., deeper in
the slab, this relaxation effect vanishes rapidly. The relative
distances between units of the F-Ca-F triple layer however
increases when moving away from the surface towards the
center of the slab, in agreement with earlier theoretical results.

(110) Surface: For the (110) surface we considered a slab
with eight atomic layers. In contrast to the (111) surface where
atoms only relax within the ¢ direction, a reconstruction within
the ab plane is observed for the (110) surface. The outmost
sublayer of the slab contains both Ca and F atoms: While the F
atoms move outwards away from the slab upon relaxation, the
Ca atoms move inwards. Together, the F and Ca in the outer
layer undergo a net inward relaxation of 0.176, 0.130, 0.087,
and 0.102 A for BMH, CENT, PBE, and LDA, respectively.

(100) Surface: We used a model with 12 atomic layer for
the (100) surface. Overall, the amount of relaxation within
this surface is considerably larger compared to the former two
surfaces, accompanied by a strong reconstruction as illustrated
in Fig. 4. The outmost layer of F atoms is pushed inward
towards the center of the slab by 0.490, 0.425, 0.510, and
0.429 A in BMH, CENT, PBE, and LDA, respectively.

The surface energy E (fhk[) is defined as the work required to
separate a crystal into two parts along a certain plane (hkl). In
order to assess the accuracy of the CENT potential in predicting
the stability of the three surfaces, their values were calculated
according to

1
gk _ L

w0 = L (B0 ), ®

where A is the surface area, E/*) is the total energy of the
equilibrium structure of the slab, Ej, is the bulk total energy
per f.u., and n is the number of f.u. in the slab. The factor %
accounts for the presence of two surfaces at either side of the
slab.

According to our DFT and CENT results, the surface energy
of the (111) surface is roughly half of the (100) surface.
The energy of the (110) surface is consistently higher than
the (111) and lower than the (100) surface. All potentials
are qualitatively in agreement with other theoretical and
experimental studies as shown in Table III. However, there
are significant quantitative discrepancies depending on which
potentials or DFT functionals are used. In particular, BMH
significantly overestimates the (100) surface energy, which can
be readily attributed to the fixed charges used in the potential

TABLE IV. Defect formation energies E}”? (eV) of F and Ca
centers calculated by BMH, CENT, PBE, and LDA.

Atom BMH CENT PBE LDA
Ca 17.942 9.671 15.526 17.065
F 3.377 6.001 8.735 9.432
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and the polar character of the surface slab, whereas CENT
on the other hand performs much better due to the charge
equilibration process. Overall, the values obtained with CENT
are within the error bars spanned by the various theoretical
results and reasonably close to the PBE values.

C. Defects

Understanding and controlling the nature and concentration
of defects in materials, also referred to as defect engineering,
is an important task to tune materials properties, and atomistic
simulations are often used to provide a better theoretical insight
[76,77]. The so-called F-centered defect is often encountered
in CaF,, where an electron is trapped in an anion vacancy. The
defect formation energies can be computed using the following
equation

E} = E(A)+ E(V) — E(P), ©6)
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=
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FIG. 6. Free energy of CaF, in four different phases: (a) cubic
fluorite (Fmgm), (b) (Pnma), (c) Pmc2,, and (d) P4/mmm.
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where E(A) is the energy for an isolated Ca or F atom and
E(V) and E(P) are the total energies of the bulk with and
without vacancy, respectively.

We performed defect calculations of bulk CaF, with 3 x 3
supercells containing 324 atoms with the BMH and CENT
potentials and DFT with both the LDA and PBE exchange
correlation functionals. A comparison of the defect formation
energies listed in Table IV shows that the formation of a F
vacancy is energetically more favorable than a Ca vacancy in
all four potentials. However, unlike all other quantities where
the CENT results were rather accurate, the values of E ]’3 using
CENT differ significantly from LDA and PBE. Although this
outcome might be somewhat discouraging, predicting defect
energies can be considered one of the most difficult tests to
pass. Still, the CENT potential outperforms other force fields
with respect to the accuracy of these values [78,79]. CENT
could be further improved by specifically including such defect
data points in the training set.

D. Lattice dynamics

Up to now we had mainly assessed the accuracy of
properties that can be derived from computing total energies.
Here we analyze how the CENT potential performs when
considering higher order derivatives of the energy landscapes

in lattice dynamics calculations. Phonon calculations were
carried out with the Phonopy package [80] to obtain the phonon
dispersion, free energies, and heat capacities. All structures
were relaxed with a tight convergence criterion of 1 x

1074 eV A™" before atomic displacements with an amplitude
0f0.01 A were createdin3 x 3 x 3 supercells. k-point meshes
of 4 x 4 x 4 were used in all DFT calculations, and ¢ meshes
of 45 x 45 x 45 were used for the Brillouin zone integration.

The heat capacities and free energies at constant volume
(Cy) as a function of temperature are shown in Figs. 5 and
6, respectively. Overall, the results of the CENT potential
and PBE calculations agree very well. In the case of Fm3m,
the LDA, PBE, BMH, and CENT calculations results in C,
values of 65.107, 66.999, 64.266, and 65.346 (J/mol/K) at
room temperature, respectively, which are very close to the
experimental result of 67.11 (Jmol'K~1) [81].

Figure 7 shows the phonon band structure of CaF, in
the Fm3m phase computed from the forces of the BMH
and CENT potentials and DFT with the LDA and PBE
functionals. The acoustic modes are qualitatively similar in all
methods, however, quantitatively the results from the CENT
potential agree better with PBE than with LDA and BMH.
Furthermore, due to the crystal symmetry and the degeneracy
of the transversal branches, there are only six phonon branches
along the [100] and [111] directions, whereas along the [110]

TABLE V. The frequencies of the maximum longitudinal optical mode (L O,,,x), minimum transversal acoustic modes (7 Ap,), and the
separation of longitudinal and transversal acoustic modes at the K and L points (LA — T A) calculated by BMH, CENT, PBE, and LDA. All
values are in cm™! and the numbers in parentheses are the differences with respect to PBE.

method r X w K L
BMH 0 135 (26) 149 (16) 147 (23) 156 (24)
CENT 0 134 (25) 141 (8) 138 (14) 150 (18)
T Amin PBE 0 109 133 124 132
LDA 0 157 (48) 177 (44) 169 (45) 143 (11)
BMH 317 (11) 466 (76) 403 (43) 429 (60) 495 (122)
CENT 336 (30) 445 (55) 426 (66) 430 (61) 383 (10)
L Opax PBE 306 390 360 369 373
LDA 339 (33) 417 (27) 389 (29) 398 (29) 391 (18)
BMH 0 43 (4) 107 (6)
CENT 0 42 (3) 77 (24)
LA—-TA PBE 0 39 101
LDA 0 13 (26) 133 (32)
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TABLE V1. Elastic constants C;;, Young modulus E, shear modulus G, and Poisson ratio v for CaF, of the F m3m phase. All values, except

v, are in units of GPa.

Present work

Previous work

BMH CENT PBE LDA Expt. Theory
Ci 168.8 174.7 153.5 183 174 [83], 164 [84] 168 [85], 159 [86], 191 [86]
Cin 48.2 39.2 40.6 60.3 56 [83], 44 [84] 48 [85], 41 [86], 61 [86]
Cu 45.6 22.7 27.3 35.8 35.93 [83], 34 [84] 40 [85], 30 [86], 40 [86]
E 147.4 94.2 952 116.4 107.5 [87] 119.85 [85]
G 51.0 35.8 36.7 44.5 40.7 [87], 41.1 [87] 47.08 [85]
v 0.2 0.3 0.3 0.3 0.28 [51]

direction the degeneracy is resolved and all nine phonon
branches are split. For a quantitative comparison of the three
methods we list in Table V the maximum and minimum values
of frequencies which are related to the longitudinal optical
modes (L On.x) and transversal acoustic modes (7 Ap;,) as
well as the separation of the longitudinal and transversal
acoustic modes at the K and L points at the zone boundaries.
Note that the LO /T O splitting was neglected.

E. Elastic properties

The final materials properties that we examined are the
mechanical quantities of CaF, in the bulk Fm3m phase. In
order to characterize the elastic behavior at equilibrium we
calculated the single crystal second order elastic stiffness con-
stants C;;, the shear modulus G, the Young’s modulus E, and
the Poisson’s ratio v using the ELASTIC software package [82].
The results obtained with BMH, CENT, LDA, and PBE are
listed in Table VI. Although the values of these properties are
pressure and temperature dependent we list the experimental
and theoretical values in Table VI at ambient conditions. Due
to symmetry there are only three independent elastic constants
for cubic crystals: Cyy, Ci2, and Cyy. Comparing the elastic
constants in the principal direction C;; shows that it is repro-
duced reasonably well by BMH and CENT, and the differences
between CENT and BMH potentials and PBE are less than that
between LDA and PBE. The CENT shear constant in the main
diagonal of the elasticity matrix Cy4 is also in good agreement
with PBE. Finally, the off-diagonal element C;, obtained by
CENT has a marginal deviation and it differs from that of PBE
by merely 3.4%, significantly less than the difference between
both LDA and BMH with PBE. Overall, the elastic constants
obtained with the LDA functional are larger than those of PBE,
a direct consequence of the well-known overbinding behavior
of the LDA functional, also leading to smaller lattice constants,
a larger bulk modulus, and larger elastic constants. Similarly,
the BMH potential also significantly overestimates the elastic
constants with respect to PBE. The calculations of G, E, and
v were performed within the Hill approximation since the
arithmetic average of the Reuss and Voigt limits have been
shown to give good estimates of the actual values. Based on
the results presented in Table VI we conclude that, similar
to the elastic constants, the CENT potential describes the
elastic properties of CaF, with an acceptable level of accuracy.
Furthermore, the values of the Poisson’s ratio obtained by
BMH, CENT, PBE, and LDA are in the range of 1 < v < 3,
which is consistent with experimental observations.

IV. DISCUSSION AND CONCLUSIONS

Accurate force fields are urgently called for to efficiently
model large systems with thousands or tens of thousands of
atoms. The recent development of a new generation of force
fields based on machine learning techniques is an important
step in this direction. Since such ANN potentials are not
based on physically motivated functional forms, the common
perception up to now was that they have limited transferability,
i.e. that they cannot reproduce highly accurate results for
structural motifs which are not contained in the training data
set. The recently developed CENT method however differs
significantly from previously available ANN potentials. By
aiming to predict a physically motivated quantity that is
highly local using ANN, namely the environment dependent
atomic electronegativity, a good transferability from clusters
to extended bulk systems can be readily achieved by fitting the
ANN to a data set of small molecules only.

In this paper we have examined the transferability of the
CENT method by generating a potential for CaF, based
on clusters and evaluating its performance on various bulk
properties. For each property that we investigated we compared
CENT to DFT results obtained with the LDA and PBE
functionals as well as to the empirical BMH potential. With
the exception of vacancy formation energies, all results show
that CENT can reproduce the PBE results close to density
functional accuracy. This is more impressive considering that
the largest clusters used in our training data set consist of only
99 atoms with no structural motifs predominant in crystalline
structures. The BMH potential on the other hand gives good
results for bulk structural properties of cubic CaF,, which is not
surprising given its parameters were originally fit to this phase.
However, it performs poorly for most other polymorphs and
properties investigated in this study [e.g., the surface energy
of the polar (100) surface], and CENT consistently produces
results in better agreement with PBE. In fact, this favorable
behavior of CENT is not only limited to CaF, but extends to
other ionic materials, demonstrating that an ANN force field
can be generated with a high predictive power of materials
properties at conditions which significantly differ from those
of the reference data.
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