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Current-phase relations in SIsFS junctions in the vicinity of 0-π transition
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We consider the current-phase relation (CPR) in Josephson junctions with complex insulator-superconductor-
ferromagnetic interlayers in the vicinity of the 0-π transition. We find a strong impact of the second harmonic
on the CPR of the junctions. It is shown that the critical current can be kept constant in the region of 0-π
transition, while the CPR transforms through multivalued hysteretic states depending on the relative values of
tunnel transparency and magnetic thickness. Moreover, the CPR in the transition region has multiple branches
with distinct ground states.
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I. INTRODUCTION

The current-phase relation (CPR) IS(ϕ) between a su-
percurrent IS and a phase difference ϕ is the most basic
property of a Josephson junction [1,2]. It is well-known
that the CPR in a superconductor-insulator-superconductor
(SIS) type junction has a sinusoidal shape at arbitrary
temperatures. In the superconductor-normal-superconductor
(SNS), superconductor-ferromagnetic-superconductor (SFS)
junctions, or double-barrier SINIS structures, deviations from
this behavior occur at temperatures much smaller than the
critical temperature TC of S electrodes, TC . At the same time,
in all these structures, IS(ϕ) is a single-valued function of ϕ,
irrespective of the transport properties and the geometry of the
weak-link region [2].

Previously, it was shown that the situation might be
different when the weak link is formed by a material which is
intrinsically superconducting (s) with a transition temperature
lower than that of the S electrodes. In this case, an increase
of the distance between the electrodes may result in the trans-
formation [3] of IS(ϕ) from single- to multi-valued function
of ϕ. The parameter range for which this transformation takes
place, defines the transition from the Josephson effect to the
Abrikosov vortex flux flow in the film [4].

Recent theoretical [5] and experimental [6] studies indi-
cated a possible realization of the above mentioned transfor-
mations of IS(ϕ) in SIsFS structures in the form of instabilities
near a 0-π transition. So far, this new fundamental feature of
the Josephson structures remains unexplored. In this paper we
address this problem by considering the properties of an SIsFS
junction in the vicinity of a 0-π transition taking into account
the existence of a significant second harmonic of current-phase
relation (CPR) in the sFS part of the structure.

We find that the 0-π transition in SIsFS structures is going
through distinct states with a discontinuous hysteretic current-
phase relation. Moreover, protected 0 and π states are found
in the system with multiple possible branches of current phase
relation. Finally, we demonstrate that the 0-π transition can
be realized without changes of the critical current due to a

transformation of the current-phase relations, which hinders
an observation of this transition in the conventional manner
and requires phase sensitive experiments [7].

The paper is organized as follows. In Sec. II, two theoretical
models, a microscopic and a phenomenological one, are
formulated, which describe the CPR in SIsFS structures
and the results of these two approaches are compared.
Sections III and IV provide analytical and numerical results
for CPR followed from the lumped contacts model. The
classification of the physical states in the SIsFS structures
is introduced in terms of a number of the ground states and
shapes of IS(ϕ) curves.

II. THEORETICAL MODEL OF SISFS STRUCTURE

Below, we will use two complementary approaches for
solving the problem. The first one is based on a microscopic
theory of superconductivity and employs numerical simulation
of the processes in the structure within the framework of
the Usadel equations [8] with Kupriyanov-Lukichev boundary
conditions [9] at the interfaces:
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Here, p and q are subscripts of the corresponding layers, Gp =
ω̃p/

√
ω̃2

p + �p,ω�∗
p,−ω, ω̃p = ω + iHp, ω = πT (2n + 1) are

the Matsubara frequencies, �p is the pair potential that
exists inside the superconductors, Hp is the exchange energy
of the ferromagnetic layer (Hp = 0 in nonferromagnetic
materials), TC is the critical temperature of superconductors,
ξp = (Dp/2πTC)1/2 is the coherence length, Dp is the dif-
fusion coefficient, Gp and �p are the normal and anomalous
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FIG. 1. Sketch of the SIsFS structure with an equivalent scheme
for the lumped elements method.

Green’s functions, respectively, γBpq = RBpqABpq/ρpξp is the
suppression parameter, RBpq and ABpq are the resistance and
area of the corresponding interface. The sign plus in (3) means
that pth material is located at the side xi − 0 from interface
position xi , and sign minus corresponds to the case when the
pth material is at xi + 0. The x axis is oriented perpendicular
to the interfaces. At the free surfaces of the S electrodes
located far away from the boundaries (x → ±∞), we set
the bulk values of the Green function in the superconductor
� = �0 exp(iψ) with ψ = 0 and ψ = ϕ.

The boundary problem (1)–(3) was solved numerically by
making use of the algorithm developed in Ref. [5]. Calculated
Green’s functions were used to find a current across a SIsFS
junction as a function of the phase difference ϕ:
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The second approach is a phenomenological one. It is
based on modeling the structure as a system of two lumped
contacts connected in series (see Fig. 1): the SIs junction with
conventional sinusoidal CPR ISIs = ICI sin(χ ) and an sFS
junction which has CPR

IsFS = A sin(ϕ − χ ) + B sin (2(ϕ − χ )) (5)

having both the first and the second harmonics. Within this
model, the amplitudes A and B are considered as independent
parameters, while the phase difference on tunnel layer χ is a
function of the phase drop on the whole junction ϕ. The χ (ϕ)
dependence can be found from the condition of the current
equality across SIs and sFS junctions:

ICI sin(χ ) = A sin(ϕ − χ ) + B sin (2(ϕ − χ )). (6)

The lumped contacts model is applicable [5] for dS >

π2ξS/(4
√

1 − T/TC).
For arbitrary relations between ICI , A, and B, Eq. (6)

for χ (ϕ) has been solved numerically, thus determining
the current-phase IS(ϕ) = ICI sin(χ ) and the energy-phase

relations

E(ϕ) = �0ICI

2π
(1 − cos(χ )) + EA + EB,

EA = �0A

2π
(1 − cos(ϕ − χ )),

EB = �0B

4π
(1 − cos(2(ϕ − χ )). (7)

Generally, Eq. (6) has several independent solutions for χ (ϕ)
in the interval 0 � ϕ � 2π . However, only some of these
solutions meet the stability criterion

d2E(χ )

dχ2
= cos(χ ) + A

ICI

cos(ϕ − χ )

+ 2B

ICI

cos (2(ϕ − χ )) > 0, (8)

which means that the solution is stable if the functional E(χ )
for certain ϕ is at a local minimum.

In Fig. 2(a), we compare IS(ϕ) dependencies calculated in
the frame of both approaches. The solution of Usadel equations
has been found for the following set of parameters: dF =
0.46ξS, ds = 5ξS, H = 10πTC, T = 0.2TC, the suppression
parameters at SIs and SF interfaces are equal to γBI = 1000
and γBSF = 0.3, respectively. The resulting IS(ϕ) dependence
of SIsFS contact is shown in Fig. 2 by the open circles. It
can be seen that there are two critical points in IS(ϕ) curve at
which there is a stepwise change of the supercurrent. They are
located at ϕ/2π ≈ 0.2; 0.8.

In the spirit of the lumped junction model, one has to
find the characteristics of SIs and sFS parts of the SIsFS
structure independently from each other. For the SIs tunnel
junction we get ICI = 0.88πTC/RN. Microscopic calculations
for the sFS structure demonstrate that it is in the vicinity of
the 0-π transition and its IsFS(ϕ) relationship can be really
approximated by Eq. (5) with A = −0.22ICI and B = 0.61ICI

[see Fig. 2(b)].
Substitution of this findings into (6) gives the IS(ϕ)

presented in Fig. 2(a) by solid and dashed lines, which,
respectively, corresponds to stable and unstable parts of
IS(ϕ) curves calculated in the lumped junctions model for
ICI = 0.88πTC/RN, A = −0.22ICI , and B = 0.61ICI . We
find a good match between the shapes of the curves calculated
within the framework of these two approaches. The solutions
of Eq. (6) shown by the dashed curves on the IS(ϕ) dependence
correspond to the local maxima of E(χ ). The system leaves
these unstable states located at ϕ/2π ≈ 0.2 and ≈0.8 through
the resistive states of junctions and continuous change of the
phase χ . In the vicinity of ϕ ≈ 2π , the lumped junction model
predicts the existence of two stable branches for the IS(ϕ)
dependence. The first one corresponds to the line, with a
positive derivative in the vicinity of ϕ = 2π . This branch
is stable in the whole range of ϕ variation with two break
hysteretic points ϕ/2π ≈ 0.2; 0.8. The second branch of IS(ϕ)
has a negative derivative for ϕ = 2π . This solution has stable
parts only in the small vicinity of ϕ = 2π , while for the other
parameter range, it is unstable [see the long dashed line on
Fig. 2(a) stretching through the whole graph].

The microscopic approach permits to reach both branches
depending on the initial conditions of the iterative calculation
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FIG. 2. The current-phase relation of the SIsFS (a) and sFS
(b) junctions in the vicinity of 0-π transition. (a) shows comparison
between the CPR following from solution of the Usadel equations
(open circles) obtained for dF = 0.46ξS, ds = 5ξS,H = 10πTC, T =
0.2TC , and the CPR calculated in lumped junctions model for
A = −0.22ICI and B = 0.61ICI (the solid and the dashed lines are
stable and unstable parts of solution, respectively). The open circles
in (b) give CPR of sFS junction calculated from the Usadel equations
for the same set of the parameters and the fit is shown with the solid
line for A = −0.22ICI and B = 0.61ICI .

process. The realization of these two stable branches is shown
in Fig. 2(a). The presence of stable intersecting branches in
the IS(ϕ) dependence in the vicinity of ϕ = 2π is a point
for discussion. On the one hand, it leads to the potential
instabilities caused by hopping between the stable states
under the influence of the external noise environment, while
on the other, the presence of such states is a precondition
to the different applications in logic or memory devices. In
any case, it is important to study and classify the variety of
such multivalued states in junctions. To that end, we shall
concentrate, hereafter, only on the analysis in the frame of
lumped junctions model. As follows from Fig. 2, it may provide
all stable and unstable branches of IS(ϕ) dependence, which
fits reasonably well the exact result obtained from microscopic

theory. The latter requires much longer calculation time;
especially, for the thick middle s layer and low temperatures
due to slow convergence in the self-consistent iteration cycle.
In addition, the result of the iterative process used to solve
the microscopic problem is sensitive to the initial parameters,
i.e., the initial phase of the intermediate s electrode. Finally,
without loss of generality we will put below ICI = 1 and
consider A and B as independent parameters since near the
0-π transition the ratio of these factors is not fixed.

III. ANALYTICAL DESCRIPTION OF CPR

Equations (6)–(8) describing the lumped junction model
can be solved analytically for some special cases. In the
vicinity of TC or in the limit of small thickness dS , the
amplitude B of the second harmonic is negligibly small
compared to A, except in a very narrow parameter range
for A = 0. As a result, we arrive at a serial connection of
two junctions with sinusoidal CPR. In this case, the net IS(ϕ)
relation is given by the well-known expression

IS(ϕ) = ± A sin(ϕ)√
1 + A2 + 2A cos(ϕ)

. (9)

The shape of this dependence becomes less sinusoidal, as the
magnitude of A becomes close to unity; and for A = 1 the
CPR given by Eq. (9) transforms into the piecewise function

IS(ϕ) = ± sin(ϕ/2)sign( cos(ϕ/2)). (10)

The minus sign in Eqs. (9) and (10) corresponds to unstable
states. In these states, the phase of the order parameter of
the core s layer differs by π on the order parameter phase in
the superconducting electrodes. As a result, at least one of the
contacts, connected in series, would be in an unstable state.

At low temperatures and at large dS , there is an interval
of parameters in the vicinity of 0 to π transition in which the
contribution to the IS(ϕ) dependence from the first harmonic of
the sFS junction is small compared to that from the second one.
Taking A � B in Eq. (6) and neglecting terms proportional to
A, we can reduce (6) to a fourth-order equation with respect
to x = IS(ϕ) = sin(χ ):

4B2x4 + 4zx3 + (1 − 4B2)x2 − 2zx + z2 = 0, (11)

where z = B sin(2ϕ) and phase χ is in the interval −π/2 <

χ < π/2 if u = zx(z − 2zx − x) > 0 and is in the range
π/2 < χ < 3π/2 if u < 0. Below, we will compare the
analytical expressions followed from (11) with the results of
the numerical solution of Eqs. (6)–(8). They provide the phase
χ as a function of ϕ presented in Fig. 3 for different values
of B. The solid and dashed lines in Fig. 3 denote stable and
unstable solutions, respectively.

In the limit B � 1, the weak place is located at the sFS part
of SIsFS structure and for χ (ϕ) one can get

χ ≈ B sin(2ϕ)

1 + 2B cos(2ϕ)
, (12)

χ ≈ π − B sin(2ϕ)

1 − 2B cos(2ϕ)
. (13)
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FIG. 3. The evolution of the phase χ of middle s-electrode order
parameter as a function of total phase ϕ for the SIsFS junction
calculated in the lumped junctions model for A = 0 and several values
of the second harmonic amplitude B = 0.4; 0.9; 1.0; 1.1 [(a)–(d),
respectively]. The shape of χ (ϕ) transforms from nonhysteretic
(B = 0.4) to hysteretic (B = 0.9) dependence, which occurs before
the merging point (B = 1.0). (c) gives χ (ϕ) at the merging point
B = 1.0 and (d) shows a tunnel-like dependence χ (ϕ) above the
merging point for B = 1.1.

The solution (12) is stable and corresponds to the solid
curves located near χ = 2πn, as shown in Fig. 3(a), calculated
numerically from (11) for B = 0.4. The expression (13) gives
the unstable solution shown by the dashed curve in Fig. 3(a).
For χ ≈ π , the SIs tunnel junction in SIsFS device is in an
energetically unfavorable π state, which is unstable.

Upon a further increase of the amplitude B [see Fig. 3(b)],
the solution of Eq. (11) becomes hysteretic in the vicinity
of ϕ = 0 + πn. For ϕ = 0 + πn, the coefficient z = 0, and
Eq. (11) reduces to(

4B2x2 + 1 − 4B2
)
x2 = 0 (14)

and has three solutions

x1 = 0, x2,3 = ±
√

1 − 1/4B2. (15)

For B � 0.5, only x1 is real and IS(ϕ) is a single-valued
function of ϕ. In the interval B > 0.5, the IS(ϕ) dependence
becomes a multivalued function of ϕ with three branches in
the neighborhood of ϕ = π + 2πn. As will be demonstrated
below, the appearance of an extra stable branch at χ ≈ π can
be explained due to the nucleation of local minimum at χ = π

in the E(ϕ) dependence, which corresponds to an energetically
unfavorable stable state of the SIsFS structure. In this state,
the SIs part of the structure is in the π state.

With the increase of B, the local minimum becomes deeper
and at B = 1 the stable branches in IS(ϕ) merge together [see
Fig. 3(c)]. At B = 1, the critical currents of SIs and sFS parts
are equal to each other and Eq. (11) can be simplified to

(x + z)(4x3 − 3x + z) = 0. (16)

Taking into account the restrictions on the intervals χ in
Eq. (11), we can write the solutions of (16) in the form

χ = π + 2ϕ, (17)

χ = 2/3ϕ + 2/3πn, (18)

where n = 0, 1, and 2.

The equalities (17) and (18) provide a set of four inter-
secting linear relationships between phases χ and ϕ. The
intersection points of these lines, as shown in Fig. 3(c), divide
each of them into stable and unstable regions. Deviation of
B from unity in the direction of smaller values leads to a
separation of this linear solutions, as shown in Fig. 3(b).
Contrary to this, with the increase of B, the weak place is
shifted towards the SIs tunnel junction resulting in growth of
χ with ϕ [see Fig. 3(d)]. The larger the value of B, the smaller
is the deviation from the linear relation χ = ϕ + πn between
χ and ϕ. It is important to note that the SIs tunnel junction can
be both in a 0 state (n = 0) and π state (n = 1) depending on
the condition in which the sFS contact is.

IV. NUMERICAL DESCRIPTION OF CPR

For the arbitrary values of amplitudes A and B, we solve
Eqs. (6)–(8) numerically. We study the possible transforma-
tions of CPR shapes in the area |A| � 1.5, |B| � 1.5, which
encloses the values of A and B at which the transition occurs
between the 0 and π states in the SIsFS junction. A finite
amplitude A results in the increase of the number of possible
shapes of CPR in comparison with the discussion made above.

Below, we give a classification of the physical states
implemented in the SIsFS structures based on two criteria.
The first one includes the classification of the ground states.
Those are the states that meet the requirements of the minimum
of the functional E(ϕ) and of the stability [Eq. (8)]. In addition,
we do not take into account the minima, which have energy
larger than the energy of any other branch at the same ϕ. The
second criterion specifies information about the shape of the
IS(ϕ) curves. It gives the number, k, of stable branches of
IS(ϕ) unconnected with one another, as well as the number,
m, of possible jumps caused by the transition between these
branches arising during ϕ, swiping in the interval 0 � ϕ � 2π.

There are four possible types of ground states of SIsFS
structure. Their examples, as well as the corresponding IS(ϕ)
relationships are shown in Fig. 4. The implementation of
0 or π states depends mainly on the relationship between the
amplitudes 2|B| and |A| (see Fig. 5). For |A| > 2|B|, the SIsFS
structure has a single ground state at ϕ = 0 at positive A, and
at ϕ = π at negative A. Figures 4(a) and 4(b) reveal the E(ϕ)
and IS(ϕ) calculated for B = 0 and A = ±1.4, respectively. At
A = 1.4, the minimum of E(ϕ) is achieved at ϕ = 0 + 2πn,

while for A = −1.4 it is shifted towards ϕ = π + 2πn. We
have identified these ground states as 0 and π , respectively.
These types of CPRs can be also observed in the regular SFS
and S-F/N-S junctions [2]. However, in the SIsFS junctions,
the shapes of IS(ϕ) significantly deviate from the sinusoidal
one even in the absence of the second harmonics (B = 0).

Figures 4(c) and 4(d) show the E(ϕ) and IS(ϕ) calculated
for B = ±0.4 and A = 0.1, respectively. For positive B, the
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FIG. 4. The current-phase (top) and the energy-phase (bottom)
relations of SIsFS junction calculated in the lumped junctions model
for combinations of amplitudes A and B provided trivial single-valued
shape of CPR: (a) 0-ground state at A = 1.4, B = 0, (b) π state
at A = −1.4, B = 0, (c) 0-π -ground state at A = 0.1, B = 0.4,
(d) ϕ-ground state at A = 0.1, B = −0.4. It is seen that, serial
connection of SIs and sFS junctions provides significant deviations
of CPR from sinusoidal shape even in the absence of the second
harmonic.

E(ϕ) curve [see Fig. 4(c)] has two minima at ϕ = 0 and π. We
classify this situation as 0-π ground state [10,11]. The diagram
in Fig. 5 shows that a 0-π ground state exists if |A| < 2|B| and
|A| < 1. The case |A| > 1 is less trivial and will be discussed
below.

-1.5 -1.0 -0.5 0 0.5 1.51.0
-1.5
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1.0
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B

0-state
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-state

4a4b
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FIG. 5. Ground-state distribution in the SIsFS structures on
(A, B) phase plane.

For |A| < 2|B| and B < 0, the E(ϕ) curve (see Fig. 5)
reaches a global minimum at some arbitrary phase ϕ =
±ϕg, which does not coincide with both ϕ = 0 and ϕ = π.

Figure 4(d) demonstrates an example of this situation realized
for A = 0.1 and B = −0.4. For small |B| � 1, the properties
of an SIsFS junction are similar to that of the so-called ϕ

junction [12], such that the magnitude of ϕg can be any value
in the range [0,π ]. With increase of |B|, the interval available
for ϕg diminishes and for |B| � 1 it asymptotically converges
to ±π/2. It is necessary to note that the condition B < 0 can
be realized in junctions with a complex internal structure of
their weak link region [12–17].

Contrary to the result presented in Fig. 2, all the IS(ϕ)
dependencies shown in Fig. 4 are single-valued functions of ϕ.

These types of current-phase relations exist only in the limited
area in the (A,B) phase plane. It means that the phase diagram
in Fig. 5 is rather crude. It requires a further clarification
of the boundaries separating the areas of single-valued and
multivalued current phase relations.

For further determination of possible CPR, we need to
introduce additional parameters. They are indices k and m.
As defined above, the index k counts the number of stable
branches of IS(ϕ) including ground states and unconnected
with another branch geometrically, so that switching of the
system from one branch to another is possible only through a
phase slip. The index m gives the number of possible jumps
caused by the transition between these branches arising during
ϕ increase in the interval 0 � ϕ � 2π. We determine it as the
number of phase slips during a continuous increase of phase
ϕ, starting from the position at the ground state. The counting
ends at a value of ϕ that is different from the initial one by
2π even if the systems stays on the other branch with further
increase of ϕ. In this way, the number mi is found for each
ground state. The resulting index m = ∑

mi is a sum over
existing ground states.

The classification is summarized in Fig. 6, which presents
the information on the number of hysteretic regions in
the IS(ϕ) dependence, and also on the mutual positions of
the ground states and phase jumps. The filled black circles in
the plane are the points at which the CPR presented in Figs. 4
and 7–10 has been calculated in the frame of the lumped
junctions model. The number of the corresponding figure is
written near the circles.

Figures 7–10 demonstrate the main classes of the current-
phase relations. In the diagram presented in Fig. 6 they are
marked by different colors. Each panel in Figs. 7–10 gives
IS(ϕ) and ES(ϕ) dependencies calculated numerically from
Eq. (6). As in Fig. 3, the dashed black lines show unstable
states. Different colors of solid lines correspond to the different
branches of stable solutions. From Fig. 6, it is seen that for
positive B, IS(ϕ) transforms into a multivalued function for
B � 0.5 and |A| � 0.75.

Typical IS(ϕ) and ES(ϕ) curves for the area 7 in Fig. 6(a)
are shown in Fig. 7. They have been calculated for A = 0.1
and B = 0.8. The current-phase relation consists of two stable
branches leading to k = 2. In the domain 0 � ϕ � 2π , a phase
sweep from 0 to 2π must lead to two hops between stable
branches for each of the two available ground states resulting
in m = 4. It is necessary to note that in this area of parameters
A and B there are some additional stable branches at higher
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Single branchcontinuous
k=1, m=0

Two branches with nonreversible
transition from secondary to primary
branch, k = 2, m=1

Two branches with double hysteresis
k =2, m =4.

Single branch with single hysteresis loop
k = 1, m = 1, 2

A

B

Two protected branches
k = 2, m = 0

Legend:

Two branches with long hysterisis
k=2, m = 3

-1.5 -1.0 -0.5 0 0.5 1.51.0
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FIG. 6. Distribution of indices of the SIsFS junction CPR in the (A, B) phase plane. The legend reveals the correspondence between the
colors and the indices: k is the number of stable branches of IS(ϕ) including ground states, which are unconnected with each other geometrically;
m gives the number of possible jumps caused by the transition between these branches arising during ϕ increase in the interval 0 � ϕ � 2π.

The dashed lines define the boundary between different types of ground states. The filled black circles in the plane are the points at which the
CPR presented in Figs. 4 and 7–10 has been calculated in the frame of the lumped junctions model. The number of the corresponding figure is
written near the circles. The shapes of CPR for negative B are presented in Appendix in Fig. 12.

energies (orange lines on Fig. 7, which do not correspond to
the ground state). Due to large energy difference between these
states it is impossible to switch between them by an adiabatic
change of the phase ϕ.

Figure 8 gives an example of IS(ϕ) and ES(ϕ) curves typical
for area 8 in A- B plane in Fig. 6. They have been calculated for
A = 0.1 and B = 1. At B = 1, the shapes of IS(ϕ) and ES(ϕ)
dependencies exhibit a transition to a state with k = 2 and m =
1. With increase of B, the stable branches corresponding to the

FIG. 7. The current-phase relation (top) and the energy-phase
relation (bottom) for the SIsFS structure in hysteretic state k = 2
and m = 4 calculated for A = 0.1 and B = 0.8. The solid lines
correspond to stable states. The blue line is a branch including a
ground state ϕ = 0, the red line corresponds to a ground state ϕ = π ,
and two orange lines show energetically higher states with π shift
across the SIs tunnel junction. The dashed lines show unstable states.

minimum energy (marked by blue in Fig. 7) tend to connect
to the stable branches corresponding to the maximum energy
(marked by orange in Fig. 7 in a vicinity of ϕ = π ). For the
particular case of A = 0.1 shown in Fig. 8, the connection has
completed at B = 1 resulting in formation of the continuous
IS(ϕ) and ES(ϕ) dependencies without any hysteresis. For

FIG. 8. The current-phase relation (top) and energy-phase rela-
tion (bottom) for the SIsFS structure in the state with primary branch
k = 2 and m = 1 calculated for A = 0.1 and B = 1.0. The solid lines
correspond to stable states. The blue line corresponds to a ground
state at ϕ = 0. It is the primary branch, which is stable in the whole
range of variation 0 � ϕ � 2π. The red line is the secondary branch,
stable parts of which exist only in some interval of ϕ in the vicinity
of ϕ = π . The orange line located nearby ϕ = 0 shows energetically
higher states with the π shift across the SIs tunnel junction. The
dashed lines show unstable states.

094522-6



CURRENT-PHASE RELATIONS IN SIsFS JUNCTIONS IN . . . PHYSICAL REVIEW B 95, 094522 (2017)

FIG. 9. The current-phase relation (top) and the energy-phase
relation (bottom) for the SIsFS structure in the state with two
independent protected branches k = 2 and m = 0 calculated in the
lumped junctions model for A = 0.1 and B = 1.2. Solid lines show
the stable states. Blue and red lines correspond to the branches having
ground state at ϕ = 0 and π, respectively. Both branches exist for all
ϕ in the range 0 � ϕ � 2π. By an adiabatic change of the phase ϕ

it is impossible to switch between these two branches. The dashed
lines show unstable states.

finite A, the minima of E(ϕ) at ϕ = 0 and ϕ = π have different
depth (E(0) < E(π )) and corresponding merging points split
at B1,2 = 1 ± 2/3 A. In the interval B1 � B � B2 and at |A| <

1, the branch of E(ϕ) passing through a deeper minimum is
already continuous at every ϕ, while the second branch of E(ϕ)
exists only in some intervals of ϕ (see Fig. 8). An escape of
phase ϕ from these intervals leads to the jump of E on a more
stable E(ϕ) branch. After that, the SIsFS junction can not be
adiabatically switched back into the previous state.

The next transition to the state with k = 2 and m = 0 occurs
for |A| < 1 and the amplitude B exceeds B2 (Fig. 9). In this
area of amplitudes, the weak place is located at the SIs junction,
while the SIsFS structure can stay either in 0 or in π state.
One of the two energetically favored states corresponds to the
global minimum of the energy at ϕ = 0, while the second
corresponds to a local minimum at ϕ = π . The magnitudes of
E(ϕ) at ϕ = 0 and ϕ = π are slightly different. These states
are protected from each other in the sense that a transition
from one of them to another is not possible with a continuous
adiabatic phase change of ϕ. To switch SIsFS junction between
the 0 and π states, one should increase a bias current across
the junction to a value larger than the critical current of sFS
part of the structure.

Finally, the region with |A| > 1 corresponds to the depen-
dence shown in Fig. 10. The CPR in this state also has two
branches with minima on the E(ϕ) dependence. However, the
split between branches is too large, and the local minimum
of the upper branch is energetically higher than the maximum
of the lower branch. Thus the upper local minimum can not
be declared as a possible ground state, and we do not count
this branch in indices k and m. In this way, we call the states
at |A| > 1 as 0 and π states on the phase diagram in Fig. 5

FIG. 10. The blue lines show a current-phase relation (top)
and the energy-phase relation (bottom) for the SIsFS structure
with multivalued CPR shape (k = 1 and m = 0) having a single
ground state at ϕ = 0. The red lines show the analogous curves for
energetically unfavorable states. It is seen that a metastable state at
ϕ = π is also possible. The dashed lines show unstable states. The
calculation is done in the lumped junctions model for A = 1.4 and
B = 1.0.

and consider it as the state with the single branch k = 1 in
Fig. 6(a).

The current-phase relations with a negative sign of the
second harmonic amplitude B are less common and require the
realization of a complex F region consisting from a number
of layers [12–16]. Therefore we shift the discussion of the
classification of the states shown at the bottom half of the
diagram in Fig. 6 to Appendix.

The above classification of CPR may help to interpret
the experimental data in the SIsFS structures near 0 to π

transitions. In standard SFS junctions, 0-π transitions manifest
themselves as dips in the IC(dF ) or IC(T ) dependencies.
Experimental results for SIsFS junctions demonstrate similar
behavior in the regime of small thickness ds . However, such
dips disappear for large ds (see Ref. [6]).

To explain this effect, we consider the dependence of the
critical current IC on the first harmonic amplitude A for several
fixed values of the second harmonic B as shown in Fig. 11.
In the absence of the second harmonic (the solid line), the
pronounced dip of IC is visible, indicating 0 to π transition.
In the parameter range within the dip, the weak link is shifted
from the tunnel barrier I to the ferromagnetic layer F. Far from
the 0-π transition, the magnitude of IC is independent on A

and equals to the critical current of the SIs tunnel junction,
where the weak link is located.

With the increase of B, the CPR deforms and additional
branches start to appear. As a consequence, the dips at IC(A)
curves gradually decrease (see the red dashed and the blue
dash-dot lines on Fig. 6). Finally, at B > 1, the dip vanishes
and the weak link is always located at the tunnel barrier. As
a result, IC remains constant across the 0-π transition (the
orange dash-dot-dot line).

As follows from the above discussion, the standard ap-
proach for detection of 0-π transitions, based on measurements
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FIG. 11. The dependence of the critical current IC on the
amplitude of the first CPR harmonic A during the 0-π transition
in SIsFS junction. The 0-π transition is defined as a change of A

sign under the condition of fixed second harmonic amplitude B.
Solid black, dashed red, dash-dot blue, and dash-dot-dot orange lines
correspond to B = 0; 0.4; 0.7 and B � 1, respectively.

of ICRN (dF ) dependencies, breaks down in SIsFS junctions at
low temperatures and large s-layer thickness � 3ξS . Detection
of such transitions requires phase-sensitive experiments [7].

V. CONCLUSION

As follows from our analysis, the CPR in the SIsFS
structures is qualitatively different from that in regular SFS
junctions. We have demonstrated that the classification of the
various CPR types requires the use of two indices. One of them,
k, indicates the number of the existing ground states, while the
other, m, defines the number of current leaps occurring during
variation of the phase difference ϕ in each of these ground
states from 0 to 2π . We have also shown that the values of
these indices depend on the ratio between the amplitudes of
the first A and second B harmonics in CPR of the sFS part
of the SIsFS junction. We have identified the areas in the A-B
plane corresponding to all possible combinations of pairs of
these indices, as well as the typical shapes of the CPR for
each of these areas. We have shown that some of the found
states are protected. An example is given in Fig. 9, which
depicts two CPR in the protected state with indices k = 2 and
m = 0. In this case, the SIsFS structure can stay either in
0- or in π -ground state, with only slight difference between
the magnitudes of E(ϕ) at ϕ = 0 and ϕ = π . Furthermore, a
transition from one ground state to another is not possible by a
continuous adiabatic variation of the phase ϕ. Our preliminary
analysis done in the frame of the RSJ model confirms that
this property is conserved even in a dynamic regime, despite
the existence of a voltage drop across the SIsFS junction and
the fact that both χ and ϕ are time dependent. To switch the
SIsFS junction between the 0 and π states, one should increase
a bias current across the junction to a value larger than the
critical current of the sFS part of the structure. More detailed
consideration of switching between protected CPR branches
will be done elsewhere.

Note that there is some similarity between the considered
properties and the effects found in the topological systems
based on multiterminal Josephson junctions [18–20]. In the
latter case, different topological states correspond to different
distributions of phase differences between the terminals. In
SIsFS junctions, an intermediate electrode can be considered
as an additional terminal embedded into the SIFS weak link.
The resulting states of SIsFS contacts become separated and
any transition between them should be accompanied by a flux
flow across the SIs or the sFS parts of the structure.

It is necessary to mention that the results of our investigation
may be also important from the application point of view.
Hybrid structures combining ferromagnetic and superconduct-
ing layers became subjects of intensive study in recent years
[2,21–23]. Superconducting correlations induced into a ferro-
magnetic region by the proximity effect can be controlled by
an effective exchange field, leading to a number of practically
important phenomena, such as spin-valve effects [24–34],
which look rather promising for superconducting electronics
[35,36]. In addition, there is a class of memory devices
that operate without performing the magnetization reversal
of the ferromagnetic layer [37–40]. The SIsFS junctions are
also considered as possible candidates for memory elements.
[6,41–43]. They have a noticeable advantage compared to
standard pseudo-spin-valve devices [33]. Their ICRN product
is of the same order as that of the Josephson elements used
in RSFQ logic circuits. In addition, SIsFS junctions can
be used as superconducting transistors [44,45], where the
magnitude and the phase of the order parameter in the middle
s-layer are controlled by spin injection from the F film. The
effective magnetic layer F in these structures can be realized
as a composite structure including several magnetic layers
separated by normal or superconductive spacers [46–49]. It
is important that the performed investigations of the current
phase relation in SIsFS junctions provide a solid base for
understanding the modes of operation of these transistors and
memory elements.
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APPENDIX: CLASSIFICATION OF THE STATES AT
NEGATIVE B

Current phase relation with negative sign of the second
harmonic amplitude B in the sFS junction can be realized only
in the case of a more complicated weak link region. It requires
additional inhomogeneity inside the F layer. For instance, the
existence of normal metal areas or steplike geometry of the
layer [12–17].
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FIG. 12. The current-phase and the energy-phase relations for different states of the SIsFS junction with negative amplitudes of the
second harmonic B < 0: (a) 0-ground state with single hysteresis k = 1,m = 1 at A = 1.0, B = −0.3 and (b) double-well branch with single
hysteresis k = 1,m = 2 at A = 0.5, B = −0.5; (c) hysteretic ϕ state with double hysteresis k = 2,m = 4 at A = 0.1, B = −0.8; (d) ϕ with
long hysteresis-state k = 2,m = 3 at A = 0.1, B = −1.0; (e) protected ϕ state k = 2,m = 0 at A = 0.1, B = −1.2. Solid lines and dashed
lines show stable and unstable states, respectively.

Generally, the sign change of B leads to a symmetrical
transformation of CPR:

IS(ϕ,A,B) = −IS(ϕ,A, − B), (A1)

E(ϕ,A,B) = −E(ϕ,A, − B). (A2)

The sign change of the energy in Eq. (13) significantly
influences the condition of stability (8). Every stable solution
for positive B becomes unstable after transformation to
negative B and vice versa. This general property determines
the significant difference between the distributions of states
with B > 0 and B < 0 on the phase plane in Fig. 6.

Our analysis has shown that, for negative values of
amplitude B, some new types of the states may exist (see
bottom part of Fig. 6). Figures 12(a)–12(e) demonstrate
the main classes of the current-phase relations existing for
B < 0. Each panel in Figs. 12(a)–12(e) gives IS(ϕ) and E(ϕ)
dependencies calculated numerically from Eq. (6). The dashed
black lines show unstable states. Different colors of the solid
lines correspond to different branches of stable solutions. The
filled black circles in the plane in Fig. 6 are the points at which
the CPR presented in Figs. 12(a)–12(e) have been calculated
in the frame of lumped junctions model. The number of the
corresponding pannel in Figs. 12(a)–12(e) is written near the
circles.

Typical IS(ϕ) and E(ϕ) curves for the area restricted by the
three lines B = 0.5 − 0.5|A|, B = −0.5 + 0.5|A|, and B =
−0.5|A| in the A-B plane are shown in Fig. 12(a). They have
been calculated for A = 1.0 and B = −0.3. It is seen that

IS(ϕ) is a continuous function of ϕ practically for all ϕ except
for the area in the vicinity of ϕ = π, where the current leap
takes place. Figure 12(a) shows that there is one ground state
in E(ϕ) at ϕ = 0 and one hysteresis in IS(ϕ) resulting in k = 1
and m = 1.

The considered A-B area provides the first example of the
difference in the SIsFS junction characteristics between the
cases of positive and negative B. For A = 1.0 and B = 0.3,
there are two hysteresis loops in IS(ϕ) relation, while for
A = 1.0, B = −0.3, there is a single hysteresis loop in CPR.
The second hysteresis in IS(ϕ) forms afterwards, during further
|B| increase. However, the first effect that appears with |B|
increase is transformation of the SIsFS structure into a ϕ

junction having two ground states in the E(ϕ) dependence,
as it is shown in Figs. 12(b)–12(e).

It is seen that the energy E(ϕ) has two minima at
some arbitrary phases ϕ = ϕg and 2π − ϕg, so that E(ϕg) =
E(2π − ϕg). This phase ϕg does not coincide with both ϕ = 0
and π and rapidly saturates at ϕg = π/2 with increasing |B|.

The initial stage of ϕ-state formation is shown in Fig. 12(b).
It is seen that IS(ϕ) also has a single branch with single
hysteresis (k = 1), but there are two ground states in E(ϕ)
curve, summation over which gives index m = 2. Figure 12(b)
demonstrates that the dependencies are typical for SIsFS
contacts if the sFS junction parameters located inside the
area restricted by the three lines in A-B plane. They are
B = −0.5 − 0.5|A|, B = −0.5 + 0.5|A|, and B = −0.5|A|.

After crossing the line B = −0.5 − 0.5|A| with further
|B| increase, the second hysteresis is nucleating in the
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current-phase relation in a vicinity of ϕ = 0. Typical IS(ϕ)
and E(ϕ) curves for this range of parameters is demonstrated
in Fig. 12(c). The calculations have been done for A = 0.1
and B = −0.8. There is a direct correspondence between the
stable part of the IS(ϕ) curve and the corresponding ground
state in E(ϕ). This CPR is characterized by k = 2 and m = 4.

It is similar to that shown above in Fig. 7.
With further |B| growth, the ϕ range of the stable ground

solutions increases [blue and red lines on Fig. 12(c)]. These
branches tend to merge with high energy curves [orange
lines on Fig. 12(c)]. However, this merging does not occur
simultaneously for left and right ends of the stable E(ϕ)
dependencies. This leads to the formation of a narrow range
of parameters, where high-energy branches are connected to
the ground branches only from the one end of the stable curve,
as it is shown in Fig. 12(d). The calculations have been done
for A = 0.1 and B = −1.0. The corresponding current-phase
relation has a long hysteresis, which provides different indices
mi for different ground states. While we count the number

of current jumps during a continuous increase of phase ϕ

for the left ground state in Fig. 12(d) going along the blue
line, the result is the same with the later case, m1 = 2.
However, the index for the ground state at ϕ = π/2 on the
red line is equal to unity m2 = 1 . The system jumps on the
blue line near the phase ϕ ≈ 0.2 + 2π and stays on it until
ϕ = π/2 + 2π . Thus the total hysteresis index m = 3 is odd
for this state, while k = 2 is still the same. An additional
consequence of this property is the dependence of the existing
state upon the direction of the variation of the phase ϕ. If
we increase ϕ, the system principally stays on the blue line.
However, the state on the red line becomes more probable
during the decrease in phase ϕ.

Finally, for B < −1 − 2/3|A|, the system goes in the ϕ

state with protected IS(ϕ) branches, which are characterized by
k = 2 and m = 0 [see Fig. 12(e)]. There are two independent
2π periodical IS(ϕ) curves corresponding to the ground states
in the vicinity π/2 and −π/2, respectively. The calculations
have been done for A = 0.1 and B = −1.2.
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