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Charged domain walls under super-band-gap illumination
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Charged domain walls (CDWs), which possess metallic-type conductivity and can be created and controlled in
the bulk of wide-band-gap ferroelectrics, attract nowadays a strong research interest. The most advanced method
for production of stable CDWs involves weak super-band-gap illumination. Here, we investigate theoretically
the impact of this illumination on the major wall properties including the energy and the spatial profiles of the
polarization, of the electrostatic potential, and of the compensating charge carriers. The key material parameters
determining the effect of light are the zero-field polarization strength, the dielectric permittivity, and the trap
concentration. The main predictions are substantial reduction of the wall energies and decrease of the electric
wall potential under light. These features facilitate creation of dense CDWs patterns and accessibility of the
metallic-type wall conductivity.
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I. INTRODUCTION

Charged domain walls (CDWs), which possess metallic-
type conductivity and can be created, displaced, and erased
in the bulk of nominally nonconducting ferroelectrics, attract
nowadays a strong research interest [1–15]. The CDW related
highly efficient photovoltaic effects are also at the center of
research attention [16–18]. Owing to their unique properties
and variability, CDWs are considered as promising elements
for the future reconfigurable nanoelectronics [14,19].

Prediction of metallic-type CDW conductivity dates back to
the 1970s [20], and it took about 40 years to turn it into reality.
Difficulties in creation and control of CDWs in wide-band-gap
ferroelectrics are closely related to the necessity of a strong
charge compensation of a big bound polarization charge
in order to provide the ferroelectric stability [7,20–22]. So
far, the most advanced experimental method for production
of stable and controllable CDWs patterns involves weak
continuous wave (CW) super-band-gap illumination providing
the compensating electrons and holes [13]. It is known also
that such illumination is sometimes necessary for pronounced
CDW conductivity [4].

An appreciable amount of theoretical work (analytical
and numerical) has been done on the properties of CDWs
(see review [15], papers [20–29], and references therein).
This includes analysis of charge screening mechanisms and
regimes for different types of walls, determination of the
wall widths and energies, mechanism of enhancement of
electromechanical response owing to SDWs, investigation
of the wall conductivity, the quasiclassical and quantum
approaches to the description of the discrete wall energy
spectrum. A large necessary amount of the screening charge
together with a small CDW width (10–100) nm, result often
in huge (for dielectric materials) concentrations of electrons
and holes, above (1019–1020) cm−3. This means the presence
of a two-dimensional (2D) sheet of strongly degenerate free
carriers possessing metalliclike conductivity.

Remarkably, electrical locality of CDWs, i.e., decay of
perturbations of the electric potential far from the wall, was
established only recently [29]. This means a pronounced
two-scale wall structure with a nanosized core incorporating
most of the screening charges and pronounced μm-sized

tails. This general feature affects electrical coupling between
individual walls, coupling with electrodes, and also the wall
energies. It is due to involvement of localized electronic states
in the forbidden gap (which are present in any real crystal) in
the charge screening.

The previous studies of the CDW properties dealt with the
thermal equilibrium. The latest experimental studies show a
surprisingly strong impact of weak super-band-gap illumina-
tion on these properties [4,13]. The CDW related photovoltaic
properties [16,17] are also detected for super-band-gap illu-
mination. Moreover, the mentioned studies follow the general
trend of involvement of light into domain engineering. Thus,
the purpose of this paper is to investigate theoretically the
impact of super-band-gap illumination on the main CDW
characteristics. The band gap of ferroelectric Eg is expected
to be much larger than the thermal energy kBT .

The effect of light on the electronic and charge-transport
properties is typically described with balance equations for
electrons and holes that incorporate the excitation, recom-
bination, and band transport. Appreciable examples of this
approach as applied to ferroelectrics, including determination
of material parameters, can be found in the studies of the
photorefractive phenomena [30,31]. One might expect that
application of the balance equations to CDWs is especially
complicated because of a strong spatial nonuniformity, degen-
eration of charge carriers, and involvement of the ferroelectric
degrees of freedom. It turns out, however, that the mentioned
specific properties of CDWs enables one to strongly simplify
the treatment of the effect of light.

The positively and negatively charged CDWs are over-
whelmingly compensated by electrons and holes, respectively,
i.e., the charge screening is almost monopolar for each
individual wall. Since the lifetimes of photoexcited electrons
and holes are typically much longer than the thermalization
times, dependences of their concentrations n and p on the
electric potential ϕ can still be described by the relations of
the Fermi statistics as applied to semiconductor band models.
The main difference between the thermal and light-induced
dependences n(ϕ) and p(ϕ) is that instead of the Fermi
energy F we must use certain intensity-dependent quasi-Fermi
energies Fn,p [32,33]. Employment of the quasi-Fermi-energy
approach makes our theory simple and compact. It enables us
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(a) (b)

FIG. 1. (a) Energy scheme and light-induced transitions for spa-
tially uniform ferroelectric. Super-band-gap illumination produces
electron-hole pairs, and recombination occurs mostly via localized
levels in the forbidden gap. (b) Schematic of the spatial structure of
positive (left) and negative (right) CDWs. Electrons and holes are
degenerate in the cores and nondegenerate in the tails. The energy
distances are exaggerated and the core drops �n and �p are generally
different.

to describe most of the CDW properties. Nevertheless, we use
the balance equations to justify additionally this approach and
consider some important issues lying beyond it.

II. THEORETICAL BACKGROUND

The principal energy scheme of a spatially uniform fer-
roelectric is depicted in Fig. 1(a). Continuous-wave (CW)
illumination with the light-quantum energy h̄ω exceeding the
band gap Eg excites electrons and holes in the conduction
band (CB) and in the valence band (VB). Recombination
of electrons and holes occurs via partially filled traps at the
Fermi level F . While this linear recombination is expected
to be dominating for low intensities, the quadratic electron-
hole recombination is also allowed. The spatially uniform
concentrations of electrons and holes are n0 and p0. The
quasi-Fermi levels Fn and Fp lie between the Fermi level
and the edges of conduction and valence bands Ec and Ev ,
respectively (see also below).

Figure 1(b) announces the energy structure of CDWs for the
charge screening by degenerate electrons and holes; z is the
across-wall coordinate. The electrostatic wall potential ϕ(z)
shifts the cores below and above the quasi-Fermi levels Fn and
Fp for positive and negative CDWs, respectively. Far enough
from the walls we return to the spatially uniform case.

The positive (head-to-head) CDWs can be of 180◦ (→|←)
or 90◦ (↗|↖) type. The same is valid for the negative (tail-
to-tail) CDWs where the direction of spontaneous polarization
P0 is inverted. In any case, the problem is one dimensional:
all variables depend on a single wall coordinate z. The basic
case for us is the 180◦ walls; the results for the 90◦ walls can
be obtained by a simple renormalization procedure [28].

The basic relations for the spontaneous polarization Pz = P

and the electrostatic potential ϕ are not different from those
used and justified in [22,29]:

−dϕ

dz
= αP + βP 3;

dP

dz
= ρ, (1)

where α < 0 and β > 0 are constants and ρ = ρ(z) is the
compensating free charge density. The first relation is the
equation of state for the ferroelectric second-order transition.

The combinations ε = 2π/|α| and P0 = √|α|/β give the main
contribution to the dielectric constant of the ferroelectric and
the zero-field spontaneous polarization, respectively. Omission
of the correlation term (∝∂2P/∂z2) in the first relation is
justified for CDWs, where the strong charge compensation
mechanism prevents formation of large gradients. The sec-
ond relation comes from Maxwell’s electrostatic equation
dD/dz = 4πρ taking into account that ε strongly exceeds
the background contribution to the dielectric constant.

Typically, the charge density ρ can be treated as a function
of ϕ [22,29]. In this most common case, P can also be
considered as a function of ϕ, and Eqs. (1) give after
an elementary integration the following important integral
relation:

πP 2
0

2ε

(
1 − P 2

P 2
0

)2

+
∫ ϕ

0
ρ(ϕ′) dϕ′ = 0. (2)

It accounts for the fact that P (z) → ±P0 and ϕ(z) → 0 for the
distance to the wall center |z| → ∞. Furthermore, it allows
to express algebraically P by ϕ for any particular model of
ρ(ϕ) and deal further only with the first-order differential
equation (1) for ϕ.

The key issue of CDW modeling is the dependence
ρ(ϕ), which incorporates a great deal of information about
population of delocalized and localized energy levels.
In the case of thermal equilibrium, the relations of the
Fermi statistics for electrons and holes strongly simplify
the matter [22,29]. However, they are invalid in the case
super-band-gap illumination. The most common approach
here is employment of a set of balance equations for electrons
and holes incorporating the light-induced transitions, the
recombination processes, and the charge transport [30,31].
These equations are model specific, cumbersome, and difficult
for analytical and numerical treatments. At the first sight,
investigations of CDW properties under light have to be
especially difficult because of a strong spatial nonuniformity
and a large amount of screening charge. However, just these
features allow us to strongly simplify the treatment.

It is clear that screening of positive and negative CDWs is
predominantly accomplished by electrons and holes, respec-
tively. For positive CDWs, the concentration of free electrons
n is much larger than the concentration of holes p and the
steady-state electronic current density jn is zero in the leading
approximation. Similarly, we have p � n and jp � 0 for
negative CDWs. Next, we take into account that the lifetimes
of photoexcited charge carriers are typically much longer than
their thermalization times. Altogether, this means that the
dependence n(ϕ) for positive CDWs and the dependence p(ϕ)
for negative CDWs obey the relations of Fermi statistics with
only one exception: the Fermi energy F has to be replaced by
the quasi-Fermi energies Fn and Fp which are different from F

and from each other [32,33]. These energies depend generally
on the light intensity and on distribution of localized energy
levels in the forbidden gap.

Employing the standard parabolic CB model, we have for
the concentration of electrons in this band [32]

n = Nn�

(
Fn − Ec + eϕ

kBT

)
, (3)
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where e is the elementary charge, Nn = 2(mnkBT/2πh̄2)3/2 is
the effective CB density of states, mn is the effective electron
mass, T is the temperature, kB is the Boltzmann constant, and

�(ζ ) = 2√
π

∫ ∞

0

x1/2 dx

1 + exp(x − ζ )
(4)

is the Fermi-Dirac integral of index 1
2 . At T = 300 K and

for mn equal to the naked electron mass m0, we have Nc �
2.5 × 1019 cm−3. Furthermore, we have �(ζ ) � exp(ζ ) for
ζ � −1; this is the case of nondegenerate Boltzmann electrons
with the concentration n 
 Nn. In the opposite case ζ � 2, we
have � � 0.75 ζ 3/2. This is the case of degenerate electrons
with the T -independent Thomas-Fermi concentration n(ϕ) �
0.1m

3/2
n h̄−3 (Fn − Ec + eϕ)3/2 � Nn. Analogous relations are

valid for the hole concentration p(ϕ). They include the
effective VB density of states Np, the effective hole mass
mp, and the quasi-Fermi energy Fp.

Far enough from CDWs, when the potential ϕ(z) is
already close to zero, the electron or hole concentrations
tend to spatially uniform values n0 and p0. The same values
correspond to a uniform illumination of a single-domain
ferroelectric and manifest themselves, e.g., in photoconduc-
tivity. For continuous-wave light intensity I , we have safely
n0(I ),p0(I ) ≪ Nn,p. The charge carriers in this range are
strongly nondegenerate. The quasi-Fermi energies can thus be
expressed by small intensity-dependent ratios rn = n0/Nn and
rp = p0/Np:

Fn,p = Ec,v ± kBT ln rn,p(I ). (5)

With increasing light intensity I , Fn and Fp shift gradually
towards Ec and Ev , respectively. It is worthy of mentioning
that the uniform concentrations n0 and p0 are just an
equivalent of the quasi-Fermi energies En and Ep. While
the link (5) is quite general, the functions n0(I ) and p0(I )
are model dependent: they must include different ionization
and recombination constants. With increasing I , the linear
recombination to the traps transforms usually into quadratic
electron-hole recombination. Up to Sec. VI, where we consider
the simplest semiconductor model, the concentrations n0 and
p0 are treated as independent physical quantities.

In wide-band-gap materials, the light-induced concentra-
tions n0 and p0 are typically many orders of magnitude larger
than the thermal concentrations nT and pT . This means that
Fn and Fp lie well above and below the Fermi level F . Only
for extremely small intensities, when n0,p0 → nT ,pT , the
quasi-Fermi levels Fn,p approach F .

Not only CB electrons and VB holes participate in the
CDW screening. The so-called trap recharging, i.e., spatial
modulation of the electrons on localized energy levels in
the forbidden gap, is also involved. In particular, the trap
recharging is responsible for the CDW tails in thermal equi-
librium and contributes to the wall energies [29]. Let the total
trap concentration be Nt = const, while the concentrations
of filled and empty traps be N• = N•(z) and N◦ = N◦(z), so
that N• + N◦ = Nt . The spatially uniform thermal values of
N•,◦ are NT

•,◦. Taking into account neutrality of ferroelectric
in thermal equilibrium far from the wall, we see that the
contributions of the localized electrons and holes to the charge
density are −e(NT

◦ − N◦) and e(NT
• − N•), respectively.

As soon as n � p near the positive CDWs, the electron
recombination to empty traps cannot be compensated by the
hole recombination. This means a strong trap saturation, i.e.,
the equality N◦ � 0 for the scheme of Fig. 1(a). Similarly,
near the negative CDWs we have p � n and N• � 0. The
total charge density ρ near the positive and negative CDWs is
thus given by the relations

ρ = −e(NT
◦ + n) and ρ = e(NT

• + p), (6)

respectively. The concentrations NT
•,◦ have to be treated as

material characteristics. They are also relevant to various
photoelectric and photorefractive phenomena and can be
estimated from experiments [30,31].

The above relations are sufficient to determine most of
the CDW characteristics. However, they are insufficient to
quantify the contributions of minor charge carriers and the
transition to no trap saturation far from the walls. To fill this
gap and to justify additionally employment of the quasi-Fermi-
level approach, balance equations for electrons and holes are
needed. They are presented and analyzed in Sec. VI.

While our theory provides dependences of the CDW
characteristics on the key intensity-independent parameters
P0, ε, Nn,p, and NT

•,◦, representative values of these parameters
are useful for numerical estimates. For this purpose, we use
P0 = 30 μC/cm2, ε = 500, Nn,p = 1019 cm−3, and NT

•,◦ =
1017 cm−3. The values of P0 and ε are representative for
perovskites. The values of Nn,p correspond to the mass
ratio mn,p/m0 � 0.5; they account for the fact that the
effective masses of electrons and holes are often smaller in
semiconductors as compared to m0. The representative values
of NT

•,◦ lie in the middle of the range (1016–1018) cm−3 typical
for trap concentrations in undoped ferroelectrics [30].

The variation range of the intensity-dependent ratios
rn(I ) = n0/Nn and rp(I ) = p0/Np is generally huge. From
below, they are restricted to nT /Nn and pT /Np. For the
forbidden gap Eg = 3 eV and the Fermi energy F lying in
the middle of this gap, we have nT /Nn ∼ pT /Np ∼ 10−25.
From above, the expected restriction is rn,p 
 NT

•,◦/Nn,p ≈
10−2. It corresponds to the absence of trap saturation for
single-domain samples. For illustrations, we choose the range
10−7 � rn,p � 10−3 as representative (see also the estimates of
Sec. VI).

III. WALL-CENTER CHARACTERISTICS

Let us consider for definiteness the case of positive CDWs.
It is evident that the polarization P (z) turns to zero at the
wall center z = 0, while the potential ϕ(z) and the electron
concentration n(z) reach here their maxima. Setting P = 0 in
Eq. (2) and using Eqs. (3)–(6), we obtain for the maximum
value of u = eϕ/kBT

(NT
◦ /Nn) u + �̃(u,rn) = κn ≡ πP 2

0 /2εkBT Nn, (7)

where κn is the characteristic parameter including only
intensity-independent quantities and

�̃(u,rn) = 2√
π

∫ ∞

0
x1/2 ln

(
ex + rne

u

ex + rn

)
dx (8)
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(a) (b)

FIG. 2. Dependence of umax = eϕmax/kBT (a) and nmax/Nn (b)
on κn for N◦/Nn = 0.01 and four values of the intensity-dependent
ratio rn = n0(I )/Nn. The dotted lines correspond to the asymptotic
relations for strongly degenerate electrons.

is a new Fermi integral. Equation (7) expresses the
competition between the CB and trapped electrons in the
CDW screening. For sufficiently small (large) values of κn,
the first (second) term in its left-hand side is dominating. As
the function umax(κn) is known, the dependence nmax(κn) can
be determined from Eqs. (3) and (5). Generalization to the
case of negative CDWs is evident.

Figure 2 gives an overview of the situation. The solid
lines in Figs. 2(a) and 2(b) show umax and nmax/Nn versus
κn for NT

◦ /Nn = 0.01 and four representative values of the
intensity-dependent parameter rn on semilogarithmic and
double-logarithmic scales. Several distinctive features are
clearly seen:

(i) The regions κn � 1 and κn 
 1 correspond to strongly
degenerate and strongly nondegenerate CB electrons, respec-
tively, the values κn ∼ 1 are intermediate. This can also be
deduced from Eq. (7). Thus, we have got a simple and
general criterion of degeneracy; it is important also for thermal
equilibrium.

(ii) For κn � 0.1, we have the trap screening region. Here,
umax weakly depends on rn = rn(I ), while the rn dependence of
nmax/Nn is strongly pronounced. This feature is qualitatively
clear: Since the trapped electrons are sufficient for screening,
the CB electrons are of minor importance.

(iii) Outside the trap region, when κn � 0.1, umax grows
steadily with decreasing rn(I ), while nmax/Nn stays practically
constant in rn.

(iv) For κn � 1, the solid lines approach the corresponding
dotted lines expressing the asymptotic properties of the
strongly degenerate electron system.

Two last features require an additional clarification. They
are relevant to the asymptotic properties of the Fermi integrals
� and �̃. Using Eqs. (4), (7), and (8), one can find that
umax � ln(κn/rn) and nmax � Nnκn for strongly nondegen-
erate electrons outside the trap region. These asymptotic
relations reproduce the above mentioned features of Fig. 2.
However, the field of their applicability, 0.1 
 κn 
 1, is
narrow for the chosen ratio NT

◦ /Nn = 10−2. For strongly
degenerate electrons κn � 1, one can find the follow-
ing asymptotic relations: umax = − ln rn(I ) + (15

√
πκn/8)2/5,

nmax/Nn = (15
√

πκn/8)3/5. They give an rn-dependent value
of umax and an rn-independent value of nmax/Nn and are shown
by the dotted lines in Fig. 2.

Furthermore, it is not difficult to find using the definitions
of κn and Nn that the above asymptotic relations can be
rewritten as

Fn − eϕmax = �n � 4.35 × (
P 4

0 h̄
6/ε2m3

n

)1/5
,

nmax � 1.18 × (
m3

nP
6
0 /ε3h̄6

)1/5
. (9)

The values of �n and nmax depend neither on the intensity-
dependent parameter rn nor on the temperature T . They are
not different from the core energy drop and the maximum
electron concentration in the thermal equilibrium, respectively
[see also Fig. 1(b)]. The effect of light is present only in the
first contribution to eϕmax. This suggests that the presence of
light reduces merely the energy distance to the core Ec −
Fn = −kBT ln rn compared to the thermal distance Ec − F .
Relations (9) correspond to the quasiclassical Thomas-Fermi
approximation for degenerate electrons.

Now, we make some numerical estimates using the rep-
resentative values of P0, Nn, and ε indicated in the end of
Sec. II. For the characteristic parameter κn we obtain at room
temperature κn � 60. This corresponds indeed to strongly
degenerate electrons. The case of nondegenerated electrons
κn � 1 cannot be excluded, but it seems to be less common
and interesting. Next, we get for the core drop �n � 0.2 eV.
This is smaller than or comparable with the distance to the
core Ec − Fn = kBT ln(1/rn). In particular, when rn = n0/Nn

ranges from 10−7 to 10−3, this energy distance changes from
�0.4 to 0.2 eV. In turn, this distance is substantially smaller
than its thermal value Ec − F = kBT ln(Nn/nT ).

IV. CDW PROFILES

To find the spatial profile u(z) = eϕ(z)/kBT for a positive
CDW, we employ the second of Eqs. (1), set P = P (u),
and express the derivative dP/du by u from Eq. (2). Next,
using Eqs. (3) and (6) for ρ(n) and n(u), we arrive at
an ordinary first-order differential equation for u(z); it can
be integrated numerically. With the profile u(z) known, we
calculate algebraically n(z) and P (z) from Eqs. (2) and (3),
respectively.

Some characteristic spatial scale has to be chosen for
normalization of the wall coordinate z. This choice is not
unique because of the simultaneous presence of different
spatial ranges of CDW screening relevant to the degenerate,
nondegenerate, and trapped electrons. Our primary choice is
the Debye screening radius

RD = (εkBT/4πNne
2)1/2 (10)

relevant to the CB density of states Nn. This scale is
intermediate between the Thomas-Fermi screening length
RTF = (ε3h̄6/P0m

3
ne

5)1/5 corresponding to strongly degener-
ate electrons [29] and the Debye screening length R̃D =
(εkBT/4πNT

◦ e2)1/2 = RD

√
Nn/NT◦ relevant to trapped elec-

trons. For the above chosen representative parameters we have
RD � 8.5 nm, RTF � 6 nm, and R̃D � 85 nm.

Figure 3 shows representative spatial profiles of u =
eϕ/kBT , n/Nn and P/P0 for positive CDWs. The left panel
[Figs. 3(a)–3(c)] corresponds to the characteristic parameter
κn = 60, while the right panel [Figs. 3(d)–3(f)] corresponds
to κn = 0.6. Only two representative values of the intensity-
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(a) (d)

(b) (e)

(c) (f)

FIG. 3. Positive CDWs: spatial profiles of u = eϕ/kBT , n/Nn,
and P/P0 for κn = 60 [(a)–(c)] and for κn = 0.6 [(d)–(f)]. Lines
1 and 2 correspond to rn = 10−6 and 10−5, respectively. The filled
circles in (a) and (b) indicate the borders between the regions of
degenerate and nondegenerate electrons.

dependent ratio rn = n0(I )/Nn are considered; this is sufficient
to illustrate the main features.

The presence of a short-range core and a long-range tail
is clearly seen for each profile u(z) in Fig. 3(a). The core
is due to degenerate electrons; the filled circles on each
line indicate the borders between the regions of degenerate
and nondegenerate electrons where n(z) = Nc. The values of
u(0) = umax correspond to Eq. (7) and to the relevant points
on Fig. 2(a). Decreasing ratio rn leads mostly to a vertical
rise of the curves u(z). Within the tails, the CDW screening
by nondegenerate CB electrons transfers smoothly to the
screening by the trapped electrons. The tails are obviously
much longer than RD .

The curves in Fig. 3(b) would be undistinguishable on a
linear vertical scale. The logarithmical scale used shows the
difference in the curves for rn = 10−6 and 10−5 on the far tails
corresponding to the trap regions. The polarization profiles
are also undistinguishable on the linear scale [see Fig. 3(c)].
They show practically no long-range features. The width of
the polarization profile, calculated between the points where
P (z) = ±P0/2, is w � 1.46RD � 2RTF.

The CDW profiles of the right panel of Fig. 3, corresponding
to κn = 0.6, show not only similarities with with the profiles
of the left panel, but also new features. Breaking the profile
u(z) down to core and tails is practically absent in Fig. 3(d),
and the width of this profile is much larger than RD . The
trap region is more pronounced in Fig. 3(e) compared to
Fig. 3(b). Convergence of P (z) to the limiting values ±P0

with increasing |z| occurs relatively slow, especially for
|z|/RD � 1. The smaller rn(I ), the slower is this convergence.
The width of the polarization profiles is here about 6RD .

The tail length � for Fig. 3(a) admits a simple analytical
estimate. To make it, we indicate that most of the potential
drop for the tail occurs in the trap region where u(z) �
ln(NT

◦ /rnNn), ρ � −eNT
◦ , and P is already close to ±P0.

Thus, we have a parabolic potential profile, which turns to
zero at |z| � �, where

� = RD

√
2 ln(NT◦ /rnNn) Nn/NT◦ . (11)

This relation gives a weak logarithmical increase of � with
decreasing rn(I ). For NT

◦ /Nn = 10−2 and rn = 10−6, we have
� � 43RD � 0.36 μm in a good agreement with Fig. 3(a).
This value gives also a rough estimate of the half-width of the
polarization profile for κn � 1 [see Fig. 3(d)].

The results on the behavior of p/n and N•/Nt far from
the wall can be found in Sec. VI. They are obtained with the
balance equations for electrons and holes.

V. EFFECT OF LIGHT ON WALL ENERGIES

An important consequence of the above analysis is that
super-band-gap illumination leads to a substantial lowering of
the wall energies as compared to their thermal values. The
CDW energy W (per a unit surface element) is the difference
between the energies of ferroelectric with and without the wall.
It is positive and given by W = − ∫

ρ(z)ϕ(z) dz [29]. In the
most common case of degenerate electrons, the compensating
charge is localized mostly at the core where eϕ � Ec − Fn. In
this case, the energy of the positive wall can be estimated as

Wn � 2P0

e
× [0.7�n + kBT ln(Nn/n0)]. (12)

The first term in the square brackets accounts for the structure
of the core, where both ρ(z) and ϕ(z) vary quickly [29]; this
term is typically relatively small. An analogous estimate, with
the replacements Nn → Np and �n → �p, is valid for the
negative wall energy Wp.

To get the thermal wall energies WT
n and WT

p , it is
sufficient to replace kBT ln(Nn/n0) and kBT ln(Np/p0) in
the expressions for Wn and Wp by Ec − F and F − Ev ,
respectively. This leads to the known estimate of the total
thermal energy WT

n + WT
p � (2P0/e) × Eg [11,22].

In the case of nondegenerate electrons, κn 
 1, the core
is not pronounced, but the the electron concentration and the
charge density still possess sharp peaks at z = 0. The wall
energies can be estimated here as

Wn,p � 2P0

e
× kBT ln

(
κn,p

rn,p

)
. (13)

They are slightly smaller compared to values of Wn,p relevant
to the degenerate case.

Let us now estimate the ratio of the total wall energies under
illumination and in the thermal equilibrium. Regardless of the
degeneration degree, it is given by

W

WT

= Wn + Wp

WT
n + WT

p

� kBT

Eg

ln

(
NnNp

n0p0

)
. (14)

The larger the light intensity, the smaller is the energy ratio. In
the opposite limit, n0 → nT and p0 → pT , it tends to 1. For
n0 � nT and p0 � pT , the ratio W/WT can be substantially
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smaller than 1. In particular, setting Nn/n0 = Np/p0 = 103

and Eg = 3 eV, we obtain W/WT � 0.1.

VI. LINK TO BALANCE EQUATIONS

The purpose of this section is twofold:
(i) First, we intend to formulate a set of balance equations

for the concentrations n, p, and N• incorporating the main
ingredients of CDW screening. Generally speaking, balance
equations of this kind are known, especially in the area of
photorefraction [30,31,34]. However, our case is very special
owing to large attracting potentials and strong degeneration
of the major charge carriers near the walls. The well-known
Einstein relations between the diffusion coefficients and
mobilities of the carriers are invalid here. Employment of
these relations for CDW screening modeling, like it was done
in [3,7], leads to Boltzmann statistics instead of Fermi one and
to noncontrollable errors. To the best of our knowledge, the
necessary balance equations for CDW screening were never
formulated.

(ii) Second, we are going to employ the balance equations
to express the former uniform concentrations n0 and p0 by the
light intensity I , to justify additionally the quasi-Fermi-energy
approach, and to demonstrate the possibility to proceed beyond
the range of applicability of this approach. The latter concerns
far periphery of CDWs where the minor charge carriers
become non-negligible and the traps become nonsaturated.

A. General properties

The scheme of Fig. 1(a) corresponds to the following set of
balance equations for the electron and hole concentrations n

and p and the filled trap concentration N•:

∂n

∂t
− 1

e

∂jn

∂z
= g − γnnN◦ − γ np,

∂p

∂t
+ 1

e

∂jp

∂z
= g − γppN• − γ np,

∂N•
∂t

= γnnN◦ − γppN•. (15)

Here, γn,p and γ are recombination constants characterizing
the linear and quadratic recombination, g is the rate of light-
induced transitions, N• + N◦ = Nt ,

jn = eμnnE + eDn

∂n

∂z
and jp = eμppE − eDp

∂p

∂z

(16)

are the electron and hole current densities, μn,p and Dn,p

are the corresponding mobilities and diffusion coefficients,
and E = −∂ϕ/∂z is the electric field. Thermal excitation is
neglected for simplicity, so that the concentrations NT

•,◦ can
be identified with the dark concentrations, and the total charge
density is ρ = −e(n − p + N• − NT

• ). The excitation rate g

can be expressed by the light absorption coefficient αabs and
the light intensity I : g = αabsI/h̄ω.

For sufficiently low intensities, when the linear recom-
bination is dominating over the quadratic one, the uniform
concentrations of electrons and holes are n0 = gτn and
p0 = gτp, where τn = 1/γnN

T
◦ and τp = 1/γpNT

• are the

(a) (b)

FIG. 4. Generalization of the Einstein relation for electrons: the
ratio kBT μn/eDn versus ζ (a) and the ratio n/Nn (b).

characteristic lifetimes. This linear regime occurs for
γg τnτp � 1. In the opposite case, the linear growth of n0(g)
and p0(g) changes to a square-root one n0 � p0 � √

g/γ .
Changeover to the square-root dependence occurs usually
in the mW/cm2 intensity range and sharply depends on
h̄ω [31,34]. Let us estimate the uniform concentrations for
the linear excitation regime. Setting αabs ∼ 100 cm−1, I ∼ 10
mW/cm2, τn,p ∼ 1 ns, and h̄ω ≈ 3 eV, we obtain n0,p0 ∼
1010 cm−3. This rough estimate shows that the inequalities
n0,p0 
 N•,N◦ are safely fulfilled.

While the structure of Eqs. (16) for jn,p is the same for
degenerate and nondegenerate carriers, the ratios Dn,p/μn,p

cannot generally be treated as constants in ϕ. Constancy of
these ratios occurs only for nondegenerate carriers. In this
very case, the known Einstein relation Dn,p/μn,p = kBT/e

holds true, and the conditions jn,p = 0 (which must be fulfilled
in thermal equilibrium) give Boltzmann’s dependences n(ϕ)
and p(ϕ). Furthermore, it is clear that the ratios Dn,p/μn,p

must grow with increasing degeneration degree because
diffusion towards lower concentrations (and areas with weaker
degeneration) is profitable.

Generalization of the Einstein relations for degen-
erate charge carriers is known in the semiconductor
physics [33,35,36]. It reads as for electrons

kBT μn/eDn = d ln �(ζ )/dζ, (17)

where ζ = (Fn − Ec + eϕ)/kBT , �(ζ ) is given by Eq. (4),
and Fn → F in thermal equilibrium. For ζ 
 −1 we return to
the Einstein relation. Since n/Nn = �(ζ ) according to Eq. (3),
the ratio μnkBT/eDn can also be considered as a function of
n/Nn.

Figures 4(a) and 4(b) show this ratio versus ζ and n/Nn. As
expected, the ratio Dn/μn grows with increasing ζ and n/Nn.
The effect of degeneration can be very strong.

Since Eq. (17) is derived from the condition of zero
electronic current in thermal equilibrium [33,35,36], it is
evident that any approximations for the balance equations
leading to dominating current jn (or jp) correspond to the
results of Secs. II–V. The arguments for such approxima-
tions are simple: in steady state, the total current density
jn + jp is zero. Photoexcited electrons (holes) are attracting
to (repulsing from) a positive CDW. As soon as the wall
potential is large, eϕmax > (2 − 3)kBT , one can expect that
n � p and |jn| � |jp| not far enough from the wall center.
The remaining questions are about the application area of
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such approximations and the possibility to describe the CDW
structure beyond this area.

B. Particular results

We consider only the steady-state situation, i.e., set ∂/∂t =
0 in Eqs. (15). To avoid cumbersome expressions, we make
a number of secondary simplifications: we consider the
fully symmetric case γn,p = γ , Dn,p = D, NT

• = NT
◦ = Nt/2,

τn,p = τ , and p0 = n0. Furthermore, we neglect the quadratic
recombination and focus on the case of nondegenerate charge
carriers κn,p � 1. The last assumption is not obligative because
electrons are always nondegenerate far from the wall.

With these simplifications, we express first the ratio p/n

by N• from the third of Eqs. (15):

p/n = Nt/N• − 1. (18)

This gives N• � Nt for p/n 
 1 and N◦ � Nt for n/p 
 1.
Just these cases occur near the positive and negative CDWs.
Second, we obtain for u = eϕ/kBT from the equality jn +
jp = 0 using Eqs. (16):

uz = (n − p)z/(n + p), (19)

where the subscript z indicates the spatial differentiation.
Third, excluding N◦ and ϕz from the first of Eqs. (15) with
the help of Eqs. (18) and (19), we get

np

n + p
− L2

D

[
(np)z
n + p

]
z

= n0

2
, (20)

where LD = (Dτ )1/2 is the diffusion length. The second
term in Eq. (20) is small as compared to the first one
when the characteristic scale in z, which is expected to be
R̃D = (εkBT/4πNT

• e2)1/2, is substantially larger than LD .
This special physical condition is typically well fulfilled (see
also below). Neglecting the second term in Eq. (20) and using
Eqs. (18) and (19), we obtain after simple calculations

u = 1 − 2y + ln

(
y

1 − y

)
, (21)

ρ = e(1 − 2y)

2

[
Nt + n0

y(1 − y)

]
, (22)

where y = N•/Nt is the trap saturation parameter ranging
from 0 to 1. These relations are valid for both positive and
negative CDWs regardless of the values of n/p and N•/Nt .
They satisfy all necessary physical requirements. In particular,
u = 0 for y = 1

2 and tends to ±∞ for y → 1 and 0.
Using Eqs. (21) and (22), we can calculate analytically the

integral
∫ ϕ

0 ρ(ϕ′)dϕ′ entering Eq. (2). After that, employing
Eqs. (1) one can find numerically the z dependences of
u, n/Nn, P/P0, n/p, and N•/Nt for any rn = n0/Nn. For
κn = 0.6, rn = 10−5 and 10−6, and |z|/RD � 40, the first
three dependences nicely reproduce those given in the right
panel of Fig. 3. In the far-tail region, |z|/RD � 40, they tend
monotonically (without special features) to 0, n0/Nn, and ∓1,
respectively. This proves validity of the above treatments of
the balance equations and extends the limits of our theory to far
tails. The last two dependences, which demonstrate transition
to nonperturbed values of n/p and N• far from the wall and

(a) (b)

FIG. 5. Spatial profiles of n/p (a) and N•/Nt (b) for three values
of rn = n0/Nn obtained with Eqs. (21) and (22) for a positive CDW
with κn = 0.6.

cannot be obtained within the quasi-Fermi-level approach, are
present in Fig. 5.

One sees that n � p and N• � Nt not far from the wall
center where u � 1. However, far enough from the wall,
when u � 1, these relations become invalid. In particular, for
rn = n0/Nn = 10−5 they hold true for z/RD � 40, which is
consistent with the right panel of Fig. 3. For larger distances
from the wall, the ratios n/p and N•/Nt tend exponentially to 1
and 1

2 , respectively. The smaller rn, the slower is the transition
to the limiting values. For κn � 1, the large-distance behavior
of n/p and N•/Nt is practically the same.

Finally, we return to justification of our approximation
based on the smallness of the ratio L2

D/R̃2
D . The values of

R̃D = (εkBT/4πNte
2)1/2 in undoped materials are typically of

the order of 102 nm. The diffusion length can be represented
as LD = (μτ kBT/e)1/2. The values of μτ can be deduced
from measurements of the photoconductivity and/or the
photorefractive response in the visible range. The estimate
μτ = 10−11 cm2/V is valid for many materials including
BaTiO3 [30,31]. With this estimate, we have LD ≈ 5 nm.
Thus, the ratio L2

D/R̃2
D is very small. Most probably, the

condition L2
D/R̃2

D 
 1 is fulfilled for majority of wide-band-
gap ferroelectrics validating the approximation made.

In such a way, not very far from the CDW center, when
eϕ/kBT � 1, n � p, and N• = Nt , the balance equations give
the same results as the quasi-Fermi-energy method. For larger
distances from the center, when P (z) is already close to ±P0,
the quasi-Fermi-energy method fails. The spatial behavior of
P , ϕ, and n in this far-tail area depends on relationship between
different recombination and transport parameters. Under cer-
tain simplifying assumptions, it can be described by the bal-
ance equations leading to model-dependent far tails of CDWs.

VII. DISCUSSION

Employing systematically the concept of quasi-Fermi
energies, we have succeeded in a fairly general, simple,
and compact description of the effect of super-band-gap
illumination on the CDW properties. The use of the balance
equations for electrons and holes has allowed us to extend the
range of applicability of the results obtained and to validate
them additionally.

Parameter κn = πP 2
0 /2εkBT Nn, incorporating the basic

ferroelectric properties, controls the degree of degeneracy of
the compensating electrons near the positive CDWs regardless
of illumination. For the negative CDWs, the situation is
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analogous: κn is trivially replaced by κp. For κn,p � 1, the
strongly degenerate carriers form a short-range core of the
distribution of the electric potential ϕ(z) [see also Fig. 1(b)].
This core, together with the whole polarization profile P (z), is
practically unaffected by light. To the best of our knowledge,
this simple and general control was not known earlier.

The super-band-gap illumination substantially decreases
the span of the long-range tails of ϕ(z) and slightly reduces
their lengths as compared to the case of thermal equilibrium. In
other words, light shifts the cores towards CB and VB for the
positive and negative CDWs, respectively [see Fig. 1(b)]. For
κ 
 1, when the compensating free carriers are nondegenerate
and the separation in core and tails is not pronounced, light
substantially decreases the span of the distributions of ϕ(z)
and slightly reduces their widths.

The question arises as to how it is possible to combine
a strong charge compensation of the same total polarization
charge 2P0 with strong variations of the span of the potential
profile ϕ(z)? The answer is rooted in the general long-range
character of the 1D electrostatic screening. Imagine that we
have a certain even initial 1D distribution of positive (at the
center) and negative (screening) charges, such that the total
charge is zero, ϕ(0) is a finite quantity, and ϕ(±∞) = 0.
Let us now make a spatial redistribution of the screening
charge, such that its relatively small fraction is transferred
symmetrically over a relatively large distance. In accordance
with electrostatics, this redistribution results in arbitrary strong
increase of ϕ(0). The effect on ϕ(0) is thus determined by the
distance-to-redistributed charge ratio. Strong variations of ϕ(0)
for CDWs are fully consistent with the basics.

The substantial light-induced decrease of ϕ(0) has im-
portant consequences. First, it decreases substantially the
CDW energies. In turn, this facilitates the CDW production
within the frustrated poling technique under super-band-gap
illumination [13]. We claim that a strong reduction of the
CDW energies can contribute to the detected experimental
regularities together with the known effect of light heating.
Second, one can expect that reduction of ϕ(0) strongly affects
the access to the metalliclike conductivity of CDWs. The point
is that the potential profile ϕ(z) across the wall must change
to a flat profile at the metal electrode. This causes potential
barriers [7]. The smaller the variation range of ϕ across the
wall, the easier has to be the contact-barrier problem.

Within our approach, the ratios rn = n0/Nn and rp =
p0/Np are measures of the illumination strength. For suffi-
ciently small intensity of the super-band-gap illumination I ,
the linear recombination is dominating and the dependences
n0,p0 ∝ I are expected. With increasing I , the quadratic
recombination can become important so that n0,p0 ∝ I 1/2.
Since the light-absorption coefficient grows rapidly with
the light frequency above the band gap and changes from
material to material, it is difficult to make reliable estimates
of the changeover intensity. However, it can be deduced
from the photoconductivity measurements in single-domain
crystals [30,31].

Consider lastly what happens when the super-band-gap
illumination is switched off. The strong trap saturation n � Nt

prevents an immediate recombination of electrons unless they
are not very far from the core eϕ(z)/T � 1. This means that
the far-tail electrons, such that eϕ(z)/kBT ∼ 1, must diffuse
first outwards the wall in order to recombine. However, this
out diffusion leads to lowering of the core because of the
above-mentioned electrostatic behavior. Ultimately, the top
of the core reaches the Fermi level, and the tail experiences a
broadening.

VIII. CONCLUSIONS

In conclusion, using the quasi-Fermi-level approach we
have investigated the effects of weak super-band-gap illu-
mination on the properties of CDWs in ferroelectrics. Both
polarization screening regimes, relevant to degenerate and
nondegenerate electrons (holes), are considered. The main
impact of light is (i) in a substantial decrease of the span of
the electrostatic potential profile ϕ(z) and (ii) in a substantial
decrease of the energies of the positively and negatively
charged walls as compared to the case of thermal equilibrium.
These features have to be important for engineering of CDWs
and for the access to the metallic-type wall conductivity.
Employment of balance equations for electrons and holes
justifies and extends the primary analysis.
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