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Superfluid 3He is a spin-triplet (S = 1), p-wave (L = 1) BCS condensate of Cooper pairs with total angular
momentum J = 0 in the ground state. In addition to the breaking of U(1) gauge symmetry, separate spin or orbital
rotation symmetry is broken to the maximal subgroup SO(3)S × SO(3)L → SO(3)J . The fermions acquire mass
mF ≡ �, where � is the BCS gap. There are also 18 bosonic excitations: 4 Nambu-Goldstone modes and 14
massive amplitude Higgs modes. The bosonic modes are labeled by the total angular momentum J ∈ {0,1,2},
and parity under particle-hole symmetry c = ±1. For each pair of angular momentum quantum numbers J,Jz,
there are two bosonic partners with c = ±1. Based on this spectrum, Nambu proposed a sum rule connecting
the fermion and boson masses for BCS-type theories, which for 3He-B is M2

J,+ + M2
J,− = 4m2

F for each family
of bosonic modes labeled by J , where MJ,c is the mass of the bosonic mode with quantum numbers (J,c). The
Nambu sum rule (NSR) has recently been discussed in the context of Nambu-Jona-Lasinio models for physics
beyond the standard model to speculate on possible partners to the recently discovered Higgs boson at higher
energies. Here, we point out that the Nambu fermion-boson mass relations are not exact. Corrections to the
bosonic masses from (i) leading-order strong-coupling corrections to BCS theory, and (ii) polarization of the
parent fermionic vacuum lead to violations of the sum rule. Results for these mass corrections are given in both
the T → 0 and T → Tc limits. We also discuss experimental results, and theoretical analysis, for the masses of
the J c = 2± Higgs modes and the magnitude of the violation of the NSR.
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I. INTRODUCTION

One of the key features of spontaneous symmetry breaking
in condensed matter and quantum field theory is the emergence
of new elementary quanta: phonons in crystalline solids,
magnons in ferromagnets, the Higgs and gauge bosons of the
standard model. In the latter example, spontaneous symmetry
breaking (SSB) in the BCS theory of superconductivity played
an important role in theoretical models for the mass spectrum
of elementary particles [1–3]. In BCS superfluids, the binding
of fermions into Cooper pairs leads to an energy gap � in the
fermion spectrum, i.e., fermions in the broken symmetry phase
(Bogoliubov quasiparticles) acquire a mass mF = �, while
condensation of Cooper pairs leads to the breaking of global
U(1) gauge symmetry, the generator being particle number.
The latter also implies that the Bogoliubov fermions are no
longer particle number (fermion “charge”) eigenstates, but
coherent superpositions of normal-state particles and holes.
Charge conservation is ensured by an additional contribution
to the charge current, a collective mode of the broken symmetry
phase. This massless bosonic excitation of the phase of
condensate amplitude [4,5] is the Nambu-Goldstone (NG)
mode associated with broken U(1) symmetry, and is manifest
as a phonon in neutral superfluid 3He.

II. THE NAMBU MASS RELATIONS

The development by Nambu and Jona-Lasinio (NJL) of a
dynamical theory for the masses of elementary particles [1]
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was influenced by the BCS theory of superconductivity, and
particularly the contributions of Bogoliubov [5], Valatin [6],
and Anderson [2,7] on the excitation spectrum of fermions
and the collective excitations (bosonic) associated with broken
gauge symmetry [8]. BCS-type theories, including the NJL
theory, imply a connection between the masses of the emergent
fermionic and bosonic excitations. In the case of conventional
BCS theory, there are two bosonic modes: the phase mode
and the amplitude mode with mass MH = 2�. The phase
mode, discussed independently by Anderson and Bogoliubov,
is the massless NG mode (MNG = 0), while the amplitude
mode is the Higgs boson of BCS theory [3,9]. This doubling
of the bosonic spectrum reflects a discrete symmetry under
charge conjugation c (i.e.. “particle ↔ hole” symmetry) of
the symmetry unbroken fermionic vacuum [10,11], and is
characteristic of spontaneous symmetry breaking of the BCS
type, including BCS systems with more complex symmetry-
breaking phase transitions. In particular, the amplitude (phase)
mode has even (odd) parity with respect to charge conjugation
[10]. Furthermore, the masses of the fermions and the bosons
obey the sum rule M2

NG + M2
H = (2mF )2.

Nambu argued that similar sum rules apply to a broad class
of BCS-type theories, from nuclear structure and QCD to ex-
otic pairing in condensed matter systems, that exhibit complex
symmetry breaking [12]. The ground state of superfluid 3He
provides the paradigm. Superfluid 3He-B is a condensate of
p-wave (L = 1), spin-triplet (S = 1) Cooper pairs with total
angular momentum J = 0. Thus, in addition to the breaking
of U(1), the symmetry of the normal quantum liquid with
respect to separate spin or orbital rotations is broken to the
maximal subgroup SO(3)S × SO(3)L → SO(3)J . The fermion
spectrum is isotropic and gapped with mass determined by the
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binding energy of Cooper pairs mF = �. However, there are
now 18 bosonic excitations: 4 NG modes and 14 massive Higgs
modes. The bosonic modes are organized into six multiplets
labeled by J c: total angular momentum, J ∈ {0,1,2}, and
parity under charge conjugation (particle ↔ hole), c = ±1.1

For each J there are 2J + 1 degenerate states with angular
momentum projection m = −J, . . . , + J , and for each pair
of values of J,m there are two bosonic modes with c = ±1.

The J = 0 modes are the NG mode associated with broken
U(1) symmetry (J c = 0−) and the Higgs mode (J c = 0+),
which has the same quantum numbers as the B-phase vacuum,
i.e., the condensate of ground-state Cooper pairs. There are
six J = 1 modes: three NG modes (J c = 1+) corresponding
to the degeneracy of the B-phase ground state with respect to
relative spin-orbit rotations, and three Higgs modes (J c = 1−)
with masses M1,− = 2� [13]. Finally, there are 10 modes with
J = 2, all of which are Higgs modes with masses M2,± < 2�,

with original calculations giving M2,+ =
√

2
5 2� and M2,− =√

3
5 2� [14–17]. Nambu noted that all three multiplets obey

a sum rule connecting the masses of the conjugate bosonic
modes and the fermionic mass [12]

M2
J,+ + M2

J,− = (2mF )2, J ∈ {0,1,2} (1)

and suggested that such fermion-boson relations are generic
to BCS-type NJL models in which both fermion and boson
excitations originate from interactions between massless pro-
genitor fermions and spontaneous symmetry breaking (see also
Ref. [18]). Nambu further speculated that these fermion-boson
mass relations reflected a hidden supersymmetry in class of
BCS-NJL models [12], and in the case of of conventional
s-wave, spin-singlet BCS superconductivity was able to
construct a supersymmetric representation for the static part
of the effective Hamiltonian Hs, and identify the superalgebra
as su(2/1). The fermion operators in Nambu’s construction
factorize Hs, and provide ladder operators connecting the
fermionic and bosonic sectors of the spectrum, and generate
the fermion-boson mass relations: MNG = 0, mF = �, and
MH = 2� [19].2

Recently, Volovik and Zubkov argued that the Nambu
sum rule (NSR) for 3He-B follows from the symmetry of
the B-phase vacuum and the quantum numbers (J,m) (cf.
Sec. 2.2 of Ref. [20]). Based on the NSR for a NJL-type
theory of top quark condensation, the authors suggest the
possibility that there may be a partner to the Higgs boson
with a mass of 125 GeV, e.g., a Higgs partner near 270 GeV
[18,20], analogous to the Higgs partners for the J = 2 bosonic
spectrum of 3He -B. Here, we point out that estimates of the
mass of a Higgs partner based on such sum rules may be
imprecise because the NSR is generally violated. The origins
of the violation of the NSR contain detailed information about

1Modes with J � 3 are also possible if we include subdominant
pairing interactions with orbital angular momenta � � 3, even if the
ground state is � = 1, S = 1, and J = 0 [39].

2A similar analysis for 3He-B should be possible, but the construc-
tion of the ladder operators and the identification of the superalgebra
for a supersymmetric representation of the Hamiltonian for the B

phase of 3He is a future challenge.

the parent fermionic vacuum. While one might expect that
the masses for the J multiplets to be protected by the residual
symmetry of the broken symmetry vacuum state, it is generally
not the case. As a result, the NSR is not exact, particularly for
BCS-type theories with multiplets of NG and Higgs bosons
with quantum numbers that are distinct from that of the broken
symmetry vacuum state. We discuss the violations of the
NSR for the case of 3He-B in two limits: (i) time-dependent
Ginzburg-Landau (TDGL) theory appropriate for T � Tc and
(ii) a dynamical theory for coupled fermionic and bosonic
excitations of 3He-B within the BCS theory for p-wave, spin-
triplet pairing (i.e., one-loop approximation to the self-energy)
for temperature T → 0. In particular, interactions between the
progenitor fermions, combined with vacuum polarization, lead
to mass shifts of the Higgs modes whose quantum numbers
differ from the broken symmetry vacuum state, e.g., the J c =
1± and J c = 2± modes of 3He-B, and thus to violations of the
Nambu sum rule. Explicit results for these mass corrections
are derived in both the T → 0 and T → Tc limits.

In Secs. III and IV we introduce a Lagrangian for the
bosonic modes of a spin-triplet, p-wave BCS condensate based
on a time-dependent extension of Ginzburg-Landau theory
(TDGL). This allows us to identify and calculate the bosonic
spectrum for 3He, and to quantify strong-coupling corrections
to the bosonic masses in the limit T → Tc. In particular,
strong-coupling feedback (i.e., next-to-leading-order loop
corrections) leads to mass shifts, and thus violations of the
NSR. We also obtain a formula for the mass of the J c = 2−
mode in the GL limit that could provide a direct determination
of the GL strong-coupling parameter β1 from measurements
of the J c = 2− mode via ultrasound spectroscopy.

At low temperatures, strong-coupling feedback corrections
are suppressed. However, in Sec. V we show that vacuum
polarization and four-fermion interactions, in both the particle-
hole (Landau) and the particle-particle (Cooper) channels,
lead to substantial mass corrections for T � Tc, and in some
cases strong violations of the NSR. We discuss experimental
measurements for the masses of the J c = 2± modes, and
compare the observed mass shifts with theoretical calculations
of the polarization corrections to the masses from interactions
in the Landau and Cooper channels.

III. GINZBURG-LANDAU FUNCTIONAL

We start from a Ginzburg-Landau (GL) functional applica-
ble to p-wave, spin-triplet pairing beyond the weak-coupling
BCS limit, and use this formulation to obtain an effective
Lagrangian for the bosonic fluctuations of superfluid 3He-B
in the strong-coupling limit. The GL theory for superfluid
3He was developed by several authors [21–23]. We follow the
notation Ref. [24] which provides the bridge between the GL
theory and the microscopic theory of leading-order strong-
coupling effects. The order parameter is identified with the
mean-field pairing self-energy �̂(p), which is a 2 × 2 matrix
of the spin components of the pairing amplitude. For p-wave,
spin-triplet condensates the order parameter is symmetric in
spin space �̂(p) = (iσασy) Aαi (p̂)i , and parametrized by a
3 × 3 complex matrix Aαi , that transforms as a vector with
respect to index α = {x ′,y ′,z′} under spin rotations, and,
separately, as a vector with respect to index i = {x,y,z} under
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orbital rotations. This representation for the order parameter
provides us with a basis for an irreducible representation of
the maximal symmetry group of normal 3He, G = SO(3)S ×
SO(3)L × U(1)N × P × T . The GL free-energy functional is
then constructed from products of Aαi and its derivatives
∂jAαi that are invariant under G. The general form for the GL
functional for the condensation energy and gradient energy is

F [A] =
∫

V

dV {U (A) + W (∂A)}, (2)

where

U = α(T )Tr(AA†) + β1|Tr(AAT )|2 + β2[Tr(AA†)]2

+β3Tr[AAT (AAT )∗] + β4Tr[(AA†)2]

+β5Tr[AA†(AA†)∗] (3)

are the six invariants for the condensation energy density, and

W = K1∂jAαi∂jA
∗
αi + K2∂iAαi∂jA

∗
αj + K3∂jAαi∂iA

∗
αj

(4)
are the three second-order invariants for the gradient energy.

Weak-coupling BCS theory can be formulated at all
temperatures in terms of a stationary functional of �̂(p)
[25,26], which depends on material parameters of the parent
fermionic ground state: N (0) = k3

f /2π2 vf pf is the single-
spin quasiparticle density of states at the Fermi surface,
expressed in terms of the Fermi velocity vf , Fermi momentum,
and Fermi wave number pf = h̄kf . The GL limit of the
weak-coupling functional can be expressed in the form of
Eqs. (3) and (4) with the following material parameters:

α(T ) = 1

3
N (0)(T/Tc − 1), βwc

1 ≡ 7ζ (3)

240

N (0)

(πkBTc)2
, (5)

2βwc
1 = −βwc

2 = −βwc
3 = −βwc

4 = +βwc
5 = −2βwc. (6)

Strong-coupling corrections to the weak-coupling GL β

parameters based on the leading-order expansion of Rainer
and Serene [24] were calculated and reported in Ref. [27]
for quasiparticle scattering that is dominated by ferromagnetic
spin fluctuation exchange. The results for the strong-coupling
corrections to the weak coupling βwc

i are extrapolated to all
pressures as shown in Fig. 1, with p = 0 bar corresponding to
weak coupling.

The weak-coupling form of the gradient energy in Eq. (4)
is similarly obtained with the gradient coefficients given by

Kwc
1 = Kwc

2 = Kwc
3 = 1

5
N (0) ξ 2

GL , (7)

ξGL =
√

7ζ (3)

12

h̄vf

2πkBTc

. (8)

The Cooper pair correlation length ξGL varies from ξGL 	
650 Å at p = 0 bar to ξGL 	 150 Å at p = 34 bar.

The Balian-Werthamer (BW) state defined by

ABW
αi = �√

3
eiϕR[�ϑ]αi , (9)

where R[�ϑ] is an orthogonal matrix, minimizes the GL
functional for �2 = −α(T )/2βB , with βB = β12 + 1

3β345, in

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
p [bar]
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β
sc i
/β

w
c
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1
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2

βsc
3

βsc
4
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5

FIG. 1. Strong-coupling corrections (βsc
i ≡ βi − βwc

i ) to the GL
β parameters interpolated from the results of Ref. [27] (data squares).
The βsc

i are extrapolated below P = 12 bar to weak coupling (βsc
i =

0) at p = 0 bar.

the weak-coupling limit βwc
B = 5

6βwc, and for all pressures
P < PPCP ≈ 21 bar. Note that the amplitude of the order
parameter � is fixed at the minimum of the effective
potential. However, the phase ϕ and the orthogonal matrix
R[�ϑ], parametrized by a rotation angle ϑ about an axis of
rotation n̂, define the degeneracy space of the B phase. In
particular,

Bαi ≡ �√
3

δαi, (10)

corresponding to pairs with L = 1, S = 1 and J = 0 is
degenerate with states obtained by any relative rotation R[�ϑ]
of the spin and orbital coordinates combined with a gauge
transformation eiϕ . Since the GL functional defined by Eqs. (3)
and (4) is invariant under these operations, we can use the
J = 0 BW state as the reference ground state.

IV. TIME-DEPENDENT GL THEORY

Bosonic excitations of the BW ground state are represented
by space-time fluctuations of the pairing amplitude: Dαi (r,t) =
Aαi(r,t) − Bαi . The potential energy for these fluctuations is
obtained by expanding the GL functional to second order
in the fluctuations D(r,t): U [D] = F [A] − F [B] [28,29].
Time-dependent fluctuations Ḋαi = ∂tDαi lead to an additional
invariant K = τ

∫
V dV ḊαiḊ

∗
αi , where τ is the effective

inertia for Cooper pair fluctuations.3 The Lagrangian for the
bosonic excitations L = K − U takes the form

L =
∫

dV

⎧⎨⎩τ Tr{ḊḊ †} − α Tr{DD †} −
5∑

p=1

βp up(D)

−
3∑

l=1

Kl vl(∂D) − (ηαiD
∗
αi + η∗

αiDαi)

}
. (11)

3We have omitted the invariant that is first order in time derivatives
Tr{ḊD †}−H.c. This invariant is odd under charge conjugation, and
thus has a small, but non zero, prefactor only because of the weak
violation of particle-hole symmetry of the normal fermionic vacuum.
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TABLE I. Irreducible tensor representations {t (J,M)
ij } of SO(3)J for

J � 2, and corresponding spherical harmonics YJM (p̂). The base unit
vectors e(0)

i = ẑi , e(+)
i = − 1√

2
(x̂i + iŷi), and e(−)

i = + 1√
2
(x̂i − iŷi)

are orthonormal: e(μ)∗ · e(ν) = δμν .

J M t
(J,M)
ij YJm(p̂)

0 0 1√
3
δij 1

+1
√

3 εijke(+)
k −

√
3
2 p̂+

1 0
√

3 εijke(0)
k +√

3 p̂z

−1
√

3 εijke(−)
k +

√
3
2 p̂−

+2 e(+)
i e(+)

j +
√

15
8 p̂2

+

+1
√

1
2

(
e(0)
i e(+)

j + e(+)
i e(0)

j

) −
√

15
2 p̂zp̂+

2 0
√

3
2

(
e(0)
i e(0)

j − 1
3 δij

) +
√

5
4

(
3p̂2

z − 1
)

−1
√

1
2

(
e(0)
i e(−)

j + e(−)
i e(0)

j

) +
√

15
2 p̂z p̂−

−2 e(−)
i e(−)

j +
√

15
8 p̂2

−

The terms up(D) are the effective potentials corresponding
to fluctuations D relative to the BW ground state, which
to quadratic order in D are given in Eqs. (A1)–(A5) of the
Appendix. The terms wl(∂D) are obtained from Eq. (4) with
A → D , and the last pair of terms in Eq. (11) represent an
effective external source potential for Cooper pair fluctuations.

The Euler-Lagrange equations

δL

δD∗
αi

− ∂

∂t

δL

δḊ∗
αi

− ∂

∂xj

δL

δ∂jD
∗
αi

= 0 (12)

reduce to field equations for the Cooper pair fluctuations,

τ D̈αi − |α|Dαi + �2
5∑

a=1

βa

∂ūa

∂D∗
αi

−
3∑

a=1

Ka ∂k

∂v̄a

∂[∂kD
∗
αi]

= ηαi . (13)

The field equations reduce to coupled equations for pair
fluctuation modes of wavelength q: Dαi(r,t) → Dαi(q; t)eiq·r.
Furthermore, the BW ground state is invariant under joint spin
and orbital rotations. Thus, the q = 0 bosonic excitations can
be labeled by the quantum numbers J , and m ∈ {−J, . . . , +
J } for the total angular momentum and its projection along
a fixed quantization axis ẑ. The dynamical equations for the
bosonic modes decouple when expressed in terms of spherical
tensors that form bases for representations of SO(3)J for
J = 0,1,2,

Dαi(r,t) =
∑
J,m

DJ,m(r,t) t
(J,m)
αi , (14)

where the set of nine spherical tensors defined in Table I
(i) span the space of rank-two tensors, (ii) form irreducible
representations of SO(3)J , and (iii) satisfy the orthonormality
conditions

Tr{̂t (J,m)† t̂ (J ′,m′)} = δJ,J ′ δm,m′ . (15)

TABLE II. Bosonic mode spectrum for the B phase of 3He. The
masses of the modes are given for weak coupling in the GL limit. AH
designates amplitude Higgs modes.

Mode Symmetry Mass Name

D
(+)
0,m J = 0, c = +1 2� Amplitude

D
(−)
0,m J = 0, c = −1 0 Phase mode

D
(+)
1,m J = 1, c = +1 0 NG spin-orbit modes

D
(−)
1,m J = 1, c = −1 2� AH spin-orbit modes

D
(+)
2,m J = 2, c = +1

√
8
5 � 2+ AH modes

D
(−)
2,m J = 2, c = −1

√
12
5 � 2− AH modes

In the absence of a perturbation that breaks the rotational
symmetry of the ground state, there are (2J + 1) degenerate
modes with spin J . There is, in addition, a doubling of the
bosonic modes related to the discrete symmetry of the normal
fermionic ground state under charge conjugation. Thus, the full
set of quantum numbers for the bosonic spectrum is {J,m,c}
where c = ±1 is the parity of the bosonic mode under charge
conjugation. The parity eigenstates are the linear combinations
(i.e., real and imaginary amplitudes)4

D
(c)
J,m = (DJ,m + c D

†
J,m)/2. (16)

The sources can also be expanded in this basis: ηαi =∑
J,m,c η

(c)
J,m t

(J,m)
αi . The equations for the 18 bosonic modes

then decouple into three doublets labeled by J,c, each of which
is (2J + 1)-fold degenerate as shown in Table II.

The equations of motion for the 18 bosonic modes are
obtained by projecting out the J,m,c components of Eq. (13).
In the limit q = 0, the modes decouple into three doublets
labeled by J,c, each of which is (2J + 1)-fold degenerate.
The dispersion of the bosonic modes can be calculated
perturbatively to leading order in (vf |q|/�)2. Thus, the
resulting equations of motion can be expressed as

∂2
t D

(c)
J,m + ω

(c)
J,m(q)2 D

(c)
J,m = 1

τ
η

(c)
J,m , (17)

where ω
(c)
J,m(q) =

√
M 2

J,c + (
c

(c)
J,|m||q|)2

(18)

is the dispersion relation for bosonic excitations with quantum
numbers {J,m,c} and MJ,c is the corresponding excitation
energy at q = 0, i.e., the mass. For q = 0, the degeneracy
of the bosonic spectrum is partially lifted, i.e., the velocities
c

(c)
J,|m| give rise to a dispersion splitting that depends on |m|,

with quantization axis q [30,31].

A. J = 0 modes

The masses and velocities of the bosonic modes obtained
from the TDGL Lagrangian in the weak-coupling limit
are summarized in Table II. The J = 0 modes correspond
to the two bosonic modes that are present for any BCS

4Note that the parity of the modes is defined relative to that of the
BW ground state, which is defined as c = +1.

094515-4



ON THE NAMBU FERMION-BOSON RELATIONS FOR . . . PHYSICAL REVIEW B 95, 094515 (2017)

condensate of Cooper pairs, i.e., excitations of the phase
D

(−)
0,0 and amplitude D

(+)
0,0 , with the same internal symmetry

as the condensate of Cooper pairs. The J c = 0− mode is the
Anderson-Bogoliubov (AB) phase mode. In particular, if we
consider only fluctuations of the phase of the BW ground state
Aαi = Bαi e

iϑ(r,t) ≈ Bαi[1 + iϑ(r,t)], then D
(−)
0,0 = i�ϑ(r,t).

This is the massless NG mode corresponding to the broken
U(1) symmetry, with the dispersion relation ω

(−)
0,0 = c0,0|q|.

Within the TDGL theory, the AB mode propagates with

velocity c0,0 =
√

(K1 + 1
2K23)/τ . In the weak-coupling limit

for the effective action derived by bosonization of the
fermionic action, the velocity is c0,0 = vf /

√
3 [32], showing

that the bosonic excitation energies are determined by the
properties of the underlying fermionic vacuum, in this case
the group velocity of normal-state fermionic excitations at
the Fermi surface. However, this result for the velocity of the
NG phase mode is further renormalized by coupling of the
phase fluctuations to dynamical fluctuations of the underlying
fermionic vacuum which are absent from the bosonic action
based on the TDGL Lagrangian of Eq. (11). This coupling
leads to c0,0 → c1 + (c0 − c1) Y (T/Tc), where c1 (c0) is the
first (zero) sound velocity of the interacting normal Fermi
liquid and Y (T/Tc) measures the dynamical response of
the condensate. In particular, Y → 0 (Y → 1) for T → 0
(T → Tc). This remarkable result shows that the velocity of the
NG phase mode is renormalized to the hydrodynamic sound
velocity of normal 3He at T = 0, and that the J = 0, c = −1
NG mode is manifest in superfluid 3He as longitudinal sound
[33–35].

The partner to the NG phase mode is the J c = 0+
“amplitude” mode. This is the Higgs boson of superfluid
3He, i.e., the bosonic excitation of the condensate with the
same internal symmetry (L = 1, S = 1, J = 0, c = +1) as
condensate of Cooper pairs that comprise the ground state [3].
For this reason, the renormalizations of the J c = 0+ bosonic
mass and the mass of fermionic excitations of the J c = 0+ BW
state are equivalent; thus, M0,+ = 2mF , where mF = � is the
renormalized fermionic mass in the dispersion relation for
fermionic excitations E2

p = m2
F + v2

f (p − pf )2. This allows
us to fix the effective inertia of the bosonic fluctuations in the
TDGL Lagrangian of Eq. (11) for the BW ground state as τ =
βB ≡ β12 + 1

3β345. Thus, the Nambu sum rule M2
0,− + M2

0,+ =
4m2

F is obeyed for the J = 0 modes. However, strong-coupling
corrections to the TDGL Lagrangian lead to violations of the
Nambu sum rule for bosonic excitations with J = 0.

B. Violations of the Nambu sum rule for J �= 0

In addition to the NG mode associated with broken
U(1) symmetry, there are 3 NG modes associated with
spontaneously broken relative spin-orbit rotation symmetry
SO(3)S × SO(3)L → SO(3)J . These NG modes reflect the
degeneracy of the BW ground state with respect to relative
spin-orbit rotations SO(3)L–S , whose generators form a vector
representation of SO(3). Thus, the corresponding NG modes
are the J c = 1+ modes, which are spin-orbit waves with
excitation energies ω1,m = c1,m|q|, and velocities c1,0 = 1

5vf

and c1,±1 = 2
5vf in the weak-coupling limit [32]. The ve-

locities are also renormalized in the limit T → 0 by the
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FIG. 2. Strong-coupling corrections to the bosonic masses ob-
tained from the TDGL theory for the GL β parameters shown in
Fig. 1. The dashed lines correspond to the weak-coupling values for
the masses.

coupling to dynamical fluctuations of the underlying fermionic
vacuum.5

The partners to these NG modes are the J c = 1− Higgs
modes with mass

M1,− = 2�

(
−β1 + 1

3 (β4 − β35)

β12 + 1
3β345

) 1
2

, (19)

which reduces to Mwc
1,− = 2� in the weak-coupling limit for the

GL β parameters [Eqs. (6)]. However, in the strong-coupling
limit the masses of the J c = 1− modes deviate from 2mF ,
which implies a violation of the NSR for the J = 1 bosonic
modes. Theoretical calculations of the strong-coupling β

parameters predict that the J c = 1− Higgs modes are pushed
to energies above the pair-breaking edge of 2�, as shown
in Fig. 2. This opens the possibility for the J c = 1− modes
to decay into unbound fermion pairs. Thus, we expect the
J c = 1− modes are at best resonances with finite lifetime.

For J = 2 there are two fivefold multiplets of Higgs modes
with masses

M2,+ = 2�

(
1
3β345

β12 + 1
3β345

) 1
2

, (20)

M2,− = 2�

(
−β1

β12 + 1
3β345

) 1
2

. (21)

Equation (21) provides a fifth observable that might be used
to determine GL β parameters from independent experiments
in the GL regime [36]. In the weak-coupling limit with βi

given by Eqs. (6), the masses reduce to Mwc
2,+ =

√
8
5� and

5The weak breaking of relative spin-orbit rotation symmetry by the
nuclear dipolar interaction present in the normal-state partially lifts
the degeneracy of the J c = 1+ NG modes, endowing the m = 0 mode
with a very small mass determined by the nuclear dipole energy. This
is the “light Higgs” scenario discussed by Zavjalov et al. [63]. See
Sec. VII D.
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Mwc
2,− =

√
12
5 �. Thus, the J c = 2± Higgs modes obey the NSR

in the weak-coupling limit of the TDGL theory [12,18,20].
However, the NSR is violated by strong-coupling correc-

tions to the Higgs masses, shown in Fig. 2 as a function
of pressure for the strong-coupling β parameters shown in
Fig. 1. The asymmetry in the mass corrections for M2,±
leads to a sizable violation of the NSR at high pressures:∑

c M2
2,c/4m2

F − 1 ≈ 20% at p = 34 bar. The violations of
the NSR have the following origin: The strong-coupling
Lagrangian for the bosonic fluctuations (11) and (A1)–(A5)
depends on the symmetry of the mode; thus, the strong-
coupling renormalization of the Higgs masses depends on J c.
For the J = 0+ mode, the strong-coupling renormalization
of the mass is the same as that of the J = 0+ ground-state
amplitude �, and thus the fermion mass, in which case the NSR
is satisfied even with strong-coupling corrections. However,
for modes with J = 0, the renormalization of the mass of the
Higgs mode is a different combination of the strong coupling
β’s than that which renormalizes �, leading to violations of
the NSR.

V. BEYOND TDGL THEORY

The TDGL theory is limited in its applicability because
it is based on an effective action with only bosonic degrees
of freedom. However, the parent state of a BCS condensate
is the Fermi-liquid ground state (“fermionic vacuum”). In
order to calculate effects on the bosonic spectrum arising
from “back-action” of the fermionic vacuum, we require a
dynamical theory that includes both fermion and bosonic
degrees of freedom.

Microscopic formulations of the theory of collective ex-
citations in superfluid 3He-B were developed on the basis
of mean-field kinetic equations in Ref. [37], Kubo theory
in Refs. [15,38], a functional integral formulation of the
hydrodynamic action in Ref. [17], and quasiclassical transport
theory in Refs. [39–42]. We highlight the coupling between
bosonic and fermionic degrees of freedom that lead to mass
shifts of the Higgs modes. Results for the mass shifts of the
J c = 2± Higgs modes reported in Ref. [39] are interpreted
here in terms of interactions that result from polarization of
the fermionic vacuum by the creation of a bosonic mode
that has different symmetry than that of the unpolarized
vacuum. The Higgs modes with different parities, c = ±1,
also polarize the fermionic vacuum in different channels,
activating different interactions and leading to different mass
shifts. Thus, the violation of the J = 2 NSR is directly
related to the vacuum polarization mass shifts for the two
charge-conjugation partners of the J = 2 multiplet.

A. Particle-hole self-energy

For an interacting Fermi system, the two-body interaction
between isolated 3He atoms is renormalized to effective
interactions between low-energy fermionic quasiparticles that
are well-defined excitations within a low-energy band near the
Fermi surface, |ε| � h̄�c � Ef , and thus a shell in momentum
space, δp � h̄�c/vf .

A disturbance of the vacuum state from that of an
isotropic Fermi sea, e.g., by a perturbation that couples to

the quasiparticle states in the vicinity of the Fermi surface,
generates a polarization of the fermionic vacuum, and a cor-
responding self-energy correction to the energy of a fermionic
quasiparticle. The leading-order correction is given by the
combined external field uαβ(p) plus mean-field (one-loop)
interaction energy associated with a particle-hole excitation
of the fermionic vacuum state

Σαβ (p) = p α p β

×

u + p α p βΓph

.

(22)

The interaction between fermionic quasiparticles shown
in Eq. (22) is represented by a four-point vertex that sums
bare two-body interactions to all orders involving all possible
intermediate states of high-energy fermions. The vertex that
determines the leading-order quasiparticle self-energy �ph

defines the forward-scattering amplitude for particle and hole
pairs (Landau channel) scattering within the low-energy shell
near the Fermi surface

Γphαβ ;γρ(p, p ) =
p γ

p α

p ρ

p β
Γph

= Γ(s)(p, p )δαγ δβρ +Γ(a)(p, p )σαγ ·σβρ ,

(23)

with amplitudes �(s)(p,p′) for spin-independent scattering,
�(a)(p,p′), representing the spin-dependent “exchange” scat-
tering amplitude. The fermion propagator in the presence of
the external perturbation uαβ(p) is represented by

Gαβ (p) = ψα(p)ψ̄β (p) α β
+p +p

, (24)

where p = (p,εn) is the four-momentum, εn = (2n + 1)πT is
the fermion Matsubara energy, and α and β are the initial- and
final-state spin projections defining the fermion propagator.

For 3He quasiparticles and pairs confined to a low-energy
band near the Fermi surface, the vertex function, which
varies slowly with |p| in the neighborhood of the Fermi
surface, can be evaluated with p = pf p̂, εn → 0 and p′ =
pf p̂′, ε′

n → 0 within the low-energy band |εn|,|ε′
n| � h̄�c. In

the same limit, we approximate the momentum-space inte-
gral as

∫
d3p′
(2π)3 (. . .) → ∫ d�p̂′

4π
N (0)

∫
dξp′(. . .). The resulting

vertex part reduces to functions of the relative momenta
A(s,a)(p̂,p̂′) = 2N (0)�(s,a)(pf p̂,ε = 0; pf p̂′,ε′ = 0), where
N (0) is the density of states at the Fermi level and ξp =
vf (|p| − pf ) is the quasiparticle excitation energy in the
low-energy band near the Fermi surface. Rotational invariance
implies that the vertex part can be expanded in terms of basis
functions of the irreducible representations of SO(3)L, i.e.,
spherical harmonics {Y�,m(p̂)| m = −� . . . + �}, defined on the
Fermi surface,

A(s,a)(p̂,p̂′) =
∑

�

A
(s,a)
�

+�∑
m=−�

Y�,m(p̂) Y ∗
�,m(p̂′), (25)
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where the sum is over relative angular momentum channels
� � 0. The resulting spin-independent [�(p̂)] and exchange
[ ��(p̂)] self-energies defined on the low-energy bandwidth of
the interaction are given by

�(p̂) = �ext(p̂) +
∫

d�p̂′

4π
A(s)(p̂,p̂′) T

∑
εn′

′
g(p̂′,ε′

n),

(26)

��(p̂) = ��ext(p̂) +
∫

d�p̂′

4π
A(a)(p̂,p̂′) T

∑
εn′

′ �g(p̂′,ε′
n), (27)

where g and �g are the scalar and spin-vector compo-
nents of the quasiclassical propagator obtained by integra-
tion over the momentum shell −�c � vf δp � �c near the
Fermi surface,

∫
dξp Gαβ(p) ≡ gαβ(p̂,εn) = g(p̂,εn) δαβ +

�g(p̂,εn) · �σαβ . Note that the Matsubara sum
∑′ is restricted

to |ε′
n| � h̄�c, and the self-energies vanish for the undisturbed

Fermi sea.

B. Particle-particle self-energy

The Cooper instability results from repeated scattering of
fermion pairs with zero total momentum (Cooper channel) that
leads to the formation of bound fermion pairs. Unbounded
growth of the particle-particle amplitude is regulated by the
formation of a new ground state, defined in terms of a
macroscopic amplitude

Fαβ (p) = ψα(p)ψβ (−p) α β
+p −p

, (28)

for a condensate of fermion pairs with zero center-of-mass
energy and momentum. The condensate and interaction in the
Cooper channel also generates an associated mean field

Δαβ (p) =+p α −p βΓpp

= −T∑
εn

d3p
(2π)3

Γppαβ ;γρ(p, p )Fγρ(p ),

(29)

where

Γppαβ ;γρ(p, p ) =
+p γ

+p α

−p ρ

−p β
Γpp

= Γ(0)(p, p )(iσy)αβ (iσy)γρ

(30)

+ �(1)(p,p′)(i �σσy)αβ · (iσy �σ )γρ (31)

is the four-fermion vertex that is irreducible in the particle-
particle channel, expressed in terms of the spin-singlet (S =
0), even-parity and spin-triplet (S = 1), odd-parity pairing
interactions �(0)(p,p′) and �(1)(p,p′), respectively. Thus,
the pairing self-energy separates into singlet and triplet

components

�αβ(p) = d(p) (iσy)αβ + �d(p) · (i �σσy)αβ . (32)

Fermion pairs with binding energy |�| < �c are confined to a
low-energy band near the Fermi surface |ε| � h̄�c � Ef , and
a shell in momentum space δp � h̄�c/vf . Thus, the particle-
particle irreducible vertex, which varies slowly on with |p| in
the neighborhood of the Fermi surface, can also be evaluated
with p = pf p̂, εn → 0 and p′ = pf p̂′, ε′

n → 0. Thus, �pp

reduces to even- and odd-parity functions of the relative
momenta V (S)(p̂,p̂′) = 2N (0)�(S)(pf p̂,ε = 0; pf p̂′,ε′ = 0),
and rotational invariance of the normal-state fermionic vacuum
implies

V (0
1)(p̂,p̂′) = −

( even
odd )∑
�

v�

+�∑
m=−�

Y�,m(p̂) Y ∗
�,m(p̂′)

= −
( even

odd )∑
�

(2� + 1) v� P�(p̂ · p̂′), (33)

where the sum is over all even (odd) orbital angular momentum
channels, � � 0, for spin-singlet (spin-triplet) pair scattering,
and −v� is the pairing interaction (“coupling constant”) in the
orbital angular momentum channel �.6 The singlet [d(p̂)] and
triplet [ �d(p̂)] self-energies are given by

d(p̂) = −
∫

d�p̂′

4π
V (0)(p̂,p̂′) T

∑
εn′

′
f (p̂′,ε′

n), (34)

�d(p̂) = −
∫

d�p̂′

4π
V (1)(p̂,p̂′) T

∑
εn′

′ �f (p̂′,ε′
n), (35)

where fαβ(p̂,εn) ≡ ∫
dξp Fαβ(p) = f (p̂,εn) (iσy)αβ +

�f (p̂,εn) · (i �σσy)αβ is the quasiclassical pair propagator ex-
pressed in terms of the anomalous singlet and triplet compo-
nents f and �f .

The breaking of U(1) symmetry by pair condensation im-
plies mixing of normal-state particle and hole states. Particle-
hole coherence is accommodated by introducing Nambu
spinors � = (ψ↑ , ψ↓ , ψ

†
↑ , ψ

†
↓) or, equivalently, by a 4 × 4

Nambu matrix propagator in the combined particle-hole and
spin space. In the quasiclassical limit, the Nambu propagator
is represented by the diagonal and off-diagonal quasiclassical
propagators ĝ and f̂ and their conjugates ĝ′ and f̂ ′:

ĝ =
(

g + �g · �σ f iσy + �f · i �σσy

f ′ iσy + �f ′ · iσy �σ g′ − �g′ · σy �σσy

)
, (36)

where g (�g) is the spin scalar (vector) component of the
fermion propagator, while f ( �f ) is the spin singlet (triplet)
component of the anomalous pair propagator. The lower row of
the Nambu matrix represents the conjugate propagators ˆ̄g and
ˆ̄f , which are related to ĝ and f̂ by the combination of fermion

antisymmetry and particle-hole conjugation symmetries (cf.

6v� > 0 corresponds to an attractive interaction in channel �.
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Appendix A 2). Similarly, the quasiparticle and pairing self-
energies are organized into a 4 × 4 Nambu matrix

�̂ =
(

� + �� · �σ d iσy + �d · i �σσy

d ′ iσy + �d ′ · iσy �σ �′ − ��′ · σy �σσy

)
, (37)

with the corresponding symmetry relations connecting the
conjugate self-energies to �, ��, d, and �d. This doubling of
the fermionic and bosonic degrees of freedom, which is forced
by the breaking of global U(1) symmetry, is the origin of
the doublets of bosonic modes labeled by parity under charge
conjugation c = ±1 in BCS-type theories.

VI. EILENBERGERS’ EQUATIONS

The quasiparticle and anomalous pair propagators and self-
energies, organized into 4 × 4 Nambu matrices, obey Gorkov’s
equations [43]. Eilenberger transformed Gorkov’s equations
into a matrix transport-type equation for the quasiclassical
propagator and self-energy [44]

[iεnτ̂3 − �̂(p̂,R) , ĝ] + ih̄vp̂ · ∇ĝ = 0. (38)

In contrast to Gorkov’s equation, which is a second-order
differential equation with a unit source term originating
from the fermion anticommutation relations, Eilenberger’s
equation is a homogeneous, first-order differential equation
describing the evolution of the quasiclassical propagator along
classical trajectories defined by the Fermi velocity vp̂ = vf p̂.
The form of Eilenberger’s equation in Eq. (38) governs
the equilibrium propagator, including inhomogeneous states
described by an external potential or a spatially varying mean
pairing self-energy �̂(p̂,R), but must be supplemented by the
normalization condition [44]

ĝ(p̂,εn; R)2 = −π2 1̂, (39)

which restores the constraint on the spectral weight implied
by the source term in Gorkov’s equation. For the spatially
homogeneous ground state of superfluid 3He-B Eilenberger’s
equation reduces to

[iεnτ̂3 − �̂(p̂) , ĝ0] = 0, (40)

and the homogeneous self-energy �̂ ≡ �̂(p̂) is defined by the
mean-field pairing self-energy for the 3He ground state

�̂(p̂) =
(

0 ��(p̂) · i �σσy

��(p̂) · iσy �σ 0

)
, (41)

where ��(p̂) = �p̂ is the J = 0 BW order parameter. Here and
after we denote the equilibrium spin-triplet order parameter as
�� and reserve �d for the nonequilibrium fluctuations of the
spin-triplet order parameter. The 4 × 4 matrix order parameter
for the BW state satisfies �̂(p̂)�̂(p̂) = −|�|2 1̂. Thus, the
equilibrium propagator for the BW state is given by

ĝ0(p̂,εn) = −π
iεnτ̂3 − �̂(p̂)√

ε2
n + |�|2 . (42)

Note that the diagonal component of ĝ0 is odd in frequency.
This implies that the diagonal (fermionic) self-energies �(p̂)
and ��(p̂), evaluated with Eq. (42), vanish in equilibrium.
However, if the ground state is perturbed, e.g., by a bosonic

fluctuation of the Cooper pair condensate, the fermionic
self-energy, in general, no longer vanishes.

In equilibrium, the anomalous self-energy reduces to the
self-consistency equation (“gap equation”) for the spin-triplet
order parameter

��(p̂) = −π

β

∑
εn

′ ∫ d�p̂

4π
V (1)(p̂,p̂′)

��(p̂′)√
ε2
n + | ��(p̂′)|2

.

(43)

The linearized gap equation defines the instability tempera-
tures for Cooper pairing with orbital angular momentum �:

1

v�

= πTc�

∑
εn

′ 1

|εn| ≡ K(Tc�
) (44)

for attractive interactions v� > 0. The function K(T ) is a
digamma function of argument h̄�c/2πT � 1, in which case

K(T ) ≡ πT
∑
εn

′ 1

|εn| 	 ln

(
2eγE

π

h̄�c

T

)
, (45)

where γE 	 0.577 21 is Euler’s constant. This function plays a
central role in regulating the log divergence of frequency sums
in the Cooper channel. In 3He, the p-wave pairing channel is
the dominant attractive channel; the f -wave channel is also
attractive, but subdominant, i.e., 0 < Tc3 < Tc1 ≡ Tc.

The anomalous self-energy in the p-wave channel also
determines the mass (gap), mF = �, of fermionic excitations
of the Balian-Werthamer phase. In particular, the p-wave
projection of Eq. (43) reduces to the BCS gap equation

ln(T/Tc) = 2πT

∞∑
n�0

(
1√

ε2
n + �2

− 1

εn

)
. (46)

Note that both the pairing interaction v1 and cutoff �c in
Eq. (43) have been eliminated in favor of the transition
temperature by regulating the log-divergent sum using Eq. (45)
and the linearized gap equation for Tc, Eq. (44).

The Balian-Werthamer state, which has an isotropic gap in
the fermionic spectrum, is maximally effective in using states
near the Fermi surface for pair condensation. As a result, the B

phase is stable down to T = 0 in spite of the attractive f -wave
pairing interaction [45]. Nevertheless, subdominant f -wave
pairing plays an important role in the bosonic excitation
spectrum of the B phase. In particular, p-wave, spin-triplet
Higgs modes with J = 2 polarize the B-phase vacuum. The
J = 2 polarization couples to f -wave, spin-triplet Cooper
pair fluctuations with J = 2, leading to mass corrections to
the J c = 2± Higgs modes. In the following, we derive the
dynamical equations for the bosonic modes including the
polarization terms from the f -wave pairing channel, and
self-energy corrections from the Landau channel.

VII. DYNAMICAL EQUATIONS

In order to describe the nonequilibrium response, or
fluctuations, relative to homogeneous equilibrium, we must
generalize the low-energy quasiparticle and Cooper pair prop-
agators to functions of two time (τ1,τ2) or frequency (εn1 ,εn2 )
variables. Specifically, we must include the dependence on
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the global time coordinate ϒ = (τ1 + τ2)/2 or, equivalently,
the total Matsubara energy ωm, in addition to the relative
time difference τ1 − τ2 or corresponding fermion Matsubara
energy εn. Thus, the ξp-integrated quasiclassical propagator
generalizes to ĝ(p̂,εn) → ĝ(p̂,εn; q,ωm), where q is the total
momentum or wave vector for a Fourier mode associated with
the center-of-mass coordinate R.

The space-time dynamics of the coupled system of
fermionic and bosonic excitations of the broken symmetry
ground state is encoded in the Keldysh propagator [46], which
is obtained here by analytic continuation to the real energy
axes, e.g., iεn → ε + i0+ followed by iωm → ω + i0+. Thus,

1

β

∑
εn

ĝ(εn; ωm) −−−−−−−→
iωm→ω+i0+

∫ +∞

−∞

dε

4πi
ĝK (ε; ω), (47)

where ĝK (p̂,ε; q,ω) is the real energy and frequency-
dependent Keldysh propagator. The Keldysh propagator de-
termines the response to any space-time–dependent excitation.
For example, the particle current is given by

J = N (0)
∫

d�p̂

4π

∫
dε

4πi
(vp)Tr{̂τ3ĝ

K (p̂,ε; q,ω)}. (48)

The off-diagonal Nambu components of the Kelysh propagator
determine the bosonic modes of the interacting fermionic
and bosonic systems. The spin-triplet bosonic excitations are
obtained from the anomalous triplet propagator �f K and the
self-consistent solution for the anomalous self-energy obtained
by analytic continuation of Eq. (35):

�d(p̂; q,ω) = −
∫

d�p̂

4π
V (1)(p̂,p̂′)

∫
dε

4πi
�f K (p̂,ε; q,ω).

(49)

To calculate the Keldysh propagator ĝK , we generalize
Eilenberger’s transport equation for the two-time/frequency
nonequilibrium Matsubara propagator

[iετ̂3 − �̂] ◦ ĝ − ĝ ◦ [iετ̂3 − �̂] + ivp̂ · ∇ĝ = 0, (50)

where the A ◦ B(εn1 ,εn2 ) ≡ 1
β

∑
n3

A(εn1 ,εn3 ) B(εn3 ,εn2 ) is a
convolution in Matsubara energies. For the two-frequency,
nonequilibrium propagator the normalization condition is also
a convolution product in Matsubara frequencies

ĝ ◦ ĝ ≡ 1

β

∑
εn3

ĝ
(
εn1 ,εn3

)
ĝ
(
εn3 ,εn2

) = −π2 βδεn1 ,εn2
1̂. (51)

If we express the full propagator as a correction to the
equilibrium propagator [Eq. (42)]

ĝ
(
p̂,q; εn1 ,εn2

) = ĝ0
(
p̂,εn1

)
βδεn1 ,εn2

+ δĝ
(
p̂,q; εn1 ,εn2

)
,

(52)

then to linear order in δĝ the normalization condition for the
correction to the propagator becomes after setting εn1 = εn +
ωm, εn2 = εn, and δĝ(p̂,q; εn1 ,εn2 ) ≡ δĝ(p̂,q; εn,ωm):

ĝ0(εn + ωm)δĝ(εn,ωm) + δĝ(εn,ωm )̂g0(εn) = 0. (53)

The bosonic modes of the interacting Fermi superfluid
are obtained from the linearized dynamical equations for
the fluctuations of the anomalous self energy δ�̂ = �̂ − �̂0,

where the equilibrium self-energy �̂0 is defined by off-
diagonal mean-field pairing self-energy for the 3He ground
state [Eqs. (41) and (43)]. These fluctuations are coupled to
fluctuations of the fermionic self-energy δ�̂. The coupled
dynamical equations for the components of δ�̂(p̂; q,ω) are
obtained solving the nonequilibrium Eilenberger equation (50)
for ĝ to linear order in the self-energy fluctuations δ�̂. The
linearized nonequilibrium Eilenberger equation becomes

{i(εn + ωm )̂τ3 − �̂(p̂)} δĝ − δĝ {iεnτ̂3 − �̂(p̂)} − vp̂ · q δĝ

+ ĝ0(p̂,εn + ωm) δ�̂ − δ�̂ ĝ0(p̂,εn) = 0. (54)

The normalization conditions (39) and (53), combined with
Eq. (42), provide a direct method of inverting Eq. (54) for the
nonequilibrium quasiclassical propagator

δĝ =
( −1

π2D2+ + (vp̂ · q)2

)
× [D+ {ĝ0(εn + ωm) δ�̂ ĝ0(εn) + π2 δ�̂}
+ vp̂ · q {δ�̂ ĝ0(εn) − ĝ0(εn + ωm) δ�̂}], (55)

where D+(εn,ωm) = D(εn + ωm) + D(εn), and

D(εn) ≡ −1

π

√
ε2
n + |�|2 (56)

is the denominator of the equilibrium propagator.
To calculate the mass spectrum of the bosonic modes, we

need only the q = 0 propagators, in which case

δĝ = −1

π2

1

D+
{ĝ0(εn + ωm) δ�̂ ĝ0(εn) + π2 δ�̂}. (57)

In zero magnetic field, spin-singlet bosonic fluctuations, if
they exist, do not couple to spin-triplet bosonic fluctuations.
However, we must retain fluctuations of the fermionic self-
energy, thus the form of the fluctuation self-energy becomes

δ�̂ =
(

� + �� · �σ �d · i �σσy

�d ′ · iσy �σ �′ − ��′ · σy �σσy

)
, (58)

where the conjugate spin-triplet order-parameter ampli-
tudes are related by �d ′(p̂; q,ωm) = �d(p̂; −q, − ωm)∗ (see
Appendix). The linear combinations

�d (±)(p̂; q,ωm) ≡ �d(p̂; q,ωm) ± �d ′(p̂; q,ωm) (59)

have charge-conjugation parities c = ±1; the dynamical equa-
tions for bosonic modes then separate into charge-conjugation
doublets with opposite parity. The bosonic modes of Cooper
pairs also couple to the fluctuations of the fermionic self-
energy, in both the spin scalar and vector channels

�(±)(p̂; q,ωm) ≡ �(p̂; q,ωm) ± �′(p̂; q,ωm), (60)

��(±)(p̂; q,ωm) ≡ ��(p̂; q,ωm) ± ��′(p̂; q,ωm). (61)

Note that the exchange and conjugation symmetry relations for
the diagnoal self-energies [Eqs. (A10) and (A11) and (A18)
and (A19)] imply that the fermionic self-energies �(±) and
��(±) are also even (odd) with respect to charge-conjugation
parity c = ±1.

The dynamical equations for the spin-triplet bosonic modes
are obtained from the off-diagonal and diagonal components of
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δĝ in Eq. (55), the self-consistency equations for the leading-
order mean-field self-energies [Eqs. (26), (27), and (35)]. Two
response functions are obtained from the propagator in Eq. (57)
that determine the bosonic and fermionic self-energies

γ (iωm) = − 1

β

∑
εn

[ 1

D(εn)
+ 1

D(εn + ωm)

]
, (62)

λ(iωm) = 2

π2β

∑
εn

|�2|
D+(εn,ωm)D(εn)D(εn + ωm)

. (63)

The Matsubara sum defining γ (iωm) is log divergent, regulated
by the cutoff �c. The frequency dependence of γ can be
neglected since it gives a negligible correction of order
(ωm/�c)2 � 1. Thus,

1

2
γ = π

β

∑
εn

′ 1√
ε2
n + |�|2 = 1

v1
, (64)

where the latter equality follows from the equilibrium gap
equations (44)–(46). The function λ(iωm) is defined by a

convergent Matsubara sum. Analytic continuation to real
frequencies of Eq. (63) in the manner of Eq. (47) yields

λ(ω) ≡ |�|2 λ̄(ω) = |�|2
∫ ∞

|�|

dε√
ε2 − |�|2

tanh
(

βε

2

)
ε2 − ω2/4

,

(65)

which is the Tsuneto function with ω → ω + i0+ defining
the retarded (causal) response [47]. For |ω| < 2|�|, λ(ω) is
real and defines the nonresonant frequency response of the
condensate, while for |ω| > 2|�|, Imλ(ω) = 0 is the spectral
density of unbound fermion pairs. In the T = 0 limit, with
x = ω/2|�|,

λ(ω) =
⎧⎨⎩

sin−1(x)
x
√

1−x2 , |x| < 1

1
2x

√
x2−1

[
ln
∣∣∣√

x2−1−x√
x2−1+x

∣∣∣ + iπsgn(x)
]
, |x| > 1.

(66)

Thus, analytic continuation to real frequencies for the q = 0
limit leads to the following dynamical equations for the spin-
triplet bosonic modes of the B-phase ground state [39–42]

�d (−)(p̂; ω) = −
∫

d�p′

4π
V (1)(p̂,p̂′)

{[
1

2
γ + 1

4
(ω2 − 4|�|2)λ̄(ω)

]

× �d (−)(p̂′; ω) + λ̄(ω) ��(p̂′) [ ��(p̂′) · �d (−)(p̂′; ω)] − 1

2
ω λ̄(ω) ��(p̂′) �(+)(p̂′; ω)

}
, (67)

�d (+)(p̂; ω) = −
∫

d�p′

4π
V (1)(p̂,p̂′)

{[
1

2
γ + 1

4
ω2λ̄(ω)

]

× �d (+)(p̂′; ω) − λ̄(ω) ��(p̂′)[ ��(p̂′) · �d (+)(p̂′; ω)] + i

2
ω λ̄(ω) ��(p̂′) × ��(+)(p̂′; ω)

}
. (68)

Note that the equations of motion for the bosonic fluctuations
of the order parameter couple to the fermionic self-energies
linearly in the frequency ω, and that only the even orbital parity
fermionic fluctuations contribute in the q = 0 limit.

For the moment we omit pairing fluctuations in higher
angular momentum channels, i.e., set v� = 0 for � � 3.
We then expand the spin-triplet order-parameter amplitudes
�d (±)(p̂) in terms of the p-wave basis d (±)

α (p̂) = D (±)
αi p̂i , where

D (±)
αi is equivalent to the bivector representation of the order

parameter discussed in the context of the TDGL theory for the
bosonic modes. For the B-phase ground state with total angular
momentum J = 0, i.e., ��(p̂) = �p̂ or, equivalently, Aαi =
�/

√
3 δαi , Eqs. (67) and (68) can be solved by expanding

the pairing fluctuations in spherical tensors that define bases
for the representations of the residual symmetry group of
the B phase H = SO(3)J , with total angular momentum
J = 0,1,2,

D (±)
αi =

∑
J=0,1,2

∑
m=−J,+J

D
(±)
J,m t

(J,m)
αi . (69)

Note that time-dependent fluctuations of the fermionic self-
energy, e.g., ω�(+)(p̂; ω), appear as “source” terms in
the equations of motion for the order-parameter collective
modes.

A. Nambu-Goldstone and Higgs modes with c = −1

In the case of the modes with parity c = −1 we can
express

�(+)(p̂; ω) =
even∑
J

∑
m

�
(+)
J,m(ω) p̂i t

(J,m)
ij p̂j . (70)

Note that only self-energy fluctuations of even J couple to the
bosonic modes with c = −1. Equation (67) then decouples
into the dynamical equations for bosonic mode amplitudes
with total angular momentum J . In particular, the equation for
dynamical fluctuations with J c = 0− is given by

ω2 D
(−)
0,0 = 2 |�| ω �

(+)
0,0 . (71)

In the simplest case, the J = 0 contribution to the fermionic
self-energy represents a fluctuation in the chemical potential,
i.e., �

(+)
0,0 (ω) = 2δμ(ω), and as discussed earlier the pairing

fluctuation with J c = 0− represents time-dependent fluctua-
tions of the phase of the B-phase ground state, i.e., D

(−)
0,0 =

2i|�| ϑ(ω). This is the massless Anderson-Bogoliubov mode,
which in the time domain for q = 0 obeys the Josephson
phase relation h̄∂tϑ = −2δμ. As we show below, this result
is unrenormalized by interactions between fermions in either
particle-hole or particle-particle channels.
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Projecting out the pairing fluctuations with J c = 1− from
Eq. (67) yields

(ω2 − 4|�|2) D
(−)
1,m = 0. (72)

This is a quite remarkable result: the J c = 1− pairing
fluctuations do not couple to fluctuations in the fermion
self-energy. Furthermore, neither d-wave, spin-singlet, nor
f -wave spin-triplet pairing fluctuations couple the J c = 1−
modes, which implies that the mass of J c = 1− Higgs modes,
M1,− = 2�, is unrenormalized by interactions to leading order
in the expansion.

By contrast, the J c = 2− modes obey the following
dynamical equations:[

ω2 − 12

5
|�|2

]
D

(−)
2,m = 4

5
|�| ω �

(+)
2,m. (73)

In the absence of fermion interactions in the particle-hole
channel �(+)

2,m(ω) represents external stress fluctuations u
(+)
2,m(ω)

that couple directly to the J c = 2− bosonic modes. In this
case, the mass of the this Higgs mode is equal to the weak-
coupling TDGL result M2,− = √

12/5 �, but now extended
to all temperatures. However, the weak-coupling result for
the mass of the J c = 2− Higgs mode is renormalized by
fermionic interactions. Qualitatively, this is expected given
that external stress fluctuations couple directly to the J c = 2−
pairing fluctuations. Excitation of a J c = 2− Higgs boson
polarizes the J = 0 fermionic vacuum, inducing a fermionic
self-energy correction of the same symmetry that couples back
to generate a mass correction to the J c = 2− Higgs modes.
The polarization correction to the Higgs mass is encoded in
Eq. (A24) in the limit q = 0, which can be expressed as

�(+)(p̂; ω) = u(+)(p̂; ω)

+
∫

d�p̂′

4π
F s(p̂,p̂′)

{
−λ(ω) �(+)(p̂′; ω)

+ 1

2
λ̄(ω) ω ��(p̂′) · �d (−)(p̂′; ω)

}
, (74)

where u(+)(p̂; ω) represents unrenormalized external forces
coupling to excitations of 3He-B, and we have expressed the
dynamical self-energy in terms of the spin-symmetric particle-
hole irreducible interaction F s(p̂,p̂′) (cf. Appendix A 3).
Projecting out the amplitudes with J = 0,2 defined in Eq. (70)
gives [

1 + F s
0 λ(ω)

]
�

(+)
0,0 (ω)

= u0,0(ω) + F s
0 λ(ω)

(
ω

2|�|
)

D
(−)
0,0 (ω), (75)[

1 + 1

5
F s

2 λ(ω)

]
�

(+)
2,m(ω)

= u2,m(ω) + 1

5
F s

2 λ(ω)

(
ω

2|�|
)

D
(−)
2,m(ω). (76)

The key result shown in Eqs. (75) and (76) is that excitation
of pairing fluctuations D

(−)
J,m(ω) polarizes the condensate and

generates internalinternal stresses that are proportional to (i)
interactions in the particle-hole channel F s

2,0, (ii) the time

derivative of the bosonic mode amplitudes ω D
(−)
J,m(ω), and

(iii) the dynamical response of the condensate λ(ω), even in the
absence of bulk external forces, i.e.. uJ,m(ω) = 0. In the case
of the J c = 0− mode, combining Eq. (71) with �

(+)
0,0 (ω) now

given by Eq. (75) still yields the unrenormalized dynamical
equation for excitation of the Anderson-Bogoliubov phase
mode

ω2 D
(−)
0,0 = 2 |�| ω u

(+)
0,0 . (77)

The interaction F s
0 drops out because the polarization induced

by the J c = 0− bosonic mode has the same rotational
symmetry as the vacuum state.

However, in the case of the J c = 2− Higgs modes,
combining Eq. (73) with �

(+)
2,m(ω) given by Eq. (76) yields

D
(−)
2,m =

4
5 |�| ω u

(+)
2,m(ω)[

ω2 − 12
5 |�|2 + λ(ω) 3

25 F s
2 (ω2 − 4|�|2)

] , (78)

which has a pole at ω = M2,−, the renormalized mass of the
J c = 2− mode. Before discussing the quantitative effect of the
Landau interaction on the J c = 2− Higgs mass, we consider
the effect of interactions in the Cooper channel.

B. f -wave interactions in the Cooper channel

Theoretical models for fermionic interactions in the
particle-particle (Cooper) channel based on exchange of
long-lived ferromagnetic spin fluctuations predict p-wave
spin-triplet pairing with subdominant attraction in the f -wave
Cooper channel, including a strong subdominant f -wave
attractive interaction at high pressures [48,49]. The masses
of the J c = 2− modes are sensitive to fermionic interactions
in the particle-particle channel, the most relevant being the f -
wave, spin-triplet channel. Pairing fluctuations in the Cooper
channel couple to the p-wave, spin-triplet modes with J = 2
leading to renormalization of the mass of the J c = 2± Higss
modes. Note that f -wave pairing fluctuations do not couple to
the J = 0,1 bosonic modes.

The generalization of Eqs. (73) and (76) to include the
f -wave pairing channel in the dynamics of the J c = 2− modes
is obtained from Eqs. (67) and (74) by retaining both p-wave
and f -wave pairing amplitudes

d (−)
α (p̂) = D (−)

αi p̂i + F (−)
α;ijk p̂i p̂j p̂k, (79)

where D (−)
αi is a second-rank tensor under the residual

symmetry group of the B-phase SO(3)J , representing p-wave,
spin-triplet fluctuations with odd charge-conjugation parity
[Eq. (69)], and F (−)

α;ijk is a fourth-rank tensor with f -wave
orbital symmetry, and thus is completely symmetric and
traceless in any pair of the orbital indices (ijk). Spin-triplet,
f -wave pairing fluctuations couple only to the J = 2 p-wave,
triplet modes. Thus, for pure J = 2, S = 1, � = 3 fluctuations,

F (−)
α;ijk = 5

9

{(
δαiF

(−)
jk + δαjF

(−)
ik + δαkF

(−)
ij

)
− 2

5

(
F (−)

αi δjk + F (−)
αj δik + F (−)

αk δij

)}
, (80)

where by contraction

F (−)
jk ≡ 3

7 F (−)
α;αjk (81)
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is a rank-two, traceless, and symmetric J = 2 tensor. In
particular, we can expand F (−)

ij in the J = 2 base tensors

F (−)
ij =

+2∑
m=−2

F
(−)
2,m t

(2,m)
ij . (82)

The J = 2− gap distortion is determined by both the p- and
f -wave J = 2 tensors

��(p̂) · �d (−)(p̂; ω) = �
(
D (−)

ij + F (−)
ij

)
p̂i p̂j , (83)

and thus the J = 2− component of the fermionic self-energy
induced by the J c = 2− Higgs modes [cf. Eq. (76)] becomes(

1 + 1

5
F s

2 λ(ω)

)
�

(+)
2,m(ω)

= u2,m(ω) + 1

5
F s

2 λ(ω)

(
ω

2|�|
)[

D
(−)
2,m(ω) + F

(−)
2,m(ω)

]
.

(84)

The J c = 2− amplitudes satisfy coupled time-dependent
gap equations obtained by projecting out the p- and f -wave
components of Eq. (67) where v� are the pairing interactions in
orbital angular momentum channel, � = 1,3, . . . . The p-wave
interaction is the dominant attractive channel. The relevant
measure of the strength of the subdominant f -wave pairing
interaction is

x−1
3 ≡

(
1

v1
− 1

v3

)−1

= ln(Tc3/Tc)−1, (85)

where x−1
3 < 0 (x−1

3 > 0) for attractive (repulsive) f -wave
pairing. The latter equality, valid for attractive f -wave pairing,
is obtained from Eq. (44) for the eigenvalue spectrum of
the linearized gap equation, with Tc the p-wave transition
temperature and Tc3 the f -wave instability temperature for
subdominant f -wave pairing.

Projecting out the � = 1, J = 2 component of Eq. (67),
which generalizes Eq. (73), leads to[

ω2 − 12
5 |�|2]D

(−)
2,m + 8

5 |�|2 F
(−)
2,m = 4

5 |�| ω �
(+)
2,m. (86)

Projecting out the � = 3 amplitudes from Eq. (67) gives[
x3 + 1

4
λ̄(ω)(ω2 − 4|�|2)

]
× d (3,−)

α (p̂; ω) + 7
∫

d�p̂′

4π
P3(p̂ · p̂′)

×
{
λ̄(ω) �α(p̂′) ��(p̂′) · �d (−)(p̂′; ω)

= 1

2
λ̄(ω) ω �α(p̂′) �+(p̂′; ω)

}
. (87)

The J = 2 components of Eq. (87) are obtained by
contracting with p̂α to obtain an equation for F (−)(p̂) ≡
F (−)

ij p̂i p̂j , then evaluating the angular average using the
addition theorem for the Legendre polynomials (p̂ · p̂′) P3(p̂ ·
p̂′) = 1

7 {4 P4(p̂ · p̂′) + 3 P2(p̂ · p̂′)} to obtain[
x̄3 + 1

4

(
ω2 − 8

5 |�|2)]F (−)
2,m + 3

5 |�|2 D
(−)
2,m = 3

10 |�| ω �+
2,m,

(88)
where x̄3 ≡ x3/λ̄(ω). Eliminating the fermionic self-energy
between Eqs. (86) and (88) gives the subdominant f -wave,
J c = 2− amplitude in terms of the dominant p-wave, J c = 2−:[

x̄3 + 1
4 (ω2 − 4|�|2)

]
F

(−)
2,m = 3

8 (ω2 − 4|�|2) D
(−)
2,m. (89)

The total J c = 2− Higgs amplitude, the sum of the p- and
f -wave amplitudes H

(−)
2,m(ω) ≡ D

(−)
2,m + F

(−)
2,m, that polarizes the

fermionic vacuum [Eq. (76)] is governed by the dynamical
equation obtained by combining Eqs. (86) and (89). This gives
the retarded propagator for the J c = 2− Higgs mode

H
(−)
2,m =

4
5 |�| ω u

(+)
2,m(ω)

[
1 + 5

8 x−1
3 (ω2 − 4|�|2)λ̄(ω)

][
ω2 − 12

5 |�|2 + λ(ω) (ω2 − 4|�|2)
(

3
25 F s

2 + (ω/2|�|)2 x−1
3

)] . (90)

The renormalized J c = 2− Higgs mass is obtained from
the pole of the propagator in Eq. (90). In the limit T → T −

c

the Tsuneto function scales as λ(ω = M2,−) ∝ �(T )/Tc → 0.
Thus, the J c = 2− Higgs mass scales to the the weak-coupling
TDGL result at Tc:

M2− ≈
√

12

5
�(T )

[
1 + π

10

√
5

2

�(T )

Tc

(
F s

2 /5 + x−1
3

)]
. (91)

However, the leading-order correction to the mass ∝
�(T )/Tc ∼ (1 − T/Tc)

1
2 onsets rapidly below Tc. Thus, mass

renormalization becomes significant, of order F 2
2 or x−1

3 , for
T → 0. For weak interactions in both the Landau and Cooper
channels, |F s

2 | � 1 and |x−1
3 | � 1, at T = 0 the renormalized

mass obtained from the pole of the J c = 2− propagator in

Eq. (90) is

M2− ≈
√

12

5
�

[
1 + a

(
F s

2 /5 + x−1
3

)]
, (92)

where a = 1√
6

arcsin (
√

3
5 ) ≈ 0.362. The Landau channel in-

teraction F s
2 obtained from measurements of the zero sound

velocity ranges from F s
2 ≈ 0.5 at P = 0 bar to F s

2 ≈ 1.0 at
P = 34 bar, although earlier measurements reported F s

2 ≈
−0.5 at p = 0 bar [50].

The f -wave interaction in the Cooper has been determined
from measurements of the mass of the J c = 2−, m = 0
Higgs mode based on resonant absorption of longitudinal
zero sound. These experiments yield results ranging from
x−1

3 ≈ 0.0 at p = 0 bar to x−1
3 ≈ −0.5 at p = 14 bar (cf.

Fig. 50 in Ref. [51]). Determinations of the mass of the
J c = 2−, m = ±1 Higgs modes based on transverse sound
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FIG. 3. Masses of the J c = 2± Higgs modes vs � = 2 particle-
hole (F s,a

2 ) and f -wave pairing (x−1
3 ) interactions at T = 0. The

perturbative results [Eqs. (92) and (113)] for x−1
3 = 0 are shown as

the dashed black lines.

propagation and acoustic Faraday rotation by Lee et al. [35,52],
as well as more recent measurements by Collett et al. [53]
yield attractive f -wave interactions of similar magnitude. The
f -wave interaction in the Cooper channel also contributes to
the nonlinear nuclear magnetic susceptibility for the B phase
[54]. Analysis of magnetic susceptibility measurements of
Hoyt et al. [55] yields a stronger, but subdominant, attractive
f -wave interaction with x−1

3 	 −1.75 (Tc3/Tc 	 0.56) at low
pressure [56].

Figure 3 shows the mass of the J = 2c = 2− Higgs mode
as a function of F s

2 for various values of the f -wave pairing
interaction x−1

3 obtained from numerical solution for the pole
of the propagator H

(−)
2,m in Eq. (90). Note that “repulsive”

interactions in either channel (F s,a
2 > 0 or x−1

3 > 0) push the
mass above the weak-coupling result towards the mass of
unbound fermion pairs, while “attractive interactions” soften
the mode. In particular, M2,− → 0 for F s

2 /5 → −1, signaling
a dynamical instability of the ground state. The soft mode is
the dynamical signature of the Pomeranchuk instability of the
underlying fermionic vacuum [57].

C. Nambu-Goldstone and Higgs modes with c = +1

In the case of the bosonic modes with parity c = +1 the
fermion self-energy that couples to these modes is expressed in
terms of the momentum-dependent exchange field ��(+)(p̂; ω).
Equation (68) decouples into the dynamical equations for
bosonic mode amplitudes with total angular momentum J ,
with orbital angular momentum � = 1, D

(+)
J,m and � = 3, F

(+)
J,m.

The self-energy fluctuations originating from the exchange
contribution to the quasiparticle interaction are even under
p̂ → −p̂; thus, only fluctuations with even J couple to the
bosonic modes for c = +1. To obtain the dynamical equations
for the J+ modes, it is convenient to introduce

�G(+)(p̂; ω) = ��(p̂) × ��(+)(p̂; ω)/| ��(p̂)|. (93)

For the J = 0+ ground state �G(+)(p̂; ω) = p̂ × ��(+) is a vector
under spin rotations, odd under p̂ → −p̂ and enters Eq. (68)

acting as an effective source field for Cooper pair fluctuations
with c = +1.

It is sufficient to retain only the � = 0 and 2 contribu-
tions to the particle-hole exchange interaction Fa(p̂,p̂′) =
Fa

0 + Fa
2 P2(p̂ · p̂), in which case we can express the vector

components of the quasiparticle exchange field in terms � = 0
and 2 spherical tensors

�(+)
γ (p̂; ω) = �(0)

γ + �
(2)
γ :αβ p̂αp̂β, (94)

where �
(2)
γ :αβ is traceless and symmetric in the indices α,β.

The vector function �G(+)(p̂; ω) by construction contains only
p- and f -wave orbital components �G(+)(p̂; ω) = �G(1)(p̂; ω) +
�G(3)(p̂; ω), with G(�)

γ (p̂) = 〈(2� + 1) P�(p̂ · p̂′) G(+)
γ (p̂′)〉p̂′ ,

where 〈. . .〉p̂ ≡ ∫
d�p̂/4π (. . .). Equivalently, the p-wave

contribution is defined by a second-rank tensor under joint
spin and orbital rotations,

G
(1)
γ i = 〈3 p̂i G(+)

γ (p̂)〉p̂ = εαiγ �(0)
γ + 2

5
εαβγ �

(2)
γ :βi (95)

= G
(1,0)
γ i + G

(1,1)
γ i + G

(1,2)
γ i , (96)

where the second equation is the reduction in terms of J =
0,1,2 tensors. The J = 0 component is defined by the trace,
which is easily seen to vanish, i.e., G

(1,0)
αi ≡ 0. The J = 1

components can be expressed in terms of an axial vector

G
(1,1)
αi = εαiν G(1,1)

ν with G(1,1)
ν = �(0)

ν − 1
5 �(2)

γ :γ ν. (97)

Finally, the J = 2 components are determined by the traceless,
symmetric tensor

G
(1,2)
αi = 1

5

(
εαβγ �

(2)
γ :βi + εiβγ �

(2)
γ :βα

)
, (98)

which can be expanded in the basis of J = 2 tensors

G
(1,2)
αi =

+2∑
m=−2

G2,m t
(2,m)
αi . (99)

These contributions to the exchange field couple to the bosonic
mode amplitudes with quantum numbers J,m and c = +1,
represented by second- and fourth-rank tensors that are the
c = +1 complements of those in Eq. (79):

d (+)
α (p̂) = D (+)

αi p̂i + F (+)
α;ijk p̂i p̂j p̂k , (100)

where the spin-triplet, p-wave order-parameter fluctuations
are expanded in the basis of tensors with J = 0,1,2,

D (+)
αi =

∑
J=0,1,2

J∑
m=−J

D
(+)
J,m t

(J,m)
αi , (101)

and similarly for spin-triplet, f -wave fluctuations with J =
2+, F (+)

αi = ∑+2
m=−2 F

(+)
2,m t

(2,m)
αi where F (+)

αi = 3
7Fγ :γαi .

The equation governing the J c = 0+ mode is

(ω2 − 4|�|2)D(+)
0,0 = 0. (102)

This is the dynamical equation for the Higgs mode with the
exact quantum numbers of the B-phase vacuum state. As a
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result, there is no coupling to the J c = 0+ mode via acoustic
or magnetic fluctuations.7

The J c = 1+ modes are Nambu-Goldstone modes as-
sociated with broken relative spin-orbit rotation symmetry.
It is convenient to express these mode amplitudes in the
Cartesian representation D(+,1)

α = 1
2εαβγ D (+)

βγ . Projecting out
these amplitudes from Eq. (68) yields

iω D(+,1)
α = 2�

1 + 1
15λ(ω) Fa

2

1 − 2
45λ(ω)2 Fa

0 Fa
2

(
−γh̄

2
Hα(ω)

)
, (103)

where Hα(ω) is the Fourier component of the time-dependent
external magnetic field and γ is the gyromagnetic ratio of
3He. Exchange interactions renormalize the coupling of the
J c = 1+ modes to an external field, but the massless NG mode
is protected by the continuous degeneracy of the BW ground
state with respect to relative spin-orbit rotations. At finite
wavelength these excitations correspond spin waves mediated
by J c = 1+ NG modes of the Cooper pairs with dispersion
given by ω = cm q, where cm are the spin-wave velocities in
3He-B. See Sec. VII D discussion of weak symmetry-breaking
perturbations on the J c = 1+ modes.

The J c = 2+ excitations obey the dynamical equations[
ω2 − 8

5 |�|2]D
(+)
2,m = 8

5 |�|2 F
(+)
2,m − iω(2�) G2,m. (104)

In the absence of fermion interactions in the particle-particle
channel, the f -wave amplitude vanishes, F

(+)
2,m ≡ 0. And, if

we also ignore fermionic interactions in the particle-hole
channel, then G2,m(ω) represents an external field that couples
to directly to the J c = 2+ modes. In this case, the mass
of this Higgs mode is equal to the weak-coupling result
M2,+ = √

8/5 �. However, M2,+ is renormalized by fermionic
interactions in both the particle-particle and particle-hole
channels. Just as in the case for the J c = 2− modes excitation
of a J c = 2+ Higgs boson polarizes the J = 0+ fermionic
vacuum and introduces a fermionic self-energy correction
with the same symmetry that couples back to generate a mass
correction to the J c = 2+ Higgs modes.

In addition, pairing interactions in the spin-triplet, f -wave
channel lead to dynamical excitations of the B-phase vacuum
with spin J c = 2+,m, i.e., F

(+)
2,m, which mixes with the spin-

triplet, p-wave modes of the same symmetry. We obtain the
dynamical equation for the F

(+)
2,m amplitudes by projecting out

the f -wave orbital components of Eq. (68) to obtain[
4x̄3 + (

ω2 − 12
5 |�|2)]F

(+)
2,m + 12

5 |�|2 D
(+)
2,m

= +iω(2�) G2,m, (105)

where x̄3 ≡ x3/λ̄(ω). Note that we have used the identity p̂ ·
�G(p̂) = p̂ · �G(1)(p̂) + p̂ · �G(3)(p̂) ≡ 0 to express the source
term in Eq. (105) in terms of the p-wave, J = 2 component of
�G(p̂), i.e., G(3,2)

γ i = −G
(1,2)
γ i . Eliminating G2,m from Eqs. (104)

and (105) gives the f -wave, J c = 2+ amplitude in terms of
the corresponding dominant p-wave amplitude

[4x̄3 + (ω2 − 4|�|2)] F
(+)
2,m = −(ω2 − 4|�|2) D

(+)
2,m. (106)

7However, the process of two-phonon absorption and excitation of
the J c = 0+ is not forbidden.

The polarization corrections to the J c = 2+ Higgs mass are
obtained from Eqs. (104), (106), and (A26) in the limit q = 0,
which can be expressed as

��(+)(p̂; ω)

= �h(+)(p̂; ω) +
∫

d�p̂′

4π
Fa(p̂,p̂′)

×
{
−λ(ω)

( ��(+)(p̂′; ω) − p̂′[p̂′ · ��(+)(p̂′; ω)]
)

−
(

ω

2�

)
λ(ω) p̂′ × �d (+)(p̂′; ω)

}
, (107)

where �h(+)(p̂; ω) represents the external field coupling to
fermionic excitations via the magnetic moment of the 3He
nucleus, and Fa(p̂,p̂′) represents the spin-dependent exchange
interaction in 3He [cf. Eq. (23), the paragraph preceding
Eq. (25), and Eq. (A28)]. Note that Eq. (A28) has been inverted
and used to express ��(+)(p̂; ω) in terms of the Landau interac-
tion Fa(p̂,p̂′). For c = +1 bosonic excitations, the coupling
of the fermionic self-energy fluctuations is determined by the
p-wave, J = 0,1,2 components of �G(+)(p̂; ω) in Eq. (96).
Fluctuations of G

(1)
γ i with J = 0 vanish by symmetry as

�G(+)(p̂; ω) is purely transverse with respect to p̂. Fluctuations
with J = 1 are defined by the � = 0,2 orbital components
of ��(+)(p̂; ω) in Eq. (97), while the J = 2 components are
defined by Eq. (98).

The dynamical equation for G
(1,1)
αi = εαiγ (�(0)

γ − 1
5�(2)

ν:νγ ) is
constructed from the equations for the � = 0 and 2 exchange
fields

(
1 + 2

3
λFa

0

)
�(0)

γ = hγ − i
2

3

(
ω

2�

)
λ Fa

0
1

2
εαβγ D (1,1)

αβ ,

(108)(
1 + 1

15
λFa

2

)
�(2)

ν:νγ = i
1

3

(
ω

2�

)
λ Fa

2
1

2
εαβγ D (1,1)

αβ , (109)

which shows that G
(1,1)
αi couples only to the � = 1, J c = 1+

bosonic modes, thus leading to Eq. (103) for these NG modes.
The fermionic self-energy that couples to the J c = 2+

bosonic modes is determined by the � = 2 components of
the exchange field defined by G

(1,2)
αi in Eq. (98). The equation

of motion for the (2,m) components is then(
1 + 1

5
λFa

2

)
G2,m

= h
(1,2)
2,m − i

(
ω

2�

)
3

25
λ Fa

2 {2F
(+)
2,m − D

(+)
2,m}, (110)

where h
(1,2)
2,m are the components of a generalized, momentum-

dependent, external magnetic field that couples to fermionic
and bosonic excitations with J = 2 via the nuclear
spin. Combining Eqs. (104), (106), and (110) we obtain
the response function for the J c = 2+ Higgs amplitude
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H
(+)
2,m = D

(+)
2,m + F

(+)
2,m:

H
(+)
2,m = −iω(2|�|) h

(1,2)
2,m (ω)(

ω2 − 8
5 |�|2) + λ(ω)(ω2 − 4|�|2)

(
2

25 Fa
2 + (ω/2|�|)2 x−1

3

) . (111)

The renormalized mass of the J c = 2+ Higgs mode is
obtained from the pole of the propagator in Eq. (111); M2+

scales to the the weak-coupling TDGL result for T → T −
c ,

M2+ ≈
√

8

5
�(T )

[
1 + π

4

√
3

5

�(T )

Tc

(
Fa

2

/
5 + x−1

3

)]
, (112)

with the leading-order correction developing rapidly below Tc.
For weak interactions |F s

2 | � 1 and |x−1
3 | � 1, the vacuum

polarization correction at T = 0 can also be calculated
perturbatively:

M2+ ≈
√

8

5
�

[
1 + b

(
Fa

2

/
5 + x−1

3

)]
, (113)

where b = 3
2
√

6
arcsin (

√
2
5 ) ≈ 0.419. Note that the � = 2

exchange interaction Fa
2 is reported by Halperin and Varo-

quaux [51] to vary between Fa
2 ≈ −0.88 at P = 0 bar and

Fa
2 ≈ −0.01 at P = 32 bar. Figure 3 shows the mass of the

J c = 2+ Higgs mode as a function of the the � = 2 exchange
interaction Fa

2 for various values of the f -wave interaction
x−1

3 obtained from numerical solution for the pole of the
propagator H

(+)
2,m in Eq. (111). Repulsive interactions push the

mass above the weak-coupling result. Attractive f -wave and
exchange interactions reduce the mass; the f -wave interaction
is less effective for strong ferromagnetic exchange Fa

2 /5 →
−1, for which M2+ → 0+, as is clear from the equation
for M2+ defined by the pole of Eq. (111). In this limit,
the soft mode is dominated by the Pomeranchuk instability
of the underlying fermionic vacuum. Nevertheless, for fixed
Fa

2 /5 > −1 M2+ → 0+ as Tc3 → Tc (x−1
3 → −∞).

The charge-conjugation parity of the bosonic modes with
the same orbital, spin, and total angular momentum quantum
number is reflected dramatically in the polarization corrections
to the masses of the Higgs modes. The J c = 2− modes couple
to a quadrupolar excitation of the fermionic vacuum, leading
to a mass shift from the interaction F s

2 in the spin-symmetric
particle-hole channel, which is generally repulsive except
possibly near p = 0 bar [51]. By contrast, excitation of the
J c = 2+ modes is coupled to a quadrupolar spin polarization,
and thus has a polarization correction to its mass from the
interaction Fa

2 in the antisymmetric (exchange) particle-hole
channel; this interaction is expected to be attractive at all
pressures. In addition, both J c = 2± Higgs modes couple to
f -wave pairing fluctuations with the same J and parity c.
In this case, the asymmetry in the mass shifts for J c = 2±
originates from (ω/2|�|)2 x−1

3 . Thus, the aysmmetry in the
weak-coupling mass spectrum, i.e.,

√
12/5� versus

√
8/5�,

leads to additional asymmetry in the polarization corrections
from the f -wave interactions in the Cooper channel. These
trends are shown explicitly by the perturbative results in
Eqs. (92) and (113). Figure 4 summarizes the magnitude of
the corrections to the NSR for a range of interactions in the

Landau and Cooper channels. The violation of the NSR onsets
rapidly below Tc, with deviations of order 20%–30% for the
fermionic interactions characteristic of normal 3He.

Excitation of the J c = 2+,m modes typically occurs
through weakly coupled channels at finite wavelength, q =
0, as coupling via an external field with symmetry h

(1,2)
2,m

is not easily realized. Koch and Wölfle showed that the
weak violation of particle-hole symmetry by the normal-state
fermionic vacuum lifts a selection rule that otherwise prohibits
the coupling of the J c = 2+ Higgs modes to density and mass
current fluctuations [58]. Thus, the J c = 2+,m modes can be
excited by density and mass current channels, albeit with a
coupling that is reduced by the factor ζ ≈ kBTc/Ef � 1,
the measure of the asymmetry of the spectrum of particle
and hole excitations of the normal fermionic vacuum at
ε ≈ kBTc [41]. This coupling leads to resonant excitation of the
J c = 2+ Higgs mode by absorption of zero-sound phonons.
Indeed, ultrasound absorption spectroscopy provided the first
detection of the Higgs mode in a BCS condensate [59,60].
The definitive identification of the absorption resonance as the
J c = 2+ Higgs mode was made by Avenel et al. who observed
the fivefold Zeeman splitting of the zero-sound absorption
resonance in an applied magnetic field [61].

Acoustic spectroscopy provides precision measurements
of the mass of the J c = 2+ Higgs mode. The magnitude of
the polarization correction to the the J c = 2+ Higgs mass
for T → 0 is measured to be δM2+ ≈ −0.19 �, as shown
in Fig. 5, indicating that the interactions giving rise to the
mass shift are net attractive. The data are from Ref. [60] for a
pressure of p = 13 bar (yellow diamonds), and from Ref. [61]
for pressures p = 0.8–3.5 bar (red squares). Also shown are
theoretical results for the polarization correction calculated
as a function of temperature. In this case, we assumed the

FIG. 4. Deviation of the Nambu sum from polarization cor-
rections to the the J = 2 Higgs modes of 3He-B for a range of
interactions in both the Landau and Cooper channels.
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FIG. 5. J c = 2+ Higgs mass. The data are for a pressure of p =
13 bar (yellow diamonds) [60] and for p = 0.8–3.5 bar (red squares)
[61]. Theoretical calculations of the mass are for F a

2 = −0.88 and
values of the f -wave interaction in the Cooper channel given in the
legend.

most attractive estimate for the exchange interaction Fa
2 =

−0.88 [51], which accounts for only half of the measured
value of δM2+ . An attractive f -wave interaction x−1

3 ≈ −0.2
in the Cooper channel provides the additional polarization
correction. If we use the weaker value of Fa

2 	 −0.37 reported
by the Helium-Three Calculator [50] for p = 13 bar we ob-
tain a correspondingly stronger attractive f -wave interaction
x−1

3 	 −0.35. An attractive f -wave interaction of similar
magnitude x−1

3 	 −0.33 at p ≈ 4.3 bar is also inferred from
an analysis of acoustic Faraday rotation of transverse sound
that is mediated by the J c = 2− Higgs mode [35,52]. Analysis
of recent acoustic Faraday rotation measurements, outside the
regime of the linear Zeeman splitting of the energy levels
of the J c = 2+,m modes, reports comparable or smaller
values: x−1

3 ≈ −0.4 to x−1
3 ≈ −0.2 [53,62]. A complete and

systematic determination of the relevant interactions in the
Landau and Cooper channels is possible from the combined
measurements of the masses of the J c = 2± modes using
longitudinal and transverse sound spectroscopy, combined
with measurements of the velocities of zero sound, first sound,
and the magnetic susceptibilities in both the normal and
superfluid phases of 3He.

D. Light Higgs modes in the J c = 1+ sector

The J c = 1+ mode amplitudes can be related to the
parameters of the degeneracy space of relative spin and
orbital rotations, i.e., R[ϑn] ∈ SO(3)L–S , where n is the axis
of rotation, defined by polar and azimuthal angles, and a
third variable being angle of rotation ϑ . The angles define
massless NG modes reflecting the spontaneous breaking of
separate symmetries under spin and orbital rotations, i.e..
SO(3)L × SO(3)S . The J c = 1+ multiplet provides a “light
Higgs” extension of the standard model in particle physics
[63]. The light Higgs scenario works as follows: In 3He
separate invariance under spin and orbital rotations is broken
by the nuclear dipole-dipole interaction, which acts as weak
symmetry-breaking perturbation with an energy scale of order
VD ∼ 10−7 K per particle compared to the characteristic

two-body interaction energy of order V ∼ 1 K. The dipolar
energy lifts the degeneracy with respect to separate spin
and orbital rotations, which renders the J c = 1+ multiplet
a triplet of “pseudo-Nambu-Goldstone modes” in which one
or more of the NG modes acquires a mass from the weak
symmetry-breaking field. Long-wavelength excitations of the
axis of rotation n remain gapless; however, excitations of
the rotation angle ϑ acquire a mass gap MLH/h̄ = �B 	
10 kHz � 2�/h̄ 	 100 MHz, where �B is the longitudinal
NMR resonance frequency of 3He-B. An external magnetic
field further lifts the degeneracy of the remaining zero-
mass NG modes which split into an optical magnon with
mass Mopt = h̄γB and a massless acoustic magnon. A direct
detection of the light Higgs boson in 3He-B was recently
achieved by measuring the decay of optical magnons created
by magnetic pumping (a magnon BEC). A sharp threshold
for decay of optical magnons to a pair of light Higgs modes
was observed by tuning the mass of the optical magnons on
resonance, i.e., Mopt = h̄γB � 2MLH = 2h̄�B [63].

VIII. SUMMARY AND OUTLOOK

Mass generation based on spontaneous symmetry breaking
and the introduction of an internal symmetry (particle-hole
symmetry in BCS theory) implies a connection between the
masses of the fermion and boson excitations of the broken
symmetry vacuum state, and a hidden supersymmetry in the
class of BCS-NJL theories [12,19]. The Nambu sum rule,
inspired in part by the bosonic spectrum of 3He-B, however, is
not protected against symmetry-breaking perturbations to the
broken symmetry vacuum state, including polarization of the
vacuum state by excitation of a Higgs boson with symmetry
distinct from that of the vacuum. For the case of 3He-B, we
show that corrections to the weak-coupling BCS theory and
fermionic interactions combined with vacuum polarization by
the Higgs fields, lead to corrections to the masses of the
Higgs modes, and in general a violation of the NSR. Our
results, as well as other effects of weak perturbations like
the nuclear dipolar energy, the Zeeman energy and weak
violations of particle-hole symmetry, highlight the roles of
symmetry-breaking perturbations.

Current research in topological condensed matter addresses
the transport properties and spectrum of fermionic excitations
confined near surfaces, interfaces, and edges of topological
insulators and topological superconductors. Relatively recent
theoretical work has shown how supersymmetry can also
emerge at the boundary of topological superfluids [64]. The
B phase of superfluid 3He is the realization of a three-
dimensional time-reversal invariant topological superfluid,
with a spectrum of helical Majorana fermions confined on
any bounding surface. Thus, a frontier in topological quantum
fluids is the role of confinement as a symmetry-breaking
perturbation on the bosonic spectrum of confined 3He-B, and
the possible signatures of the surface spectrum of Majorana
fermions in the bosonic modes of confined 3He-B. New studies
of the effects of confinement and symmetry-breaking pertur-
bations on both the bulk and surface bosonic and fermionic
excitations of topological superfluids will hopefully shed
new light on the connection between spontaneous symmetry
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breaking, hidden supersymmetry, and topology of the broken
symmetry vacuum state in topological superfluids.
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APPENDIX

1. TDGL effective potentials

The potentials that enter the TDGL functional that deter-
mine the masses of the bosonic modes are given by up =
�2 ūp:

ū1 = 4
3 Tr{D}Tr{D∗} + Tr{DD tr} + Tr{DD tr}∗, (A1)

ū2 = 2 Tr{DD †} + 1
3 (Tr{D} + Tr{D∗})2, (A2)

ū3 = 1
3 (Tr{DD tr} + Tr{DD tr}∗)

+ 2
3 (Tr{DD †} + Tr{DD∗}), (A3)

ū4 = 4
3 Tr{DD †} + 1

3 (Tr{D2} + Tr{D2}∗), (A4)

ū5 = 1
3 (Tr{DD †} + Tr{DD †}∗)

+ 1
3 (Tr{D trD} + Tr{D trD}∗) + 2

3 Tr{DD∗}. (A5)

Note that these potentials are defined relative to the BW ground
state, and thus invariant only under SO(3)J × T .

2. Symmetry relations

The components of the 4 × 4 Nambu propagator are related
by fundamental symmetries with respect to (i) permutation
exchange symmetry and (ii) conjugation symmetry. These
symmetries imply the following relations between the com-
ponents of the quasiclassical propagator.

a. Exchange symmetry

g′(p̂,εn; q,ωm) = +g(−p̂,−εn; q,ωm), (A6)

�g′(p̂,εn; q,ωm) = +�g(−p̂,−εn; q,ωm), (A7)

f (p̂,εn; q,ωm) = +f (−p̂,−εn; q,ωm), (A8)

�f (p̂,εn; q,ωm) = − �f (−p̂,−εn; q,ωm), (A9)

as well as for the mean-field self-energies

�′(p̂; q,ωm) = +�(−p̂; q,ωm), (A10)

��′(p̂; q,ωm) = + ��(−p̂; q,ωm), (A11)

d(p̂; q,ωm) = +d(−p̂; q,ωm), (A12)

�d(p̂; q,ωm) = −�d(−p̂; q,ωm). (A13)

Note that Eqs. (A12) and (A13) reflect the fact that spin-singlet
Cooper pairs have even parity, while spin-triplet pairs are odd
parity.

b. Conjugation symmetry

The conjugation symmetry relations follow from complex
conjugation of the two-point functions

g′(p̂,εn; q,ωm) = +g(−p̂,εn; −q,ωm)∗, (A14)

�g′(p̂,εn; q,ωm) = +�g(−p̂,εn; −q,ωm)∗, (A15)

f ′(p̂,εn; q,ωm) = +f (−p̂,εn; −q,ωm)∗, (A16)

�f ′(p̂,εn; q,ωm) = − �f (−p̂,εn; −q,ωm)∗, (A17)

�′(p̂; q,ωm) = +�(−p̂; −q,ωm)∗, (A18)

��′(p̂; q,ωm) = + ��(−p̂; −q,ωm)∗, (A19)

d ′(p̂; q,ωm) = +d(−p̂; −q,ωm)∗, (A20)

�d ′(p̂; q,ωm) = −�d(−p̂; −q,ωm)∗. (A21)

3. Dynamical equations

�dg
(−)

(p̂; q,ω) =
∫

d�p′

4π
V (1)(p̂,p̂′)

{[
1

2
γ + 1

4
[ω2 − η′2 − 4| ��(p̂′)|2]λ̄(p̂′)

]
�d (−)(p̂′) + λ̄(p̂′) ��(p̂′) [ ��(p̂′) · �d (−)(p̂′)]

− 1

2
η′ λ̄(p̂′) ��(p̂′) �(−)(p̂′) − 1

2
ω λ̄(p̂′) ��(p̂′) �(+)(p̂′)

}
, (A22)

�d (+)(p̂; q,ω) =
∫

d�p′

4π
V (1)(p̂,p̂′)

{[
1

2
γ + 1

4
(ω2 − η′2)λ̄(p̂′)

]
�d (+)(p̂′) − λ̄(p̂′) ��(p̂′)[ ��(p̂′) · �d (+)(p̂′)]

+ i

2
η′ λ̄(p̂′) ��(p̂′) × ��(−)(p̂′) + i

2
ω λ̄(p̂′) ��(p̂′) × ��(+)(p̂′)

}
, (A23)
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�(+)(p̂; q,ω) = �
(+)
ext (p̂) +

∫
d�p′

4π
As(p̂,p̂′)

[(
ω2

ω2 − η′2

)
(1 − λ(p̂′)) �(+)(p̂′)

+
(

ωη′

ω2 − η′2

)
(1 − λ(p̂′))�(−)(p̂′) + 1

2
ω λ̄(p̂′) ��(p̂′) · �d (−)(p̂′)

]
, (A24)

�(−)(p̂; q,ω) = �
(−)
ext (p̂) +

∫
d�p′

4π
As(p̂,p̂′)

[(
ωη′

ω2 − η′2

)
(1 − λ(p̂′))�(+)(p̂′)

+
{

1 +
(

η′2

ω2 − η′2

)
(1 − λ(p̂′))

}
�(−)(p̂′) + 1

2
η′ λ̄(p̂′) ��(p̂′) · �d (−)(p̂′)

]
, (A25)

��(+)(p̂; q,ω) = ��(+)
ext (p̂) +

∫
d�p′

4π
Aa(p̂,p̂′)

[(
ω2

ω2 − η′2

)
(1 − λ(p̂′)) ��(+)(p̂′) + λ̄(p̂′)( ��(p̂′) · ��(+)(p̂′)) ��(p̂′)

+
(

ωη′

ω2 − η′2

)
(1 − λ(p̂′)) ��(−)(p̂′) − i

2
ω λ̄(p̂′) ��(p̂′) × �d (+)(p̂′)

]
, (A26)

��(−)(p̂; q,ω) = ��(−)
ext (p̂) +

∫
d�p′

4π
Aa(p̂,p̂′)

[{
1 +

(
η′2

ω2 − η′2

)
(1 − λ(p̂′))

}
��(−)(p̂′) − λ̄(p̂′)( ��(p̂′) · ��(−)(p̂′)) ��(p̂′)

+
(

ωη′

ω2 − η′2

)
(1 − λ(p̂′)) ��(+)(p̂′) − i

2
η′ λ̄(p̂′) ��(p̂′) × �d (+)(p̂′)

]
, (A27)

where η′ ≡ vp̂′ · q and the Tsuneto function, λ(p̂′) ≡
λ(η′,ω; |�(p̂′)|), for q = 0 is given by Eq. (62) of Ref. [40].
The particle-particle interaction vertex in the spin-triplet chan-
nel is parametrized by an interaction parameter v� for each odd-
parity angular momentum channel, as in Eq. (33). In the case
of the particle-hole interaction vertex, the functions As,a(p̂,p̂′)
are the forward scattering amplitudes for spin-independent
(As) and spin-exchange (Aa) scattering of quasiparticles with
momenta near the Fermi surface. These amplitudes are related

to the the Landau interactions F s,a(p̂,p̂′) by the integral
equation

As,a(p̂,p̂′) = F s,a(p̂,p̂′) −
∫

d�p′′

4π
F s,a(p̂,p̂′′) As,a(p̂′′,p̂′).

(A28)

The standard parametrization of the Landau interaction func-
tion in terms of the Landau parameters is F s,a(p̂,p̂′) =∑

��0 F
s,a
� P�(p̂ · p̂′).
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