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4π Josephson currents in junctions of hybridized multiband superconductors
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We study two-band one-dimensional superconducting chains of spinless fermions with inter- and intraband
pairing. These bands hybridize and, depending on the relative angular momentum of their orbitals, the
hybridization can be symmetric or antisymmetric. The self-consistent competition between intra- and interband
superconductivity and how it is affected by the symmetry of the hybridization is investigated. In the case of
antisymmetric hybridization the intra- and interband pairings do not coexist, while in the symmetric case they do
coexist and the interband pairing is shown to be dominant. The topological properties of the model are obtained
through the topological invariant winding number and the presence of edge states. We find the existence of a
topological phase due to the interband superconductivity and induced by symmetric hybridization. In this case
we find a characteristic 4π -periodic Josephson current. In the case of antisymmetric hybridization we also find a
4π -periodic Josephson current in the gapless interband superconducting phase, recently identified to be of Weyl
type.
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I. INTRODUCTION

Traditional models of topological superconductors only
consider a single band even though this is usually a sim-
plification. At the single-band level it is well known that
the single-band Kitaev model [1–3]—antisymmetric pairs of
spinless fermions in one dimension (1D) with an effective
spin triplet pairing—is the simplest model that exhibits a
topological phase with Majorana modes in the ends of a
p-wave chain, depending on the state of the system. In the
trivial phase, the chain is superconducting with no end states
[3]. Triplet superconductivity is, however, rare in nature. Thus,
the pursuit of alternatives to create triplet superconductivity
leads to engineering a topological insulating chain (made
with strong spin-orbit material) in proximity of a normal
superconductor and in the presence of an applied magnetic
field [4–9]. Another proposal for an effective one-dimensional
model that considered placing magnetic impurities on top of
a conventional or triplet superconductor [10–12] increased
the interest in the realization of an effective one-dimensional
system with topological properties [13–15]. Additionally,
triplet pairing has been found to be physically realizable in
some systems. In Ref. [16] it was shown that odd-parity
superconductivity occurs in superconducting (SC) multilayers,
where this state is a symmetry-protected topological state. In
addition, triplet pairing is found in 3He [17] and in Sr2RuO4

[18], as well as in some rare noncentrosymmetric systems [19].
Triplet pairing was also studied in the context of an extended
Hubbard chain [20].

Multiband models for the superconducting state and their
topological properties have also received increasing attention
recently [16,21–25]. This consideration has been important
to explain many important effects in topological systems. For
instance, topological semimetals [26] and chiral superfluid-
ity [27] have been predicted in multiorbital models where
orbitals with different symmetries interact. Two component
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fermionic systems with occupied s and p orbital states were
shown to have a rich phase diagram in both one and two
dimensions [24]. A general connection between multiband and
multicomponent superconductivity has also been made [28].
Topological properties in three-band models were also studied
[29–32]. The interest in multiband bands is also justified, for
instance, in studies of three-dimensional CuxBi2Se3 which
has two orbitals per lattice cell. This leads, in general, to
multipocket Fermi surfaces that in the case of odd numbers
may be topological [33–35]. Another proposed example of
a multiband superconductor with triplet p + ip pairing is
Sr2RuO4, referred to above.

An interesting example of a multiband system with nontriv-
ial edge states are the zigzag edges of monolayer transition-
metal dichalcogenides for which it has been proposed that
under appropriate conditions, such as due to the presence
of intrinsic spin-orbit coupling, proximity coupled to a
conventional superconductor and an in-plane magnetic field,
the edges display Majorana edge states [36–38]. Under these
conditions the system is equivalent to the Kitaev chain that
in the simplest case reduces to only one band in the vicinity
of the chemical potential. More complex situations may be
explored that involve the presence of more bands (a minimal
model considers three orbitals). A strictly one-dimensional
multiband model that has a topological nature is the Su-
Schrieffer-Heeger model for polyacetylene [39] that, when
coupled to a triplet superconductor (such as, for instance,
Sr2RuO4), leads to an interesting problem of a dimerized
superconductor (two bands) with different types of edge
states. One regime is equivalent to the Kitaev model (with
one edge mode at each edge) and another regime displays
two edge modes (winding number two) [40], which are,
however, of a fermionic type and not of Majorana type. Other
possible realizations of the model are engineering the Rashba
spin-orbit interaction by placing micromagnets [41–47] or
quantum-dot arrays [48]. The realistic presence of longer
range hoppings or pairings in a Kitaev-like model leads to
a multiplicity of edge Majorana modes and complex phase
diagrams [49–52]. In general, this problem is equivalent to
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a multiband system. Experimentally this can be achieved
considering two or more magnetic chains superimposed on
a two-dimensional conventional superconductor [11,53]. For
instance, considering two chains is equivalent to a two-band
model.

Motivated by the recently discussed topological characters
of multiband models [16,24], and based on the simplest model
that describes the topological properties of a chain of spinless
fermions, we study the Kitaev model with two orbital bands.
We include and discuss inter- and intraband superconducting
couplings. A characteristic feature of multiband systems is the
hybridization between the different orbitals. This arises from
the superposition of the wave functions of these orbitals in dif-
ferent sites. It can have distinct symmetry properties depending
on the orbitals involved. If this mixing involves orbitals with
angular momenta that differ by an odd number, hybridization
turns out to be antisymmetric, i.e., in real space we have
Vij = −Vji or in momentum, k space, V (−k) = −V (k).
Otherwise hybridization is symmetric respecting inversion
symmetry in different sites [54].

The bulk-edge correspondence guarantees that in the
topological phases there are subgap edge states. In the case
of a topological superconductor, zero-energy Majorana modes
are predicted to appear and great effort has been devoted to
prove their existence. Methods that provide signatures of their
presence have been proposed and experimentally tested via,
for instance, tunneling experiments [55,56], interferometry
[3], point contacts using the Andreev reflection [57] through
the detection of zero-bias peaks [58], using the quantum
waveguide theory [59] which gives the correct bulk-edge cor-
respondence [35], and fractional Josephson currents [1,3,60].
Also signatures of the Majorana states may be found in
bulk measurements such as the imaginary part of frequency-
dependent Hall conductance [61] and the dc Hall conductivity
itself [62].

The existence of topological phases is detected in this
work numerically calculating the winding number and by
showing the existence of edge states at the ends of the chain.
In addition, we calculate the Josephson current across the
junction between two superconductors to identify regimes
where the periodicity of the Josephson current on the phase
differences between the superconductors (original proposal
by Kitaev [1]) or the equivalent situation of a superconducting
ring threaded by a magnetic flux and interrupted by an insulator
changes from the usual value of 2π to a 4π value [63]. As
shown before [1,63,63–73], the existence of the Majoranas
at the edges allows tunneling of a single fermion at zero
bias leading to a 4π -periodic current in contrast to the usual
Cooper pair transport across the junction which leads to the
usual 2π -periodic current. Experimental realization to detect a
4π -periodic Josephson junction has been presented in Ref. [74]
and an application to multiband systems has recently been
presented in Ref. [75].

II. MODEL AND SELF-CONSISTENT CALCULATIONS

We consider a two-band superconductor with hybridization
and triplet pairing in 1D, i.e., a chain of sites supporting two
orbitals; say, orbitals A and B. The pairing between fermions
may exist on different bands (interband) or in each band

(intraband) and are always of p-wave type, in the sense that
pairs of spinless fermions are spatially antisymmetric. The
problem can be viewed as a generalization of the Kitaev model
to two orbitals. We also have the hybridization term between
the orbitals A and B that may be symmetric or antisymmetric.
The simplest Hamiltonian in momentum space that describes
those types of superconductivity and hybridization may be
written as H = H0 + Hh + HSC where the kinetic part is

H0 =
∑

k

{(
εA
k − μ̄

)
a
†
kak + (

εB
k − μ̄

)
b
†
kbk

}
, (1)

where a
†
k (b†k) is the creation operator of spinless fermion

at A (B) band with momentum k. Also, μ̄ is the chemical
potential and εA

k ,εB
k are the band hopping energies. The

hybridization term is

Hh =
∑

k

{V (k)a†
kbk − V (−k)b−ka

†
−k + H.c.}, (2)

where V (k) = 2iVas sin (k) ≡ Vas,k if the hybridization is anti-
symmetric or V (k) = 2Vs cos (k) ≡ Vs,k if the hybridization is
symmetric, and V is the hybridization amplitude. Finally, the
mean-field superconducting contribution to the Hamiltonian is

HSC =
∑

k

{�ka
†
kb

†
−k + �kb

†
ka

†
−k

+�A,ka
†
ka

†
−k + �B,kb

†
kb

†
−k + H.c.}, (3)

with �k = i� sin (k) where � is the superconducting inter-
band pairing amplitude, and �A,B,k = i�(A,B) sin (k) where
�A and �B are the superconducting intraband pairing am-
plitudes. We could also include a superconducting term
that changes Cooper pairs between different orbitals, which
in terms of two particles interaction may be written as∑

k,k′ gJ (k,k′)(b†kb
†
−ka−k′ak′ + a

†
ka

†
−kb−k′bk′), where gJ is the

interaction strength. Without fluctuation, i.e., in the BCS
theory, this term appears as an additive parameter to �A and
�B , thus besides enhancing the intraband superconductivity it
does not change qualitatively the topological properties of the
Hamiltonian considered here.

In the more compact Bogoliubov–de Gennes (BdG) form,
the Hamiltonian may be written in the Nambu representation
[76] as H = ∑

k C†
kHkCk, where C†

k = (a†
kb

†
ka−kb−k) and

Hk = −μ�z0 − εk�zz + �ki�yx + �A,k
1
2 (i�y0 + i�yz)

+�B,k
1
2 (i�y0 − i�yz) + VkI, (4)

where �ij = τi ⊗ sj , ∀ i,j = 0,x,y,z; τ and s are the Pauli
matrices acting on particle-hole and subband spaces, respec-
tively, and s0 = τ0 are the 2×2 identity matrices. Also, for
convenience, we have defined −μ = (1/2)(εA

k + εB
k ) − μ̄ as

the chemical potential relative to the hopping energies of the
bands and the hopping energy (1/2)(εA

k − εB
k ) = 2t cos (k) ≡

εk as the difference between the bands energies, where t is the
hopping amplitude. With respect to the Hamiltonian param-
eters: Vk = Vas,ki�zy if the hybridization is antisymmetric or
Vk = Vs,k�zx if the hybridization is symmetric.

The Hamiltonian defined in Eq. (4) can be solved using BdG
transformations. The self-consistent solution implies that the
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FIG. 1. The left panel shows the phase diagram for antisymmetric
hybridization, for different values of chemical potential μ and
hybridization Vas, both normalized by the hopping amplitude t . Phase
I is a gapless interband superconducting phase. Phase II is a gapped
intraband superconducting phase. Phase III is a topological insulating
phase. Phase IVa shows a trivial gapped interband SC. Phase IVb is
a trivial insulating phase. Finally, Phase V is a metallic phase. The
phase diagram for the symmetric case is shown in the right panel.
Phase I carries both types of pairings and has nontrivial topological
properties. Phase IIa is a gapped superconducting phase also with
both inter- and intraband pairings, but trivial topological properties.
Phase IIb is a normal insulator. Both phase diagrams are symmetric
around μ = 0 and we show the results for g/2 = gA = gB = 1.7. The
solid lines represent a gap closing, while the dashed lines represent a
phase separation without closing the gap.

pairings can be obtained using

� = g
1

L

∑
k

i sin(k)(〈akb−k〉 + 〈bka−k〉), (5)

�A = gA

2

L

∑
k

i sin(k)〈aka−k〉, (6)

�B = gB

2

L

∑
k

i sin(k)〈bkb−k〉, (7)

where g, gA, and gB are the strength of the interactions between
fermions in different orbitals, in orbitals A and in orbitals B,
respectively.

Phase diagrams

In Fig. 1 we show the phase diagrams for the symmetric and
antisymmetric hybridization. The latter is included for com-
parison since a very similar diagram was reported in Ref. [77].
The solid lines represent a gap closing, while the dashed
lines represent a phase separation without closing the gap.
As we can see, the consideration of interband and intraband
superconductivity and (anti-)symmetric hybridization results
in rich phase diagrams.

In the left panel, for antisymmetric hybridization, phase I
is a gapless superconducting phase, driven by the interband
coupling, and it was shown [77] to behave like a Weyl
superconductor. Phase II is a two-band superconductor with
only intraband couplings. Phase III is a topological insulator.
Phase IVa shows gapped superconductivity and represents the
strong interband coupling superconducting phase. Phase IVb
is a trivial insulator. Finally, phase V is a normal metallic
phase. All those phases are symmetric around μ = 0. Since

the intra- and interband pairings do not coexist, the phases
with no intraband pairing are similar to the results previously
obtained [77]. The main difference results from the appearance
of the intraband pairing in some regions of the phase diagram.

The right panel is for the symmetric case. Phases I and IIa
are gapped superconducting phases, with the coexistence of
inter- and intraband couplings, but dominated by the interband
one. Phase IIb is an insulating phase and there is no SC.
All those phases are symmetric around μ = 0. The more
interesting phase is phase I, which allows both types of
couplings and shows nontrivial topological properties. This
phase is characterized by localized edge states and finite
winding number, as will be shown in the next section.

Consider the case of symmetric hybridization (Vs), when
the orbitals angular momenta have equal parities, like orbitals s

and d. In Fig. 1 we show the results for g/2 = gA = gB = 1.7.
First, we notice that the intraband SC distinguishes between
different bands, since there is a change of sign between them.
Unlike the antisymmetric case, here there is a coexistence
of inter- and intraband SC. Remarkably, the interband has
the larger order parameter for all parameter regions. In
general, this indicates that the interband SC has a higher
critical temperature, which turns out to be responsible for
the superconductivity appearing in the material. Note that
symmetric hybridization is responsible for the emergence of
intraband SC. Very strong symmetric hybridization eventually
destroys superconductivity.

The strength of the coupling g itself only changes the su-
perconducting amplitude of the SC phases (inter- or intraband
ones), thus its choice does not qualitatively change the results
presented. It is interesting to point out that the self-consistent
results for the superconducting order parameters may converge
to different results depending on the initial guesses. This is a
consequence of the first-order nature of the quantum phase
transitions between the different ground states. Therefore it
is necessary to calculate the energy of the different states to
obtain the true ground state for a given set of parameters.

III. TOPOLOGICAL PROPERTIES

A. Winding number in the BDI class

The Hamiltonian of Eq. (4) has particle-hole symmetry
and simplified time-reversal symmetry for spinless fermions
[78]. In the presence of both symmetries, the Hamiltonian
belongs to the BDI class of topological systems, and the
one dimensionality guarantees that the space of the quantum
ground state is partitioned into topological sectors labeled by
an integer (Z) number [78,79].

Proceeding with the standard calculation of the winding
number [79,80], the chiral operator �xo brings the Hamiltonian
to the block off-diagonal form

R−1HkR =
(

0 q(k)
q†(k) 0

)
, (8)

where R = �xx − �zx . Writing a generic Hamiltonian in the
form

Hk =
∑
i,j

hij�ij , i,j = 0,x,y,z, (9)
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whose coefficients hij may be extracted from any generic
Hamiltonian H through hij = 1

4 Tr(�ijH), if we apply the
particle-hole symmetry to Eq. (9) as Hk = −�x0HT

−k�x0 and
proceed with the block off-diagonal calculations described
above we find that

q(k) =
∑

j

cj (hzj + ihyj )σj , j = 0,x,y,z, (10)

where c0 = cx = +1 and cy = cz = −1, σx,y,z are the Pauli
matrices, and σ0 is the 2×2 identity matrix.

The winding number, W , is defined as the number of
revolutions of det[q(k)] = m1(k) + im2(k) around the origin
in the complex plane when k changes from −π to π ,

W = 1

2π

∫ π

−π

∂θ (k)

∂k
dk, (11)

with

θ (k) = arg det[q(k)] = tan−1 m2(k)

m1(k)
. (12)

For the generic case considered above we have that

m1(k) =
∑

j

dj

(
h2

zj − h2
yj

)
(13a)

and

m2(k) = −i
∑

j

dj (2hzjhyj ), (13b)

where d0 = +1 and dx,y,z = −1.
Results. The topological number calculations to the anti-

symmetric case are discussed in Ref. [77]. If we compare
Eq. (4)—with symmetric hybridization Vs,k—and Eqs. (13)
we have m1(k) = μ2 − �2

k − �2
0,k − V 2

s,k − ε2
k and m2(k) =

−2(Vs,k�k + εk�0,k). We have considered the case of �B =
−�A = �0 which came from the self-consistent results. This
suggests that the symmetric hybridization may induce a
topological phase, since we have nonvanishing m2 even zero
chemical potential. To be sure that the phase is topological
we must calculate the winding number itself, or see if
the parametric plot of m̄1(k) and m̄2(k) contains the origin
when k ∈ [−π,π ]. The results for the winding number and
the parametric plot are shown in Fig. 2 for the parameters
Vs = 1.2, μ = −1.04. This figure shows that the parametric
plot wraps the origin twice; it means that the winding number
in this case is 2, W = 2. The results for the winding number
clearly show the topological phase, induced by symmetric
hybridization, and dominated by interband superconductivity
for small values of the chemical potential that grows as the
hybridization, Vs , grows.

B. Edge states in a finite chain

In order to find the energy spectrum of a finite chain
of fermions through the BdG transformation we write the
Hamiltonian, Eq. (4), transformed to real space, in the form

H = C†HC, (14)

FIG. 2. In the left panel we show the winding number calculated
from the self-consistent results for symmetric hybridization, over the
phase space of parameters. The red line in Vs = 0 highlights the fact
that the system is gapless in that region and W = 0. In the right panels
we show the normalized parametric plot of the real and imaginary
parts of det[q(k)]. The number of times det[q(k)] wraps the origin is
the winding number and is illustrated in the right side.

where

C = (a1 b1 a
†
1 b

†
1 · · · aN bN a

†
N b

†
N

)
T

(15)

and the operators a
†
i (ai) and b

†
i (bi) create (annihilate) a

fermion in the orbitals A and B, respectively, at position i

in the chain. The matrix H is defined as

H =

⎛
⎜⎝
H11 · · · H1N

...
. . .

...
HN1 · · · HNN

⎞
⎟⎠, (16)

FIG. 3. Here we show the energy spectrum of the self-consistent
results, for two fixed values of the chemical potential and increasing
symmetric hybridization [μ = 0 on (a) and μ = −1.4 on (b)].
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FIG. 4. Schematic figure illustrating the 1D superconducting ring
with a Josephson junction.

and is comprised by the following (4×4) interaction matrices:

Hr,r = −μ�z0,

Hr,r+1 = −t�zz − i
�

2
�yx − i

�0

2
�y0 + V (r + 1),

Hr,r−1 = −t�zz + i
�

2
�yx + i

�0

2
�y0 + V (r − 1),

Hr,r ′ = 0 ∀ r ′ 	= r, r + 1 or r − 1, (17)

where V (r + 1) = −V (r − 1) = −i V
2 �zy for antisymmetric

hybridization, and V (r + 1) = V (r − 1) = V
2 �zx for symmet-

ric hybridization.

Results. Since we have defined the topological region of the
parameters, we may analyze the zero-energy modes explicitly
through the energy spectrum of a finite chain. Similar results
are shown in Ref. [77], then we focus here on symmetric
hybridization. We have calculated the energy spectrum for
a chain of L = 100 sites, therefore we get 4L energies
for the spectrum. We have checked that this size is large
enough to prevent finite size effects. We analyze the energy
spectrum for two fixed values of chemical potential, μ = 0 and
μ = −1.4, and increase the hybridization according to the
self-consistent solution of Fig. 1(b). The results are shown in
Fig. 3. What we immediately see is that the zero-energy states
are robust, i.e., even when μ is nonzero they are present, which
characterizes the zero-energy modes in the superconducting
phase. We notice that those states are fourfold degenerated. We
have checked that they have wave functions that are localized
exponentially close to the edges if the system is large enough.

IV. 4π JOSEPHSON EFFECT

In the last part of previous section we have considered an
open chain, i.e., there was no connection between sites 1 and N .
In terms of Eq. (17) we have HN,1 = H1,N = 0. Now we may
think of a chain as a ring with a Josephson junction coupling
the ends (see Fig. 4). An extra hopping term t ′ couples the end
point of the ring to the first point via some insulating junction.
If a uniform magnetic field (�) flows through this ring, its
effect may be captured by a Peierls substitution in the extra
hopping term, t ′ [81]. Thus, the Josephson junction may be
represented by the following boundary conditions:

HN,1 =H∗
1,N =

⎛
⎜⎜⎝

−e−iφ/2t ′ 0 0 0
0 e−iφ/2t ′ 0 0
0 0 eiφ/2t ′ 0
0 0 0 −eiφ/2t ′

⎞
⎟⎟⎠,

(18)

FIG. 5. Results for antisymmetric hybridization as we vary the tunneling phase φ: (i) The first row shows the excitation spectra that preserve
the parity of the superconductor. (ii) The second row shows the Josephson current flowing through the Josephson junction. Here we have used
L = 250 and t ′ = 0.1.
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FIG. 6. Results for the case of the symmetric hybridization as we vary the tunneling phase φ: (i) The first row shows the excitation spectrum
that preserves the parity of the superconductor. (ii) The second row shows the Josephson current through the Josephson junction. Here we have
used L = 150 and t ′ = 0.1.

where the superconducting phase difference φ across the
junction is related to the magnetic flux through the ring by
φ = 2π�/�0, and �0 = h/2e is the superconducting flux
quantum. Notice that t ′ is a tunneling amplitude inversely
proportional to a barrier amplitude, across the junction. As
mentioned above, this is equivalent to the original proposal of
the Josephson junction between two different superconductors
with different pairing phases also separated by some tunneling
amplitude across an insulator (or metal).

Results. We will analyze the topological properties of the
system via a Josephson junction scheme (Fig. 4). We start
looking to the excitation spectrum (bogoliubons) during two
pumps for each superconducting phase in the phase diagram.

The antisymmetric case has three types of superconducting
phases: intraband gapped SC, interband gapped SC, and
interband gapless SC, as shown in Fig. 1(a). Both gapped
superconducting phases (II and IVa) show similar excitation
spectra and their typical bogoliubons that preserve the ground-
state parity are shown in Fig. 5(a). As expected, there are no
level crossings in the excitation spectrum and the current is 2π

periodic as we can see in Fig. 5(a) for the case of region
IVa. In phase I, even though we have no gap in the bulk
spectrum of an infinite system, it is still possible to calculate
the Josephson current in a finite one. The junction itself opens
up a small gap in the spectrum if L is not too large and t ′
is not too strong. Of course, in the limit L → ∞ the gap
closes, but if the tunneling t ′ is too large (or the barrier too
small) the junction just couples both ends analogously to a
periodic boundary condition (i.e., infinite system). Thus, a
typical excitation spectrum for very small energies in the gap
generated by the coupling across the junction (positive and
negative excitation) is shown in Figs. 5(b) and 5(c).

Even though Figs. 5(b) and 5(c) show no level crossings
during the pumps, we may proceed with the derivative of the
ground-state energy respective to the flux φ and obtain the
Josephson current. The results are shown in Figs. 5(e) and 5(f)

for two values of the chemical potential. Clearly, both figures
exhibit 4π -periodic Josephson current, even without zero-
energy level crossings revealing in some sense the hidden
topological nature of this Weyl phase.

The results for the symmetric case are shown in Fig. 6,
where the first row shows Fig. 6(a) for the trivial phase IIa,
whereas Figs. 6(b) and 6(c) are for the topological phase I for
two values of the chemical potential. The second row of Fig. 6
shows the current flowing through the junction. We clearly
see that the current has a periodicity of 2π (one pump) in the
trivial phase, Fig. 6(d). On the other hand, the periodicity
of the Josephson currents in Figs. 6(e) and 6(f) are 4π

(two pumps), characterizing the topological superconducting
phase and providing alternative evidence for the presence of
Majorana states.

V. CONCLUSIONS

In this paper we have studied a model of a p wave,
one-dimensional, multiband superconductor. This represents
a generalization of the single-band model for odd-parity
superconductivity that gives rise to a much richer phase
diagram with a variety of quantum phase transitions. The
odd-parity superconductivity is preserved in this extension,
but interband superconductivity is now present in addition to
the intraband ones. The presence of two bands in our model
allows us to include hybridization, increasing the space of
parameters. We have considered symmetric and antisymmetric
hybridizations. Both are permitted, depending on the parities
we choose for the angular momenta of the two orbitals.

We have calculated the self-consistent solutions for the
inter- and intraband superconducting order parameters as
functions of the chemical potential and the strength of the
symmetric or antisymmetric hybridization. The self-consistent
calculation of the order parameters allows one to obtain
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the T = 0 phase diagram of the system. When increas-
ing antisymmetric hybridization, both intra- and interband
superconductivity emerge in the phase diagram, but they
compete and exclude one another for different values of band
filling. On the other hand, when increasing the symmetric
hybridization, both types of superconductivity are present
and they coexist. An interesting result is that interband
superconductivity has the highest value of order parameter,
indicating that it has the higher critical temperature and
makes it responsible for the superconductivity appearing in
the system.

According to a general approach for obtaining the winding
number of a system described by 4×4 matrices, a dominant
interband coupling with symmetric hybridization between
bands induces a topological superconducting phase. In order
to further clarify our results concerning the nature of the
topological phases and their end states, we have analyzed the
energy spectrum of a finite system.

In order to provide further evidence for the presence of
edge Majorana states we have shown that in the topological
phases one finds a 4π -periodic (fractional) Josephson current

as one changes the magnetic flux across a ring composed
of the superconductor with an insulator inserted between
its ends. The result is consistent with the results for the
winding number and edge states for the topological phase
in the case of symmetric hybridization. In addition, we also
found the same 4π -periodic Josephson current in the hidden
topological phase identified previously as Weyl type in the
case of antisymmetric hybridization.

As a final note, we highlight that symmetric hybridization in
addition to odd-parity interband superconductivity stabilizes
a topological nontrivial phase, which presents localized states
at the ends of the chain.
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