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Fathoming interplay between symmetry and topology of many-electron wave functions has deepened our
understanding of quantum many-body systems, particularly after the discovery of topological insulators. Topology
of electron wave functions often enforces and protects emergent gapless excitation, and symmetry is intrinsically
tied to the topological protection of the excitations. Namely, unless the symmetry is broken, the topological
nature of the excitations is intact. We show intriguing phenomena of interplay between symmetry and topology
in three-dimensional topological phase transitions associated with line-nodal superconductors. More specifically,
we discover an exotic universality class out of topological line-nodal superconductors. The order parameter
of broken symmetries is strongly correlated with underlying line-nodal fermions, and this gives rise to a large
anomalous dimension in sharp contrast to that of the Landau-Ginzburg theory. Remarkably, hyperscaling violation
and emergent relativistic scaling appear in spite of the presence of nonrelativistic fermionic excitation. We also
propose characteristic experimental signatures around the phase transitions, for example, a linear phase boundary
in a temperature-tuning parameter phase diagram, and discuss the implication of recent experiments in pnictides
and heavy-fermion systems.

DOI: 10.1103/PhysRevB.95.094502

I. INTRODUCTION

Superconductivity is one of the most intriguing quantum
many-body effects in condensed-matter systems: Electrons
form Cooper pairs whose Bose-Einstein condensation be-
comes an impetus of the striking characteristics of super-
conductors (SCs), for example, the Meissner effect and zero
resistivity [1]. The pair formation suppresses gapless fermionic
excitation, and only the superconducting order parameter be-
comes important in conventional SCs. However, in unconven-
tional SCs, fermionic excitation is not fully suppressed generi-
cally and remains gapless, so the order parameter and fermions
coexist and reveal an intriguing unconventional nature [2–4].

The fermionic excitation in unconventional SCs is often
protected and classified by its topological nature. One conve-
nient way to characterize topological nature is the Berry phase
(or flux) of the Bogoliubov–de Gennes (BdG) Hamiltonian. In
the literature [5–7], the structure of the BdG Hamiltonian has
been extensively studied and is applied to weakly correlated
systems. Proximity effects between topologically different
phases (or defects in momentum space) have been investigated
and experimentally tested, focusing on a search for novel
excitation such as Majorana modes [8,9].

Here, we focus on a class of unconventional SCs whose
topological nature is protected by a symmetry. Namely, unless
the symmetry is broken, the topologically protected nodal
structure is intact. In this class, change of the topology and
spontaneous breaking of the symmetry appear concomitantly
at quantum-critical points, and thus an intriguing interplay
between symmetry and topology is expected. Therefore, topo-
logical phase transitions around the class of unconventional
SCs become a perfect venue to investigate the interplay
between topology and symmetry. In two dimensions (2D),
Sachdev and co-workers have investigated a similar class of the
transition in the context of d-wave SCs [10–12]. They found
the universality class of the phase transitions at which the point
nodes of d-wave SCs disappear is that of the Higgs-Yukawa
theory, i.e., the theory with relativistic fermions and bosons
in 2D.

A richer structure exists in three spatial dimensions (3D).
Line nodes are available in 3D in addition to point nodes. Point
and line nodes are obviously not homeomorphic and thus are
topologically different. The effective phase space of line-nodal
excitation is qualitatively distinct from that of order-parameter
fluctuation, as shown by codimension analysis in literature
[5–7]. Thus, concomitant appearance of symmetry breaking
and change of topology in line-nodal SCs has us expect an
exotic universality class of the topological transitions.

Abundant experiments in phase transitions inside super-
conducting domes with line-nodal excitation is another moti-
vation for the current work. Inside superconducting domes,
tuning parameters such as pressure, impurity, and doping
often invoke phase transitions, inducing so-called coexistence
regions [13–16]. Interestingly, many of these systems, in
particular, pnictides and heavy-fermion systems, are suggested
to have line-nodal excitations [16–27]. For example, the
recent experiment in Ba0.65Rb0.35Fe2As2 shows transitions
from nodeless SCs to line-nodal SCs by tuning pressure, and
various intriguing characters are reported, such as insensitivity
of superconducting temperature to pressure in spite of clear
transition in the SC gap structure [28–30]. Thus, it is imperative
to deepen our understanding in quantum phase transitions
inside superconducting domes with line nodes.

We investigate topological phase transitions with a con-
comitant appearance of symmetry breaking and change of
topology in line-nodal SCs, which often appear in side
superconducting domes. We discover an exotic universality
class out of the interplay between symmetry and topology.
Furthermore, we apply our theoretical results to experiments
and discuss direct relation with recent experiments in pnictides
and heavy-fermion systems.

II. MODEL AND ANALYSIS

A. Symmetry and phases

Topological line-nodal SCs protected by a symmetry
maintain their nodal structure unless the protecting symmetry
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is broken. Therefore, adjacent symmetry-broken phases may
be described by representations of the symmetry. For example,
the polar phase with line nodes, A phase with point nodes, and
nodeless B phase in liquid 3He are described by investigating
symmetry representations of SO(3)L × SO(3)S × U(1)φ . Be-
low, we take the group G = C4v × T × P , one of the common
lattice groups in line-nodal SC experiments (here P and T are
for particle-hole and time-reversal symmetries), as a prototype.
Its generalization to other groups is straightforward.

It is well understood in the literature [5] that the SC model
with the symmetry group G,

H0 =
∑

k

�
†
k[h(k)τ z + �(k)τ x]�k, (1)

has line nodes protected by T symmetry. A four-component
spinor �

†
k = (ψ†

k,iσ
yψT

−k) with ψ
†
k = (c∗

k,↑,c∗
k,↓) is intro-

duced, and the particle-hole (spin) space Pauli matrices
τ x,y,z (σx,y,z) are used. The τ z term describes a normal-
state spectrum h(k) = ε(k) − μ + α�l(k) · �σ , and the τ x term
describes a pairing term �(k) = [�s + �t

�d(k) · �σ ]. Energy
dispersion ε(k) = −2t[cos(kx) + cos(ky) + cos(kz)] is intro-
duced with spin-orbit coupling strength α. The orbital axis of
the pairing and spin-orbit terms are identical �d(k) = �l(k) =
( sin(kx), sin(ky),0), which usually maximizes Tc [31,32]. The
pairing amplitudes {�s,�t } are chosen to be real and positive
without losing generality because of the T symmetry. As
illustrated in Fig. 1(a), the system exhibits two topological

FIG. 1. Phase diagram and renormalization group (RG) flow.
Three axes are for temperature (T ), the tuning parameter (r), and the
coupling between order-parameter and line-node fermions (g). In the
r-T plane, the critical region is parametrically wider than that of the
conventional φ4 theory. In the r-g plane, the RG flow is illustrated by
arrows. The “Gaussian” fixed point has Laudau mean-field theory’s
critical exponents due to the upper critical dimension. Once the
coupling g turns on, the Gaussian fixed point becomes destabilized
and RG flows go into “TQC.” At T = 0, the left (red) sphere is for the
ordered phase, and the right (blue) sphere is for the disordered phase.
Tc is for the superconducting dome temperature, and Tco is for critical
temperature of the symmetry-breaking order parameter. (a) Nodal
lines in momentum space in the symmetric phase are illustrated at
kz = ±k∗

z in addition to the zero point k = 0 (black dot). (b) Nodal
points in momentum space in a symmetry-broken phase (eight nodal
points).

TABLE I. C4v representations for topological phase transitions.
For simplicity, T -broken and spin-singlet representations are only
illustrated. The first column is for representations. The second column
is the matrix structure in the Nambu space. The third column is for
continuum representations near nodal lines. The last column is for
the numbers of the nodal points in each representation.

Rep. Lattice [Fs(k)Ms] Continuum No.

A1 τ y τ y 0

A2 sin(kx) sin(ky)[cos(kx) − cos(ky)]τ y sin(4θ )τ y 16

B1 [cos(kx) − cos(ky)]τ y cos(2θ )τ y 8

B2 sin(kx) sin(ky)τ y sin(2θ )τ y 8

E sin(kx) sin(kz)τ y , cos(θ )τ yμz, 4

sin(ky) sin(kz)τ y sin(θ )τ yμz

line nodes separated in momentum space protected by the T
symmetry.

It is obvious that T -symmetry-breaking superconductivity
(the term with τ y) changes nodal structure, so order-parameter
representations for topological phase transitions can be illus-
trated as in Table I. Group-theory analysis guarantees coupling
terms between order parameters and fermionic excitation,

Hψ−φ =
∑

s

φs

∑
k

�
†
kFs(k)Ms�k.

s is for representations (and multiplicity) and Fs Ms are
illustrated in Table I. For detail of this classification, see
A in the Supplemental Material [33]. Note that s = E is a
two-dimensional representation, so the corresponding order
parameter (φs=E) has two components.

Two topologically different cases exist. First, momentum
independence of A1 representation makes fermion spectrum
gapped completely, the so-called is pairing. In the 3He context,
this phase corresponds to the weakly T -broken analog of the
B phase. Second, the order parameters in A2, B1, B2, and E

representations leaves point nodes due to angular dependence.
Nodal points appear when Fs(k) has zeros on line nodes and
is, in fact, Weyl nodes. This phase corresponds to the A phase
in 3He.

B. Mean-field theory and renormalization group

Armed with understanding of adjacent symmetry-broken
phases, we consider topological phase transitions. Stan-
dard mean-field theory (MFT) with on-site interaction
−u(�†τ y�)2 gives a mean-field free-energy density of
“isotropic” A1 representation order parameter (is pairing),

FMF (φ) = (r − rc + T )φ2 + kf |φ|3 + · · · , (2)

where u = 1/r is used. Coefficients of each term are scaled
to be one and · · · is for higher-order terms. Notice that the
unusual |φ|3 term appears whose presence is solely from line-
nodal fermions manifested by kf . It also guarantees the phase
transition is continuous and makes the usual φ4 term irrelevant.
Furthermore, the order-parameter critical exponent becomes
significantly different from one of the Landau MFT (which
only contains bosonic degrees of freedom), 〈φ〉 ∼ (r − rc),
giving β = 1, which already suggests a universality class.
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We now investigate quantum criticality around the contin-
uous phase transitions. For simplicity, we omit the subscript
s and introduce one real scalar field φ to describe the order
parameter. Its generalization to the E representation with two
scalar fields is straightforward.

In the phenomenological Landau-Ginzburg theory, order-
parameter fluctuation near quantum phase transitions may be
described by

Sφ =
∫

x,τ

1

2
(∂τφ)2 + 1

2
(∇φ)2 + r

2
φ2 + λ

4!
φ4. (3)

Of course, this action is not complete in our systems
and necessary to be supplemented by the corrections from
fermions. Without the coupling between the order parameter
and fermions, the critical theory Sφ with r = rc is well
understood, the so-called the φ4 theory: In 3D, it is at the upper
critical dimension. Thus, the Landau MFT works well up to
logarithmic correction, and hyperscaling is satisfied. Below,
we show that the coupling to fermions significantly changes
low-energy physics and induce a universality class.

The total action with fermions is

Sc = Sφ + Sψ, Sψ =
∫

x,τ

�†(∂τ + H0)� + g

∫
τ

Hψ−φ.

A coupling constant g characterizes strength of the coupling
between fermions and bosons, and the Hamiltonian density
H0 is introduced (H0 = ∫

x
�†H0�).

Near phase transitions, low-energy and momentum degrees
of freedom become important, so we only need the low-energy
continuum theory of the BdG Hamiltonian Eq. (1) near nodes
and obtain

H0(k) ≈ vzδkzμ
zτ z + v⊥δk⊥τ x, (4)

where the momentum is k = ((kf + δk⊥) cos(θk),(kf +
δk⊥) sin(θk),k∗

zμ
z + δkz). Here μz = ±1 represents the

“which-line-node” index and the effective parameters {vz,v⊥}
are the functions of the microscopic parameters. The low-
energy fermion spectrum (say, μz = +1) without the fermion-
boson coupling is

ε0(δkz,δk⊥,θk) = ±
√

(vzδkz)2 + (v⊥δk⊥)2. (5)

One parameter, the angle 0 � θk � 2π , characterizes zero
energy states, so a nodal line exists in momentum space.

Density of states near zero energy vanishes linearly in ε,
Df (ε) ∼ kf |ε| in a sharp contrast to ones of Fermi surfaces
(∼ ε0), nodal points (∼ ε2), and order parameters (∼ ε2). It
is clear that phase space of nodal-line fermion excitation is
different from that of fluctuation of the order parameter. Such
a difference in the phase spaces of bosons and fermions is a
consequence of the codimension mismatch.

The coupling term is also written in terms of low-energy
degrees of freedoms,

g

∫
x

Hψ−φ ≈ g

∫
k,ω,q,�

φq,�F(θk)�†
k+q,ω+�M�k,ω,

the so-called the Yukawa coupling. We use Shankar’s decom-
position of fermion operators around the line node, �k ≈
�(δkz,δk⊥,θk; μz).

The standard large-Nf analysis is performed by introducing
Nf copies of fermion flavors coupled to the boson φ. The

lowest-order boson self-energy �b(�,q) can be obtained by
the usual bubble diagram. For A1 representation, the boson
self-energy is

�b(�,q) =Nf g2
∫

k,ω

Tr[τ yGf,0(ω,k)τ yGf,0(ω+�,q+k)],

where G−1
f,0(ω,k) = −iω + H0(k) is the bare fermion propa-

gator. Notice that the integration is over fermionic momentum
and frequency; thus, the main contribution comes from line-
nodal fermions. Basically, the momentum integration can be
replaced with energy integration with Df (ε) ∼ kf |ε|. The
integration is straightforward (see C.1 in [33]) and we find

δ�b(�,q) = C(kf Nf )
√

�2 + v2
z q

2
z + v2

⊥q2
⊥el[ρ(�,q)],

with δ�b ≡ �b(�,q) − �b(0,0) and C = g2

4πv⊥vz
. The com-

plete elliptic integral el[x] and variable ρ(�,q) =
1/(1 + �2+v2

z q
2
z

v2
⊥q2

⊥
) are used. The elliptic integral is well defined

in all ranges of momentum and frequency; thus, as the
lowest-order approximation, one can treat the integral as a
constant since 1 � el[x] < 2.

Two remarks follow. First, the linear dependence in mo-
mentum and frequency can be understood by power counting
with the linear fermionic density of states. Second, the boson
propagator contains the factor Nf kf . Thus, one can understand
the large Nf analysis as an expansion with the 1

Nf kf
factor.

The presence of kf already suggests suppression of infrared
divergences in loop calculations (see below).

The modified boson action is

S
eff

φ =
∫

q,�

|φq,�|2
2

[r̃ + q2 + �2 + δ�b(�,q))] + · · · ,

with r̃ = r + �b(0,0). The self-energy manifestly dominates
over the bare terms at long wavelengths; thus, the bare terms
may be ignored near the critical point (r̃ = 0) and the boson
propagator becomes Gb(�,q) → δ�b(�,q)−1.

The backreaction of the bosons to fermions is obtained by
the fermion self-energy,

�f (ω,k) = g2
∫

�,q
τ yGf (ω + �,k + q)τ yGb(�,q).

Straightforward calculation shows that the corrections to the
parameters of the bare fermion action Eq. (4) have the structure

δ�f (ω,k)

δεa
∝ 1

Nf kf

× (� − μ), (6)

where εa = (ω,v⊥δk⊥,vzkz), and � and μ are the ultraviolet
(UV) and infrared (IR) cutoffs. kf is the largest momentum
scale, kf � � � μ in this work. The same cutoff dependence
in the vertex correction is found (omitted here; see C in [33]
for details). The absence of the infrared divergences indicates
that our one-loop calculation is exact in terms of divergence
structure and associated critical exponents [34]. The control
parameter of our calculation is not just 1/Nf , but 1/Nf kf ,
as shown above. Here kf is the Fermi momentum of the
normal state, which is the largest scale in the condensed-matter
system. Thus, the control parameter of the calculation Nf kf

is expected to be large enough even in the limit of Nf → 1,
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and hence we argue the critical exponent to be correct at the
finite Nf .

Two remarks follow. First, the momentum integration
captures order-parameter fluctuation, so it may be replaced
with energy integration with density of states,D(ε) ∼ ε2. Next,
the cutoff dependence is a result of the large Nf expansion with
kf , as discussed before. The absence of the infrared divergence
indicates that perturbation theory works well. Thus, fermions
and bosons become basically decoupled at low energy. In
a renormalization-group sense, this indicates that the vertex
operator is irrelevant at low energy. For other representations,
nodal points survive the symmetry-breaking transition and
become the point nodes. Despite the presence of the nodal
points, the coupling between the order parameter and the
fermion becomes effectively zero, and the nodal points become
“cold spots” of the transition. Thus, the gapless excitations
from the nodal points do not affect the low-energy dynamics
of the fermion and bosons, and this is thoroughly checked in
B and C in [33].

The critical theory associated with topological line-nodal
SCs is

Sc
φ

Nf kf

=
∫

�,q

√
�2 + v2

z q
2
z + v2

⊥q2
⊥R(ρ(�,q))

|φ|2
2

, (7)

setting r̃ = 0. R(ρ(�,q)) is an order one nonzero positive
well-defined function to characterize representations (see C.1
in [33]). Therefore, critical exponents do not depend on R(x).
We omit the φ4 term, which is justified below.

Let us list the striking characteristics of our critical theory.
First, the damping term, kf |�|, at q = 0 exists. The presence
of the damping term appears due to the absence of the Ward
identity in our systems in a sharp contrast to line-nodal normal
semimetal with the Coulomb interaction. Its form is the same
as the Hertz-Millis theory of antiferromagnetic transitions, but
momentum dependence is also linear, so the dynamic critical
exponent is relativistic (z = 1).

Moreover, the anomalous dimension of the order parameter
is large (ηφ = 1), so the scaling dimension of the order
parameter is [φ] = d+z−2+ηφ

2 = 3
2 . This is completely different

from one of the Landau theory (φ4 theory) at the upper critical
dimension (d = 3 with z = 1). Due to the large anomalous
dimension, the correlation length behaves ξ−1 ∼ |r − rc|, so
ν = 1. Also, the anomalous dimension makes the φ4 coupling
irrelevant, [λ] < 0. So our critical theory is stable, which
becomes a sanity check of the MFT in Eq. (2).

The susceptibility exponent is γ = 1, and the Fisher equal-
ity is satisfied (2 − ηφ)ν = γ . Basically decoupled fermions
and bosons contribute to specific heat independently, Cv ∼
af T 2 + abT

3. The first term is from line-nodal fermions, and
the second term is from order-parameter fluctuations with
d/z = 3 (see D in [33]).

The hyperscaling is violated even in 3D. If not, one would
get the order-parameter critical exponent, β [〈φ〉 ∼ (rc − r)β]
by the scaling relation, β = (d+z−2+η)ν

2 = 3
2 . However, we

already observe β = 1 in our MFT in Eq. (2), and also the
perturbative calculation in our critical theory gives (see E
in [33])

r̃ + �b(0,0; T ) − �b(0,0; T = 0) ∼ r̃ + T ,

TABLE II. Critical theories of QCP in three spatial dimen-
sions (d = 3). The first row includes critical exponents (� ∼ qz,
ξ−1 ∼ |r − rc|ν , χφ ∼ |r − rc|−γ , and [φ] = d+z−2+η

2 ). “HS” is for
hyperscaling. Both Higgs-Yukawa and φ4 theory are at the upper
critical dimension, so the exponents are ones of the Landau MFT.
Both quadratic band touching quantum-critical point (QBT-QCP) and
nodal-line QCP have wider quantum-critical region ν = 1 with large
anomalous dimension η = 1 obtained by large Nf analysis.

QCP in 3D z ν β γ η HS

φ4 Theory [35] 1 1
2

1
2 1 0 O

Higgs-Yukawa [35,36] 1 1
2

1
2 1 0 O

QBT-QCP [37,38] 2 1 2 1 1 O

Hertz-Millis [40,41] 2 or 3 1
2

1
2 1 0 X

Nodal line QCP 1 1 1 1 1 X

giving the critical temperature scaling, Tco ∼ |rc − r| =
r̃ , which gives a qualitatively wider quantum-critical
region than the one of the Landau MFT, Tco,L ∼ √

rc − r .
The hyperscaling violation indicates that the Yukawa coupling
is dangerously irrelevant. In Table II, we compare our critical
theory with other critical theories in 3D [35–41] in terms of
critical exponents and hyperscaling applicability.

We remark that our low-energy theory has a larger sym-
metry than one of the original system, namely U (1) rotational
symmetry not the original C4v . Thus, kf is independent of the
angle θk. This is an artifact of the linearization approximation,
but it is not difficult to see that the universality class is not mod-
ified by inclusion of symmetry-breaking terms down to C4v

unless a singular fermion spectrum such as nesting appears.
This is because the codimension mismatch is the key of

linear dependence of momentum and frequency in the boson
self-energy with the presence of kf and the absence of IR
divergence in the fermion self-energy. Thus, all critical expo-
nents are the same as ones of Eq. (7). This is also consistent
with previous literature on quantum criticality [42,43]. We also
explicitly show the linear dependence without the linearized
fermion dispersion approximation in the Supplemental Mate-
rial [33].

III. DISCUSSION AND CONCLUSION

Our theoretical results can be directly applied to quan-
tum phase transitions beneath superconducting domes. We
provide an additional smoking-gun signature of line-nodal
SCs. Namely, the linear phase boundary Tco ∼ (rc − r), from
hyperscaling violation, between two different SCs identifies
the presence of line nodes. Interestingly, the linearlike shape
phase boundary between B phase and C phase in UPt3 was
reported [29]. Based on the suggested gap structures with the b

directional magnetic field, one can analyze one nodal line in C

phase becomes nodal points in B phase, which is perfectly well
suited to our phase transition. Several other heavy-fermion
systems, for example, UCoGe, are also suggested to have a
linear phase boundary between two different SCs [20,21], and
one of SCs at least is suggested to have line nodes, though
further thorough investigation is necessary.

Furthermore, direct measurement of critical exponents is
possible. In our universality class, order parameter is strongly
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correlated in the sense that it has a large anomalous dimen-
sion, so its direct measurement shows qualitatively different
behaviors from Landau MFTs. In particular, the fluctuation
of the T -breaking order parameters has been extensively
studied in a context of chiral SCs [44–49]. There are several
concrete experimental methods to measure the fluctuation,
namely, the spin-polarized muon scattering [2,49,50]. From
our critical exponents, we obtain the change in the distribution
δσ of internal magnetic fields relative to the T -symmetric
phase is δσ (r,T ) ∝ 〈φ(r,T )〉. Then, our scaling analysis gives
δσ (r,T ) ∝ (rc − r)F( T

r−rc
) with a scaling function F . Thus,

the T -breaking signal is qualitatively different from that of the
Landau MFT result δσL(rc,T = 0) ∝ √

rc − r .
The hyperscaling violation and associated fermion-boson

decoupling indicate that fermions and order parameters
contribute separately to the scaling properties of physical
quantities. Since phase space of order-parameter fluctuation
is qualitatively smaller than that of fermions, most physi-
cal quantities are mainly dominated by weakly interacting
fermions with a band structure determined by an order-
parameter condensation. For example, the penetration depth
is mainly determined by the weakly interacting fermions. As
discussed in the literature [51,52], superconducting density
at zero temperature, �λ−2(r) = a1(r − rc) + a2〈φ2〉, has a
nonuniversal linear term, and the hyperscaling violation
gives 〈φ2〉 ∼ (r − rc)2. Thus, the nonuniversal term always
dominates over the order-parameter contribution. Therefore,
in spite of the presence of quantum criticality, the penetration
depth is mainly determined by the fermionic excitation,
�λ−2(T ) ∼ T in a symmetric phase with nodal-line excitation,
and �λ−2(T ) ∼ e−〈φ〉/T ∼ e−(rc−r)/T in a symmetry-broken
phase without nodal excitation (A1 representation). More
detailed discussion on physical quantities will appear in future
works.

Furthermore, the fermion-boson decoupling indicates that
the superconducting temperature, which forms supercon-
ducting domes, is insensitive to the onset of topological
phase transitions. The vertex correction without the infrared
divergence implies that the order-parameter fluctuation does
not modify the low-energy properties of fermions, which are
related to Tc. Also, we perform the mean-field-type analysis
by integrating out fermions [53,54] and obtain qualitatively
different behavior, Tc(r) ∼ Tc(rc) + (r − rc)3 for r < rc, in
sharp contrast to Tc(r) ∼ Tc(rc) + (r − rc) in the conven-
tional Landau-Ginzburg theory. Roughly speaking, the cubic

dependence can be understood by the absolute cubic term in
Eq. (2) (see F in [33]). These calculations indicate that Tc is
qualitatively more insensitive to tuning parameters than one of
the Landau-Ginzburg theory.

We use such insensitivity to explain puzzles of recent
experiments in topological phase transitions in pnictides
and heavy-fermion systems. For example, Ba0.65Rb0.35Fe2As2

shows a gap-structure changing phase transition from nodeless
SCs to nodal-line SCs varying with pressure [28]. It is
found that Tc is insensitive to pressure in spite of the gap-
structure change. A similar puzzle also appears in Yb-doped
CeCoIn5 and we find no anomaly in Tc in terms of the
symmetry-breaking scenario. We believe such insensitivity can
be understood as the consequence of our universality class,
Tc(r) ∼ Tc(rc) + (r − rc)3.

In conclusion, we have described topological phase tran-
sitions associated with line-nodal SCs where topology and
symmetry reveal intriguing interplay phenomena. We find that
quantum criticality naturally appears and its universality class
of the transition shows characteristics such as emergent rela-
tivistic scaling, hyperscaling violation, and an unusually wide
quantum-critical region. We also apply our theoretical results
to recent experiments and predict scaling forms of physical
quantities. In particular, we provide a plausible explanation
of insensitivity of Tc in the experiments. Our results can
also be applied to topological phase transitions out of normal
nodal ring semimetals naturally if the chemical potential is
fixed to be zero. Future theoretical studies should include
more comprehensive treatment of perturbations of critical
points such as disorder, finite temperature, and magnetic-field
effects. Quantitative comparison with experiments would be
also desirable.
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